首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The frequency and distribution of methylated cytosine (5-MeC) at CC T A GG (Dcm sites) in 49 E. coli DNA loci (207,530 bp) were determined. Principal observations of this analysis were: (1) Dcm frequency was higher than expected from random occurrence but lower than calculated with Markov chain analysis; (2) CCTGG sites were found more frequently in coding than in noncoding regions, while the opposite was true for CCAGG sites; (3) Dcm site distribution does not exhibit any identifiably regular pattern on the chromosome; (4) Dcm sites at oriC are probably not important for accurate initiation of DNA replication; (5) 5-MeC in codons was more frequently found in first than in second and third positions; (6) there are probably few genes in which the mutation rate is determined mainly by DNA methylation. It is proposed that the function of Dcm methylase is to protect chromosomal DNA from restriction-enzyme EcoRII. The Dcm methylation contribution to determine frequency of oligonucleotides, mutation rate, and recombination level, and thus evolution of the E. coli genome, could be interpreted as a consequence of the acquisition of this methylation.Correspondence to: M.C. Gómez-Eichelmann  相似文献   

2.
Abstract The presence of 6-methyladenine and 5-methylcytosine at Dam (GATC) and Dcm (CCA/TGG) sites in DNA of mycobacterial species was investigated using isoschizomer restriction enzymes. In all species examined, Dam and Dcm recognition sequences were not methylated indicating the absence of these methyltransferases. On the other hand, high performance liquid chromatographic analysis of genomic DNA from Mycobacterium smegmatis and Mycobacterium tuberculosis showed significant levels of 6-methyladenine and 5-methylcytosine suggesting the presence of DNA methyltransferases other than Dam and Dcm. Occurrence of methylation was also established by a sensitive genetic assay.  相似文献   

3.
All exonic CG sequences in p53 are methylated; this epigenetic modification is correlated with frequent G:C-->A:T transitions in p53. Recent reports reveal the presence in p53 of non-CG methylation in CC and CCC sequences, complementary to sites of selective guanosine adduct formation (GG and GGG), and the association of genetic instability with methylation at repetitive sequences. We presently investigated the distribution of methylation sites and repetitive elements in silent and nonsense p53 mutations (2051) among the IARC's TP53 somatic mutation database for exons 5-8. Silent mutations are nonrandom, but mostly involve G:C-->A:T transitions (62%); in particular C-->T mutations (39% of all silent mutations) are mostly correlated with CC and CCC sequences, while G-->A mutations with GG sequences. Sequence analysis of all non-G:C-->A:T silent mutations reveals the frequent formation of new methylation sites (CG), new CCC and GGG sequences in the resulting sequence, refinement of symmetry elements at interrupted microsatellite-like sequences and formation of small repeats (55.3%). The G:C-->A:T silent mutations characterize cancers associated with cigarette smoking (e.g. bladder or lung and bronchus cancer versus colorectal cancer); on the contrary, non-G:C-->A:T silent mutations have similar frequencies in most cancers. Nonsense mutations in exons 5-8, all resulting in mutants lacking amino acids 307-393, which are crucial for p53 activity, were also analyzed. The frequency of nonsense mutations is higher at methylated sites or repeats 1-2 nucleotides removed from methylation sites. Frameshift mutations are also more frequent at repeated sequences. The frequent G:C-->A:T silent mutations could indicate that CC and CCC sequences of exons 5-8 are occasionally targets of non-CpG methylation of cytosine. This process of de novo methylation in the presence of microsatellite-like sequences and small repeats might influence the genetic stability of a variety of genes.  相似文献   

4.
The necessary amplification step in bacteria of any plasmid currently used in DNA immunization or gene therapy introduces modification in the nucleotide sequence of plasmid DNA used in gene transfer. These changes affect the adenine and the internal cytosine in respectively all of the GATC and CC(A/T)GG sequences. These modifications which introduce 6-methyladenine and 5-methylcytosine in plasmidic DNA are the consequence of the existence of the bacterial modification systems Dam and Dcm. In eucaryotes, the presence of 5-methylcytosine at dinucleotides -CG- is involved in silencing gene expression, but the possible consequences of the presence of the bacterial G(m)ATC and C(m)C(A/T)GG sequences in the plasmids used in gene transfer experiments are presently unknown. Since the possibility exists to obtain plasmid DNA lacking this specific bacterial pattern of methylation by using (dam(-), dcm(-)) bacteria we performed experiments to compare in vitro and in vivo gene transfer efficiency of a pCMV-luc reporter plasmid amplified either in the JM109 (dam(+), dcm(+)) or JM110 (dam(-), dcm(-)) bacteria. Data obtained demonstrated that the presence of 6-methyladenine in GATC sequences and 5-methylcytosine in the second C of CC(A/T)GG motifs does not reduce the levels of luciferase activity detected following in vitro or in vivo gene transfer. On the contrary, gene transfer with a pCMV-luc amplified in JM109 (dam(+), dcm(+)) bacteria gives greater amounts of luciferase than the same transfection performed with a plasmid amplified in the mutated JM110 (dam(-), dcm(-)) counterpart. Therefore, these data do not suggest that the use of (dam(-), dcm(-)) bacteria to amplify plasmid DNA may increase gene transfer efficiency. However, the persistence of the use of (dam(+), dcm(+)) bacteria in order to amplify plasmid DNA raises the question of the possible biological consequences of the introduction of the bacterial G(m)ATC and C(m)C(A/T)GG sequences in eukaryotic cells or organisms.  相似文献   

5.
The EcoRII endonuclease cleaves DNA containing the sequence CC(A/T)GG before the first cytosine. The methylation of the second cytosine in the sequence by either the EcoRII methylase or Dcm, a chromosomally coded protein in Escherichia coli, inhibits the cleavage. The gene for the EcoRII endonuclease was mapped by analysis of derivatives containing linker insertions, transposon insertions, and restriction fragment deletions. Surprisingly, plasmids carrying the wild-type endonuclease gene and the EcoRII methylase gene interrupted by transposon insertions appeared to be lethal to dcm+ strains of E. coli. We conclude that not all the EcoRII/Dcm recognition sites in the cellular DNA are methylated in dcm+ strains. The DNA sequence of a 1650-base pair fragment containing the endonuclease gene was determined. It revealed an open reading frame that could code for a 45.6-kDa protein. This predicted size is consistent with the known size of the endonuclease monomer (44 kDa). The endonuclease and methylase genes appear to be transcribed convergently from separate promoters. The reading frame of the endonuclease gene was confirmed at three points by generating random protein fusions between the endonuclease and beta-galactosidase, followed by an analysis of the sequence at the junctions. One of these fusions is missing 18 COOH-terminal amino acids of the endonuclease but still displays significant ability to restrict incoming phage in addition to beta-galactosidase activity. No striking similarity between the sequence of the endonuclease and any other protein in the PIR data base was found. The knowledge of the primary sequence of the endonuclease and the availability of the various constructs involving its gene should be helpful in the study of the interaction of the enzyme with its substrate DNA.  相似文献   

6.
SPR, a temperate Bacillus subtilis phage, codes for a DNA methyltransferase that can methylate the sequences GGCC (or GGCC) and CCGG at the cytosines indicated. We show here that it can also methylate the sequence CC(A/T)GG and protect it from cleavage with EcoRII and ApyI. This methylation can be seen in vivo as well as in vitro with purified SPR methyltransferase. SPR19 and SPR83 are two mutant phages, defective in GGCC or CCGG methylation, respectively. These mutants have not lost their ability to methylate CC(A/T)GG sites. Mutation SPR26 has lost the ability to methylate all three sites. Thus the SPR methyltransferase codes for three genetically distinguishable methylation abilities.  相似文献   

7.
Multispecific DNA methyltransferases (Mtases) of temperate Bacillus subtilis phages SPR and phi 3T methylate the internal cytosine of the sequence GGCC. They differ in their capacity to methylate additional sequences. These are CCGG and CC(A/T)GG in SPR and GCNGC in phi 3T. Introducing unique restriction sites at equivalent locations within the two genes facilitated the construction of chimeric genes. These expressed Mtase activity at a level comparable to that of the parental genes. The methylation specificity of chimeric enzymes was correlated with the location of chimeric fusions. This analysis, which also included the use of mutant genes, showed that domains involved in the recognition of target sequences unique to each enzyme [CCGG, CC(A/T)GG or GCNGC] are represented by the central non-conserved parts of the proteins, whilst recognition of the sequence (GGCC), which is a target for both enzymes, is determined by an adjacent conserved region.  相似文献   

8.
 本文将克隆于pBR322的人胃癌Ha-ras基因(PGC6.6)和带有上游区片段的Ha-ras基因(PGC9.1)的CC~*GG位点甲基化后,转化NIH3T3细胞。发现pGC6.6甲基化与非甲基化对转化效率无明显影响,而pGC9.1甲基化后转化效率明显低于非甲基化pGC9.1者,甲基化/非甲基化pGC9.1的转化效率均明显高于甲基化/非甲基化pGC6.6者。本文又对人胃癌组织及癌旁组织DNA中Ha-ras基因的HpaⅡ、Msp Ⅰ限制性内切酶图谱作了比较,并同对比较了癌及癌旁组织中Ha-ras基因的mRNA水平,发现一例病人癌组织中Ha-ras基因的CC~*GG位点甲基化程度较癌旁组织中者低,且该例中Ha-ras基因表达水平在癌组织中明显地高。这些结果,结合我们以前的研究表明:在人胃Ha-ras癌基因上游区可能存在一增强子样作用的区域,对Ha-ras基因起调控作用。该上游区CC~*GG位点的甲基化能降低这种调控作用。仅Ha-ras结构基因的CC~*GG位点甲基化不足以明显影响其转化活性。在体内,Ha-ras基因甲基化水平降低可能与其达表水平升高以至诱发癌症有关。  相似文献   

9.
The methylation status of carrot (Daucus carota L.) mitochondrial DNA (mtDNA) was studied using isoschizomeric restriction enzymes MspI/HpaII (CCGG) and MvaI/EcoRII [CC(A/T)GG]. Southern hybridisations with probes for mitochondrial genes coxII and atpA were performed. MtDNAs isolated from non-embryogenic cell suspensions and roots were analysed. No differences were found using MspI/HpaII but after digesting the mtDNA with MvaI and EcoRII, some qualitative and quantitative differences between the restriction patterns appeared. Distinction was also revealed after Southern hybridisation with the coxII probe. These data indicate that the mtDNA of carrot is methylated in CNG trinucleotides and unmethylated in CG dinucleotides in CCGG sequences. The results were reproducible for cell suspensions of various genotypes and even cultivars but the extent of methylation was different in the root. The possible role of methylation in the mitochondrial genome of higher plants is discussed. Received: 16 April 1997 / Revision received: 4 July 1997 / Accepted: 30 July 1997  相似文献   

10.
11.
In Escherichia coli, the very short patch (VSP) repair system is a major pathway for removal of T·G mismatches in Dcm target sequences. In the VSP repair pathway, the very short patch repair (Vsr) endonuclease selectively recognizes a T·G mismatch in Dcm target sequences and hydrolyzes the 5′-phosphate group of the mismatched thymine. The hydrogen exchange NMR studies here revealed that the T5·G18 mismatch in the Dcm target sequence significantly stabilizes own base pair but destabilizes the two neighboring G4·C19 and A6·T17 base pairs compare to other T·G mismatches. These unusual patterns of base pair stability in the Dcm target sequence can explain how the Vsr endonuclease specifically recognizes the mismatched Dcm target sequence and intercalates into the DNA.  相似文献   

12.
We have examined transgene methylation in the DNA from the livers of a pedigree of mice carrying three copies of an integrated MToGH1 transgene. Utilizing the methylation-sensitive isoschizomersMsp I andHpa II, Southern blot analysis revealed that all second generation animals derived from a transgenic female had hypermethylated DNA, whereas first generation animals sired by a transgenic male displayed a range of methylation phenotypes ranging from no methylation to hypermethylation of the transgene sequences. Of the mice that exhibited hypermethylation of the transgene in CpG dinucleotides (CmCGG), a minority of these animals also exhibited apparent CpC methylation (i.e. inhibition ofMsp I cutting, presumably blocked by methylation of the outer C of CCGG). Methylation was also examined in the inner C of CC(A/T)GG sequences in the MToGH1 transgene using the isoschizomer pairBstN I andEcoR II. A minority of MToGH1 animals in the F1 generation showed clear evidence of methylation in these sites as well as in the inner and outer Cs of CCGG sites. An examination of MToGH1 expression in terms of oGH levels in serum revealed that there was a high degree of variation in the levels of circulating oGH between animals of this pedigree. There was a weak inverse relationship between the serum level of oGH and the extent of methylation of the transgene. In particular, mice exhibiting CpC together with CpG methylation were found to have very low levels of circulating oGH. Our results highlight the nature and complexity of epigenetic factors associated with transgene sequences which may ultimately influence expression of introduced genes in the mammalian genome.  相似文献   

13.
ABSTRACT: BACKGROUND: Industrial production of biofuels and other products by cellulolytic microorganisms is of interest but hindered by the nascent state of genetic tools. Although a genetic system for Clostridium thermocellum DSM1313 has recently been developed, available methods achieve relatively low efficiency and similar plasmids can transform C. thermocellum at dramatically different efficiencies. RESULTS: We report an increase in transformation efficiency of C. thermocellum for a variety of plasmids by using DNA that has been methylated by Escherichia coli Dam but not Dcm methylases. When isolated from a dam+ dcm+ E. coli strain, pAMG206 transforms C. thermocellum 100-fold better than the similar plasmid pAMG205, which contains an additional Dcm methylation site in the pyrF gene. Upon removal of Dcm methylation, transformation with pAMG206 showed a four- to seven-fold increase in efficiency; however, transformation efficiency of pAMG205 increased 500-fold. Removal of the Dcm methylation site from the pAM205 pyrF gene via silent mutation resulted in increased transformation efficiencies equivalent to that of pAMG206. Upon proper methylation, transformation efficiency of plasmids bearing the pMK3 and pB6A origins of replication increased ca. three orders of magnitude. CONCLUSION: E. coli Dcm methylation decreases transformation efficiency in C. thermocellum DSM1313. The use of properly methylated plasmid DNA should facilitate genetic manipulation of this industrially relevant bacterium.  相似文献   

14.
The SinI and EcoRII DNA methyltransferases recognize sequences (GGA/TCC and CCA/TGG, respectively), which are characterized by an A/T ambiguity. Recognition of the A·T and T·A base pair was studied by in vitro methyltransferase assays using oligonucleotide substrates containing a hypoxanthine·C base pair in the central position of the recognition sequence. Both enzymes methylated the substituted oligonucleotide with an efficiency that was comparable to methylation of the canonical substrate. These observations indicate that M.SinI and M.EcoRII discriminate between their canonical recognition site and the site containing a G·C or a C·G base pair in the center of the recognition sequence (GGG/CCC and CCG/CGG, respectively) by interaction(s) in the DNA minor groove. M.SinI mutants displaying a decreased capacity to discriminate between the GGA/TCC and GGG/CCC sequences were isolated by random mutagenesis and selection for the relaxed specificity phenotype. These mutations led to amino acid substitutions outside the variable region, previously thought to be the sole determinant of sequence specificity. These observations indicate that A/T versus G/C discrimination is mediated by interactions between the large domain of the methyltransferase and the minor groove surface of the DNA.  相似文献   

15.
16.
Deoxycytosine methylase (Dcm) enzyme activity causes mutagenesis in vitro either directly by enzyme-induced deamination of cytosine to uracil in the absence of the methyl donor, S-adenosylmethionine (SAM), or indirectly through spontaneous deamination of [5-methyl]cytosine to thymine. Using a Lac reversion assay, we investigated the contribution of the first mechanism to Dcm mutagenesis in vivo by lowering the levels of SAM. Escherichia coli SAM levels were lowered by reducing SAM synthetase activity via the introduction of a metK84 allele or by hydrolyzing SAM using the bacteriophage T3 SAM hydrolase. The metK84 strains exhibited increased C-to-T mutagenesis. Expression of the T3 SAM hydrolase gene, under the control of the arabinose-inducible P(BAD) promoter, effectively reduced Dcm-mediated genomic DNA methylation. However, increased mutagenesis was not observed until extremely high arabinose concentrations were used, and genome methylation at Dcm sites was negligible.  相似文献   

17.
Repeat-induced point mutation (RIP) is a process that efficiently detects DNA duplications prior to meiosis in Neurospora crassa and peppers them with G:C to A:T mutations. Cytosine methylation is typically associated with sequences affected by RIP, and methylated cytosines are not limited to CpG dinucleotides. We generated and characterized a collection of methylated and unmethylated amRIP alleles to investigate the connection(s) between DNA methylation and mutations by RIP. Alleles of am harboring 84 to 158 mutations in the 2.6-kb region that was duplicated were heavily methylated and triggered de novo methylation when reintroduced into vegetative N. crassa cells. Alleles containing 45 and 56 mutations were methylated in the strains originally isolated but did not become methylated when reintroduced into vegetative cells. This provides the first evidence for de novo methylation in the sexual cycle and for a maintenance methylation system in Neurospora cells. No methylation was detected in am alleles containing 8 and 21 mutations. All mutations in the eight primary alleles studied were either G to A or C to T, with respect to the coding strand of the am gene, suggesting that RIP results in only one type of mutation. We consider possibilities for how DNA methylation is triggered by some sequences altered by RIP.  相似文献   

18.
Wang K  Liu L  Zhu ZM  Shao JH  Xin L 《Cytokine》2011,56(2):167-173
Associations between five polymorphisms of vascular endothelial growth factor (i.e., VEGF +936C/T, −1154A/G, −2578C/A, −634G/C and −460T/C) and risk of breast cancer have been extensively studied, and the currently available results are inconclusive. Therefore, we performed this meta-analysis to further study the associations. The databases of Pubmed, Embase and CNKI were retrieved up to April 1st, 2010. The pooled ORs and 95% CIs were used to assess the strength of the associations. A total of 10 case–control studies with 8175 cases and 8528 controls were included in this study. The overall results of combined analyses showed that five polymorphisms of VEGF were not associated with risk of breast cancer [ORs (95% CIs): 1.03 (0.84–1.27) for CC vs. TT for +936C/T, 0.95 (0.81–1.12) for AA vs. GG for −1154A/G, 1.01 (0.90–1.14) for CC vs. AA for −2578C/A, 1.02 (0.90–1.16) for GG vs. CC for −634G/C and 0.86 (0.68–1.09) for TT vs. CC for −460T/C]. When subgroup analyses by ethnicity for VEGF +936C/T and −634G/C, the results suggested that +936C/T was not associated with the risk of breast cancer for either Asians [1.40 (0.92–2.13) for CC vs. TT and CC + CT vs. TT: 1.38 (0.91–2.10) for CC + CT vs. TT] or Caucasians [0.93 (0.73–1.19) for CC vs. TT and 0.91 (0.72–1.16) for CC + CT vs. TT], and −634G/C was not associated with the breast cancer for Caucasians [1.07 (0.92–1.24) for GG vs. CC and 1.05 (0.91–1.21) for GG + GC vs. CC]. In addition, when excluding one study, which was out of Hardy–Weinberg equilibrium for VEGF +963C/T and whose controls were from both patients and healthy people, the negative results were also persistent, and ORs (95% CIs) were 1.04 (0.84–1.29) for CC vs. TT, 1.03 (0.83–1.27) for (CC + CT) vs. TT. This meta-analysis suggests that the VEGF +936C/T, −1154A/G, −2578C/A, −634G/C and −460T/C may be not associated with risk of breast cancer development based on the currently available studies, especially for Caucasians. More well designed studies with larger sample size on different ethnicities are needed to further assess the associations.  相似文献   

19.
20.
Q Liu  X Chen  X Zhao  Y Chen  D Chen 《Gene》1992,113(1):89-93
This study is to extend our earlier observation that Dam and Dcm methylation outside the PvuII recognition sequence inhibited PvuII cleavage in one of the three PvuII sites of pGEM4Z-ras DNA. In this paper, a new recombinant plasmid DNA, pGEM4-SV40ori-anti-ras, was constructed which has only two PvuII sites, I and II. The Dam and Dcm-methylated and unmethylated DNAs were produced in Escherichia coli and linearized by ScaI. The DNA molecules were digested with different amounts of PvuII. The results show that by comparing the DNA fragment number and intensity of the partial and final products in agarose gel, PvuII site I on the methylated DNA molecule was digested four- to eight-fold more slowly than site II. In the unmethylated plasmid DNA, the two PvuII sites were cleaved at about the same rate. The difference was caused only by methylation of Dam and Dcm sites outside the PvuII recognition sequence. A methylated Dam site immediately adjacent to the less efficiently cut PvuII site I may be responsible for the inhibitory effect. We suggest that a new parameter, involving methylation of sites outside the recognition sequence, be considered in kinetic experiments on cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号