首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both the pollination control system and genetic distance are major factors in the utilization of crop heterosis. The recessive genic male sterile line (RGMS) 7-7365A (Bnms3ms3ms4ms4) has been widely applied to hybrid seed production because it can generate a completely male sterile population by crossing with the 7-7365C temporary line (Bnms3ms3rfrf). In this study, the sterile genes of 7-7365A were transferred to the new Brassica napus lines 7-749 and 7-750 with a high content of subgenomes by backcross breeding. We used the amplified fragment length polymorphism (AFLP) technique combined with bulk segregant analysis (BSA) to identify markers linked to the BnMs4 gene. Twelve AFLP markers linked to the BnMs4 gene were identified. Of them, SA06MG09 and P08MG16 were the closest makers, which were on either side of the gene at a distance of 0.9 and 0.8?cM, respectively. Twenty AFLP primer combinations were used to screen the F2, BC1F3, and BC2F4 populations from the breeding program, and the markers linked to the BnMs3 and BnMs4 genes were used to screen the BC2F4 populations. As a result, we obtained two types of improved sterile lines, 7-749A and 7-750A, and their indexes of subgenomic components (ISG) were 44.2?C49.8 and 20.2?C26.6%, respectively. The combining ability analyses of seed yield character were conducted in the crosses from the three sterile lines and ten restorers within a random block design in three environments for two successive years. The general combining ability (GCA) of the two improved sterile lines were significantly higher than the GCA of 7-7365A in every environment tested. The two improved sterile lines had stability in seed yield, and they will be used in the future for hybrid seed production.  相似文献   

2.
S45AB, a recessive genic male sterile (RGMS) line, originated as a spontaneous mutant in Brassica napus cv. Oro. The genotypes of sterile (S45A) and fertile plants (S45B) are Bnms1ms1ms2ms2 and BnMs1ms1ms2ms2, respectively. In our previous studies, Yi et al. (Theor Appl Genet 113:643–650, 2006) mapped the BnMs1 locus to a region of 0.4 cM, candidates of which have been identified and genetic transformation is in progress. We describe the fine mapping of BnMs2 exploiting amplified fragment length polymorphism (AFLP) and amplified consensus genetic marker (ACGM) methodologies, and the identification of a collinear region probably containing BnMs2 orthologue in Arabidopsis thaliana. A near isogenic line (NIL) population S4516AB which segregated for BnMs2 locus was generated by crossing, allelism testing and repeated full-sib mating. From the survey of 1,024 AFLP primer combinations, 12 tightly linked AFLP markers were obtained and five of them were successfully converted into co-dominant or dominant sequence characterized amplified region (SCAR) markers. A population of 2,650 sterile plants was screened using these markers and a high-resolution map surrounding BnMs2 was constructed. The closest AFLP markers flanking BnMs2 were 0.038 and 0.075 cM away, respectively. Subsequently, an ACGM marker was developed to delimit the BnMs2 locus at an interval of 0.075 cM. We extended marker sequences to perform BlastN searches against the Arabidopsis genome and identified a collinear region containing 68 Arabidopsis genes, in which the orthologue of BnMs2 might be included. We further integrated BnMs2 linked AFLP or SCAR markers to two doubled-haploid (DH) populations derived from the crosses Tapidor × Ningyou7 (Qiu et al., Theor Appl Genet 114:67–80, 2006) and Quantum × No.2127-17 (available in our laboratory), and BnMs2 was mapped on N16. Molecular markers developed from these investigations will facilitate the marker-assisted selection (MAS) of RGMS lines, and the fine map and syntenic region identified will greatly hasten the process of positional cloning of BnMs2 gene.  相似文献   

3.
Male sterility in a near-isogenic line S45AB after 25 generations of subcrossing is controlled by two pairs of duplicate genes. The genotype of S45A is Bnms1Bnms1Bnms2Bnms2, and that of S45B is BnMs1Bnms1Bnms2Bnms2, respectively. Histological observations revealed that abnormal anther development appeared in the tapetum and pollen exine during the tetrad stage. This male sterility was characterized by hypertrophy of the tapetal cells at the tetrad stage and a complete lack of microspore exine after the release of microspores from the tetrads. To elucidate the mechanism of this recessive genic male sterility, the flower bud expression profiles of the S45A and S45B lines were analyzed using an Arabidopsis thaliana ATH1 oligonucleotide array. When compared with the S45B line, 69 genes were significantly downregulated, and 46 genes were significantly upregulated in the S45A line. Real-time polymerase chain reaction (PCR) was then used to verify the results of the microarray analysis, and the majority of the downregulated genes in the S45A line were abundantly and specifically expressed in the anther. The results of the real-time PCR suggest that Bnms1 might be involved in the metabolism of lipid/fatty acids, and the homologous mutation of Bnms1 may either block the biosynthesis of sporopollenin or block sporopollenin from being deposited on the microspore surface, thus, preventing pollen exine formation. The role of Bnms1 in the regulatory network of exine formation is also discussed as well. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
A recessive genic male sterility (RGMS) system, S45 AB, has been developed from spontaneous mutation in Brassica napus canola variety Oro, and is being used for hybrid cultivar development in China. The male sterility of S45 was controlled by two duplicated recessive genes, named as Bnms1 and Bnms2. In this study, a NIL (near-isogenic line) population from the sib-mating of S45 AB was developed and used for the fine mapping of the Bnms1 gene, in which the recessive allele was homozygous at the second locus. AFLP technology combined with BSA (bulked segregant analysis) was used. From a survey of 2,560 primer combinations (+3/+3 selective bases), seven AFLP markers linked closely to the target gene were identified, of which four were successfully converted to sequence characterized amplified region (SCAR) markers. For further analysis, a population of 1,974 individuals was used to map the Bnms1 gene. On the fine map, Bnms1 gene was flanked by two SCAR markers, SC1 and SC7, with genetic distance of 0.1 cM and 0.3 cM, respectively. SC1 was subsequently mapped on linkage group N7 using doubled-haploid mapping populations derived from the crosses Tapidor × Ningyou7 and DH 821 × DHBao 604, available at IMSORB, UK, and our laboratory, respectively. Linkage of an SSR marker, Na12A02, with the Bnms1 gene further confirmed its location on linkage group N7. Na12A02, 2.6 cM away from Bnms1, was a co-dominant marker. These molecular markers developed from this research will facilitate the marker-assisted selection of male sterile lines and the fine map lays a solid foundation for map-based cloning of the Bnms1 gene.  相似文献   

5.
9012AB, a recessive genic male sterility (RGMS) line developed from spontaneous mutation in Brassica napus (Chen et al. in Acta Agron Sin 24:431-438, 1998), has been playing an increasing role in hybrid cultivar development in China. The male sterility of 9012AB is controlled by two recessive genes (designated Bnms3 and Bnms4) interacting with one recessive epistatic suppressor gene (esp). Previous study has identified seven AFLP markers, six of which were co-segregated with the Bnms3 gene in a small population (Ke et al. in Plant Breed 124:367-370, 2005). By cloning these AFLP markers and their flanking sequences, five of the six co-segregated markers were successfully converted into sequence characterized amplified region (SCAR) markers. For fine mapping of the Bnms3 gene, these SCAR markers were analyzed in a NIL population of 4,136 individuals. The Bnms3 gene was then genetically mapped to a region of 0.56 cM, with 0.15 cM from marker SEP8 and 0.41 from marker SEP4, respectively. BLAST analysis with these SCAR marker sequences identified a collinear genomic region in Arabidopsis chromosome 5, from which two specific PCR markers further narrowed the Bnms3 locus from an interval of 0.56 to 0.14 cM. These results provide additional information for map-based cloning of the Bnms3 gene and will be helpful for marker-assisted selection (MAS) of elite RGMS lines and maintainers.  相似文献   

6.
7.
A dominant male sterility (DGMS) line 79-399-3, developed from a spontaneous mutation in Brassica oleracea var. capitata, has been widely used in production of hybrid cultivars in China. In this line, male sterility is controlled by a dominant gene Ms-cd1. In the present study, fine mapping of Ms-cd1 was conducted by screening a segregating population Ms79-07 with 2,028 individuals developed by four times backcrossing using a male sterile Brassica oleracea var. italica line harboring Ms-cd1 as donor and Brassica oleracea var. alboglabra as the recipient. Bulked segregation analysis (BSA) was performed for the BC4 population Ms79-07 using 26,417 SRAP primer SRAPs and 1,300 SSRs regarding of male sterility and fertility. A high-resolution map surrounding Ms-cd1 was constructed with 14 SRAPs and one SSR. The SSR marker 8C0909 was closely linked to the MS-cd1 gene with a distance of 2.06 cM. Fourteen SRAPs closely linked to the target gene were identified; the closest ones on each side were 0.18 cM and 2.16 cM from Ms-cd1. Three of these SRAPs were successfully converted to dominant SCAR markers with a distance to the Ms-cd1 gene of 0.18, 0.39 and 4.23 cM, respectively. BLAST analysis with these SCAR marker sequences identified a collinear genomic region about 600 kb in scaffold 000010 on chromosomeA10 in B. rapa and on chromosome 5 in A. thaliana. These results provide additional information for map-based cloning of the Ms-cd1 gene and will be helpful for marker-assisted selection (MAS).  相似文献   

8.
Photoperiod-thermo-sensitive genic male sterile (PTGMS) rice exhibits a number of desirable traits for hybrid rice production. The cloning genes responsible for PTGMS and those elucidating male sterility mechanisms and reversibility to fertility would be of great significance to provide a foundation to develop new male sterile lines. Guangzhan63S, a PTGMS line, is one of the most widely used indica two-line hybrid rice breeding systems in China. In this study, genetic analysis based on F2 and BC1F2 populations derived from a cross between Guangzhan63S and 1587, determined a single recessive gene controls male sterility in Guangzhan63S. Molecular marker techniques combined with bulked-segregant analysis (BSA) were used and located the target gene (named ptgms2-1) between two SSR markers RM12521 and RM12823. Fine mapping of the ptgms2-1 locus was conducted with 45 new Insertion–Deletion (InDel) markers developed between the RM12521 and RM12823 region, using 634 sterile individuals from F2 and BC1F2 populations. Ptgms2-1 was further mapped to a 50.4 kb DNA fragment between two InDel markers, S2-40 and S2-44, with genetic distances of 0.08 and 0.16 cM, respectively, which cosegregated with S2-43 located on the AP004039 BAC clone. Ten genes were identified in this region based on annotation results from the RiceGAAS system. A nuclear ribonuclease Z gene was identified as the candidate for the ptgms2-1 gene. This result will facilitate cloning the ptgms2-1 gene. The tightly linked markers for the ptgms2-1 gene locus will further provide a useful tool for marker-assisted selection of this gene in rice breeding programs.  相似文献   

9.
The incomplete fertility of japonica × indica rice hybrids has inhibited breeders’ access to the substantial heterotic potential of these hybrids. As hybrid sterility is caused by an allelic interaction at a small number of loci, it is possible to overcome it by simple introgression at the major sterility loci. Here we report the use of marker-assisted backcrossing to transfer into the elite japonica cv. Zhendao88 a photoperiod-sensitive male sterility gene from cv. Lunhui422S (indica) and the yellow leaf gene from line Yellow249 (indica). The microsatellite markers RM276, RM455, RM141 and RM185 were used to tag the fertility genes S5, S8, S7 and S9, respectively. Line 509S is a true-breeding photoperiod-sensitive male sterile plant, which morphologically closely resembles the japonica type. Genotypic analysis showed that the genome of line 509S comprises about 92% japonica DNA. Nevertheless, hybrids between line 509S and japonica varieties suffer from a level of hybrid sterility, although the line is highly cross-compatible with indica types, with the resulting hybrids expressing a significant degree of heterosis. Together, these results suggest that segment substitution on fertility loci based on known information and marker-assisted selection are an effective approach for utilizing the heterosis of rice inter-subspecies.  相似文献   

10.
A novel cytoplasmic male sterility (CMS) was identified in Brassica juncea, named as hau CMS (00-6-102A). Subsequently, the male sterility was transferred to B. napus by interspecific hybridization. The hau CMS has stable male sterility. Flowers on the A line are absolutely male sterile, and seeds harvested from the line following pollinations with the maintainer gave rise to 100% sterile progeny. The anthers in CMS plants are replaced by thickened petal-like structures and pollen grains were not detected. In contrast, in other CMS systems viz. pol, nap, tour, and ogu, anthers are formed but do not produce viable pollen. The sterility of hau CMS initiates at the stage of stamen primordium polarization, which is much earlier compared with the other four CMS systems. We have successfully transferred hau CMS from B. juncea to B. napus. Restorer lines for pol, ogu, nap, and tour CMS systems were found to be ineffective to restore fertility in hau CMS. Sixteen out of 40 combinations of mitochondrial probe/enzyme used for RFLP analysis distinguished the hau CMS system from the other four systems. Among these sixteen combinations, five ones alone could distinguish the five CMS systems from each other. The evidence from genetic, morphological, cytological and molecular studies confirmed that the hau CMS system is a novel CMS system. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

11.
A transgenic male sterile line of upland cotton was generated by the ectopic expression of the monooxygenase (MNX) gene from Arabidopsis thaliana via Agrobacterium-mediated transformation. The bacterium harbored a plasmid pBinplus carrying a 1.25-kb MNX coding sequence together with a GUS reporter gene; the former was driven by the MS2 promoter of a male sterility gene in Arabidopsis, and the latter was under the control of CaMV 35S promoter. Twenty-seven putative transgenic plants (T0) were obtained, all of which showed GUS activity and positive signals of NPTII and MNX genes by PCR analysis, and also showed male sterility to some extent. It was further confirmed by Southern blotting that one copy of the NPTII and MNX gene was integrated in the genome of the plants which expressed male sterility to a higher degree. Northern blotting assay also demonstrated that the transgenes stably transcribed in the genome of the transgenic plants in F4 generation. The male sterile plants usually display lower plant height, shortened internodes, shrunken anthers without pollen grains or with some abortive pollen grains, and unusual leaves with deeper multi-lobes. Microscope observations on the meiosis processes of pollen mother cells (PMCs) showed that the abortion of pollen grains mainly resulted from abnormalities of meiosis such as direct degeneration of PMCs, degenerations of dyad and tetrads, amitosis, lagging chromosomes, and the multi-polar segregations of chromosomes and so on. This study indicates a method of developing novel cotton male sterile materials for potential application in agriculture and for engineering of male sterility in other important crops.  相似文献   

12.
A recessive epistatic genic male sterile two-type line, 7365AB (Bnms3ms3ms4msRrfRf/BnMs3ms3ms4ms4RfRf), combined with the fertile interim-maintainer 7365C (Bnms3ms3ms4ms4rfrf) is an effective pollination control system in hybrid rapeseed production. We report an effective strategy used to fine map BnMs4 and BnRf. The two genes were both defined to a common microsyntenic region with Arabidopsis chromosome 3 using intron polymorphism (IP) markers developed according to Arabidopsis genome information and published genome organization of the A genome. The near-isogenic lines 7365AC (Bnms3ms3ms4ms4Rfrf/Bnms3ms3ms4ms4rfrf) of BnRf and 736512AB (Bnms3ms3Ms4ms4RfRf/Bnms3ms3ms4ms4RfRf) of BnMs4 were constructed to screen developed markers and create genetic linkage maps. Nine polymorphic IP markers (P1-P9) were identified. Of these, P2, P3, P4, and P6 were linked to both BnMs4 and BnRf with genetic distances <0.6 cM. Three simple sequence repeat markers, SR2, SR3, and SR5, were also identified by using public information. Subsequently, all markers linked to the two genes were used to compare the micro-collinearity of the regions flanking the two genes with Brassica rapa and Arabidopsis. The flanking regions showed rearrangements and inversion with fragments of different Arabidopsis chromosomes, but a high collinearity with B. rapa. This collinearity provided extremely valuable reference for map-based cloning in polyploid Brassica species. These IP markers could be exploited for comparative genomic studies within and between Brassica species, providing an economically feasible approach for molecular marker-assisted selection breeding, accelerating the process of gene cloning, and providing more direct evidence for the presence of multiple alleles between BnMs4 and BnRf.  相似文献   

13.
Expression of many proteinases has been documented during anther development. Although their roles are not completely understood, their inhibition could possibly result in impairment of anther development leading to male sterility. We proposed that such an impairment of anther development can be engineered in plants resulting in male sterile plants that can be used for hybrid seed production. Here, we report that anther-specific expression of Aprotinin gene (serine proteinase inhibitor) in tobacco has resulted in male sterility. Southern analysis and zymogram analysis confirmed the integration and expression of Aprotinin gene in the anthers of the transgenic plants. Transverse sections of anthers of transgenic male sterile plants showed damaged tapetum. The pollen germination in the transgenic plants ranged between 2% and 65% that confirmed the impairment in pollen production leading to male sterility and low seed yield. Thus, inhibition of serine proteinases that are expressed during anther development has resulted in impaired pollen production and male sterility, though the exact role of these proteinases in anther development still has to be elucidated.  相似文献   

14.
15.
Twelve dwarf plants were found in the second hybrid generation of beet. The average height of mutant plants was 21.8 cm, their leaf blades and flowers were significantly smaller than normal, and the plants exhibited male and female sterility. This dwarfism was shown to be caused by a mutation differing from that previously described in beet, which is named dwarf2 (dw2). The experimental evidence suggests that this mutation appeared in one of the first-generation plants. Based on plant phenotype in the first hybrid generation and the number of mutant plants in the second one, this mutation is suggested to be under recessive monogenic control of the dw2 gene. The genotypic class segregation in the second hybrid generation indicates that the dw2 gene is inherited independently of genes m, a1, and ap that control choricarpousness, gene male sterility, and pollen grain aggregation into tetrads.__________Translated from Genetika, Vol. 41, No. 5, 2005, pp. 657–660.Original Russian Text Copyright © 2005 by Mglinets, Osipova.  相似文献   

16.
Male sterile mutants play a very important role in the utilization of crop heterosis. A recessive genic male sterile (RGMS) two-type line 95ms-5AB was derived from a male sterile mutant of common white sesame (Sesamum indicum L.) cultivar Yuzhi 4 by treatment with gamma rays from 60Co. Male sterile 95ms-5A plants did not show any other obvious differences from the male fertile 95ms-5B plants, except for having greenish, shriveled and slim anthers with few, small and degenerative pollens. Genetic analysis indicated that the male sterility of 95ms-5A was controlled by a single RGMS gene, Sims1 (Sesamum indicum male sterility 1). An allelic test with a previously identified RGMS mutant, ms86-1, confirmed that Sims1 in 95ms-5A is different from Sims2 in ms86-1. Amplified fragment length polymorphism markers linked to SiMs1 were screened using bulked segregant analysis. A genetic linkage map of the SiMs1 gene was constructed using 237 plants derived from the sib-mating between the near-isogenic lines 95ms-5A and 95ms-5B. The SiMs1 gene was found to be located in a region of 8.0 cM, at a distance of 1.2 cM from P06MG04 and 6.8 cM from P12EA14. In this genetic region, another marker P01MC08 was identified to be co-segregated with SiMs1. The linkage map constructed in this study will be very useful for marker-assisted selection and map-based cloning of SiMs1 as well as for hybrid breeding in sesame crop.  相似文献   

17.
Seed color inheritance in Brassica juncea was studied in F1, F2 and BC1 populations. Seed color was found under the control of the maternal genotype, and the brown-seeded trait was dominant over the yellow-seeded trait. Segregation analysis revealed that one pair of major genes controlled the seed coat color. To develop markers linked to the seed color gene, AFLP (amplified fragments length polymorphism) combined with BSA (bulk segregant analysis) technology was used to screen the parents and bulks selected randomly from an F2 population (Wuqi yellow mustard × Wugong mustard) consisting of 346 individuals. From a survey of 512 AFLP primer combinations, 15 AFLP markers located on either side of the gene were identified, and the average distance between markers was 2.59 cM. P11MG15 was a cosegregated marker, and the closest markers (P03MC08, P16MC02 and P11MG01) were at a distance of 0.3, 0.3 and 0.7 cM from the target gene, respectively. In order to utilize the markers for breeding of yellow-seeded varieties, four AFLP markers, P11MG01, P15MG15, P09MC12 and P16MC02 were successfully converted into SCAR (sequence characterized amplified region) markers. The seed color trait controlled by the single gene together with the available molecular markers will greatly facilitate the future breeding of yellow-seeded varieties. The markers found in the present study could accelerate the step of map-based cloning of the target gene.  相似文献   

18.
A new source of resistance to the pathotype 4 isolate of Turnip mosaic virus (TuMV) CDN 1 has been identified in Brassica napus (oilseed rape). Analysis of segregation of resistance to TuMV isolate CDN 1 in a backcross generation following a cross between a resistant and a susceptible B. napus line showed that the resistance was dominant and monogenic. Molecular markers linked to this dominant resistance were identified using amplified fragment length polymorphism (AFLP) and microsatellite bulk segregant analysis. Bulks consisted of individuals from a BC1 population with the resistant or the susceptible phenotype following challenge with CDN 1. One AFLP and six microsatellite markers were associated with the resistance locus, named TuRB03, and these mapped to the same region on chromosome N6 as a previously mapped TuMV resistance gene TuRB01. Further testing of TuRB03 with other TuMV isolates showed that it was not effective against all pathotype 4 isolates. It was effective against some, but not all pathotype 3 isolates tested. It provided further resolution of TuMV pathotypes by sub-dividing pathotypes 3 and 4. TuRB03 also provides a new source of resistance for combining with other resistances in our attempts to generate durable resistance to this virus.  相似文献   

19.

Key message

The cucumber male sterility gene ms - 3 was fine mapped in a 76 kb region harboring an MMD1 -like gene Csa3M006660 that may be responsible for the male sterile in cucumber.

Abstract

A cucumber (Cucumis sativus L.) male sterile mutant (ms-3) in an advanced-generation inbred line was identified, and genetic analysis revealed that the male sterility trait was controlled by a recessive nuclear gene, ms-3, which was stably inherited. Histological studies suggested that the main cause of the male sterility was defective microsporogenesis, resulting in no tetrad or microspores being formed. Bulked segregant analysis (BSA) and genotyping of an F2 population of 2553 individuals were employed used to fine map ms-3, which was delimited to a 76 Kb region. In this region, a single non-synonymous SNP was found in the Csa3M006660 gene locus, which was predicted to result in an amino acid change. Quantitative RT-PCR analysis of Csa3M006660 was consistent with the fact that it plays a role in the early development of cucumber pollen. The protein encoded by Csa3M006660 is predicted to be homeodomain (PHD) finger protein, and the high degree of sequence conservation with homologs from a range of plant species further suggested the importance of the ms-3 non-synonymous mutation. The data presented here provide support for Csa3M006660 as the most likely candidate gene for Ms-3.
  相似文献   

20.
Cytoplasmic male sterility (CMS), one of the most important traits in crop breeding, is used for commercial F1-hybrid seed production in peppers (Capsicum annuum L.). A nuclear gene, Restorer-of-fertility (Rf), can induce normal pollen production in CMS plants resulting in fertility. Since the first report of fertility restoration in peppers, various inheritance modes have been suggested, including the presence of a third haplotype of the locus. The pepper Rf gene has not been cloned, and calculated genetic distances of linked markers have varied between research groups. A more precise allelic test and additional genetic mapping are needed to accurately select recombinants for use in marker-assisted backcrossing (MAB). Therefore, the reliability and application of these markers for allelic selection of the Rf gene was tested. Two different F2 populations, Buja and Tamna, were used for the construction of a linkage map. From these linkage groups, a new closely linked flanking marker of the Rf gene were identified. Previous allelic testing revealed the existence of a third haplotype, Rfls 7701 , which can function as dominant (Rf) or recessive (rf). In a previous report, Rfls 7701 was considered to be linked to unstable male sterility (MS). However, our results suggest that unstable MS was induced by a gene residing at another locus rather than by Rfls 7701 haplotype-linked allele.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号