首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Partially purified fractions of dihydropyridine and phenylalkylamine receptors associated with voltage-dependent calcium channels in rabbit skeletal muscle were found to contain two glycopeptides of similar molecular weight. A peptide of approximately 165 kDa was photoaffinity labelled with an arylazido-phenylalkylamine Ca channel inhibitor and also was phosphorylated with cAMP-dependent protein kinase. Another peptide of 170 kDa could be distinguished from the 165 kDa peptide by peptide mapping and differences in electrophoretic mobility. The results suggest that the 165 kDa peptide contains the sites responsible for regulation of calcium channel activity by calcium channel inhibitors as well as by neurotransmitters that regulate its activity in a cAMP-dependent manner.  相似文献   

2.
We have examined the effects of cAMP elevating agents on the phosphorylation of dihydropyridine-sensitive Ca2+ channels in intact newborn chick skeletal muscle. In situ treatment with the beta-adrenergic receptor agonist isoproterenol resulted in the phosphorylation of the 170-kDa alpha 1 subunit in the intact cells, as evidenced by a marked decrease in the ability of the alpha 1 peptide to serve as a substrate in in vitro back phosphorylation reactions with [gamma-32P]ATP and the purified catalytic subunit of cAMP-dependent protein kinase. The phosphorylation of the 52-kDa beta subunit was not affected. The effects of isoproterenol were time- and concentration-dependent and were mimicked by other cAMP elevating agents but not by the Ca2+ ionophore A23187 or a protein kinase C activator. To test for functional effects of the observed phosphorylation, purified channels were reconstituted into liposomes containing entrapped fluo-3, and depolarization-sensitive and dihydropyridine-sensitive Ca2+ influx was measured. Channels from isoproterenol-treated muscle exhibited an increased rate and extent of Ca2+ influx compared to control preparations. The effects of isoproterenol pretreatment could be mimicked by phosphorylating the channels with cAMP-dependent protein kinase in vitro. These results demonstrate that the alpha 1 subunit of the dihydropyridine-sensitive Ca2(+)-channels is the primary target of cAMP-dependent phosphorylation in intact muscle and that the phosphorylation of this protein leads to activation of channel activity.  相似文献   

3.
4.
The inactivation of calcium channels in mammalian pituitary tumor cells (GH3) was studied with patch electrodes under voltage clamp in cell-free membrane patches and in dialyzed cells. The calcium current elicited by depolarization from a holding potential of -40 mV passed predominantly through one class of channels previously shown to be modulated by dihydropyridines and cAMP-dependent phosphorylation (Armstrong and Eckert, 1987). When exogenous calcium buffers were omitted from the pipette solution, the macroscopic calcium current through those channels inactivated with a half time of approximately 10 ms to a steady state level 40-75% smaller than the peak. Inactivation was also measured as the reduction in peak current during a test pulse that closely followed a prepulse. Inactivation was largely reduced or eliminated by (a) buffering free calcium in the pipette solution to less than 10(-8) M; (b) replacing extracellular calcium with barium; (c) increasing the prepulse voltage from +10 to +60 mV; or (d) increasing the intracellular concentration of cAMP, either 'directly' with dibutyryl-cAMP or indirectly by activating adenylate cyclase with forskolin or vasoactive intestinal peptide. Thus, inactivation of the dihydropyridine-sensitive calcium channels in GH3 cells only occurs when membrane depolarization leads to calcium ion entry and intracellular accumulation.  相似文献   

5.
At micromolar concentrations, ryanodine interacts with the dihydropyridine receptor of rabbit skeletal muscle transverse tubules. Ryanodine displaces specifically bound [3H]PN200-110 with an apparent inhibition constant of approx. 95 microM and inhibits dihydropyridine-sensitive calcium channels in the same preparation with an IC50 of approx. 45 microM. These concentrations of ryanodine are approximately three orders of magnitude higher than those required to saturate binding of the alkaloid to the ryanodine receptor of sarcoplasmic reticulum and to open the calcium release channel of sarcoplasmic reticulum (i.e. 20 nM (1988) J. Gen. Physiol. 92, 1-26). Thus at sufficiently high dose, ryanodine may affect SR as well as plasma membrane Ca permeabilities.  相似文献   

6.
Dihydropyridine (DHP) receptors of the transverse tubule membrane play two roles in excitation-contraction coupling in skeletal muscle: (a) they function as the voltage sensor which undergoes fast transition to control release of calcium from sarcoplasmic reticulum, and (b) they provide the conducting unit of a slowly activating L-type calcium channel. To understand this dual function of the DHP receptor, we studied the effect of depolarizing conditioning pulse on the activation kinetics of the skeletal muscle DHP-sensitive calcium channels reconstituted into lipid bilayer membranes. Activation of the incorporated calcium channel was imposed by depolarizing test pulses from a holding potential of -80 mV. The gating kinetics of the channel was studied with ensemble averages of repeated episodes. Based on a first latency analysis, two distinct classes of channel openings occurred after depolarization: most had delayed latencies, distributed with a mode of 70 ms (slow gating); a small number of openings had short first latencies, < 12 ms (fast gating). A depolarizing conditioning pulse to +20 mV placed 200 ms before the test pulse (-10 mV), led to a significant increase in the activation rate of the ensemble averaged-current; the time constant of activation went from tau m = 110 ms (reference) to tau m = 45 ms after conditioning. This enhanced activation by the conditioning pulse was due to the increase in frequency of fast open events, which was a steep function of the intermediate voltage and the interval between the conditioning pulse and the test pulse. Additional analysis demonstrated that fast gating is the property of the same individual channels that normally gate slowly and that the channels adopt this property after a sojourn in the open state. The rapid secondary activation seen after depolarizing prepulses is not compatible with a linear activation model for the calcium channel, but is highly consistent with a cyclical model. A six- state cyclical model is proposed for the DHP-sensitive Ca channel, which pictures the normal pathway of activation of the calcium channel as two voltage-dependent steps in sequence, plus a voltage-independent step which is rate limiting. The model reproduced well the fast and slow gating models of the calcium channel, and the effects of conditioning pulses. It is possible that the voltage-sensitive gating transitions of the DHP receptor, which occur early in the calcium channel activation sequence, could underlie the role of the voltage sensor and yield the rapid excitation-contraction coupling in skeletal muscle, through either electrostatic or allosteric linkage to the ryanodine receptors/calcium release channels.  相似文献   

7.
8.
Summary Calcium channels in GH3 cells exhibit at least five conductance levels when examined in cell-attached or outside-out patches. These channels resemble the high threshold Ca2+ current in their range of activation and inactivation, and in their sensitivity to dihydropyridines (DHP). Mean open times for the five levels were brief (<1 msec) in control solutions but increased in the presence of BAY K 8644. In 100mm Ba2+ and BAY K 8644, the five predominant slope conductances were 8–9, 12–13, 16–18, 23–24, and 28 pS. The present study is the first report of multiple levels of the DHP-sensitive Ca2+ channel occurring with high frequency in native membranes. The range of conductance levels that we observed encompasses the range of conductances found for two other different types of Ca2+ channels and indicates that unit conductance should be used with caution as a distinguishing characteristic for identification of different channel types.  相似文献   

9.
Administration of Ca-entry blockers with different chemical structure before the braining sessions produced the reduction of memory retention in mice and rats in the one-trial passive avoidance tests. This effect was absent in animals treated immediately after training test. Nootropic drugs piracetam and oxiracetam corrected the retention of memory when injected just after training test. Chronic treatment of rats with increasing doses of the nootropic drugs produced about two-fold tissue-specific elevation in the density of DHP-receptors, associated with L-type Ca-channels in synaptosomal membranes of rat cerebral cortex. Maximal effect was observed in a dose of 10 mg/kg. Diltiazem, administrated in a dose of 10 mg/kg, produced about two-fold decrease in the receptors density measured 24 hrs after the first injection. Oxiracetam (10 mg/kg) completely antagonized the effect of Ca-entry blocker. These data imply that nootropic action of piracetam and oxiracetam is mediated by L-type Ca-channels.  相似文献   

10.
The involvement of cAMP-dependent phosphorylation sites in establishing the basal activity of cardiac L-type Ca2+ channels was studied in HEK 293 cells transiently cotransfected with mutants of the human cardiac 1 and accessory subunits. Systematic individual or combined elimination of high consensus protein kinase A (PKA) sites, by serine to alanine substitutions at the amino and carboxyl termini of the 1 subunit, resulted in Ca2+ channel currents indistinguishable from those of wild type channels. Dihydropyridine (DHP)-binding characteristics were also unaltered. To explore the possible involvement of nonconsensus sites, deletion mutants were used. Carboxyl-terminal truncations of the 1 subunit distal to residue 1597 resulted in increased channel expression and current amplitudes. Modulation of PKA activity in cells transfected with the wild type channel or any of the mutants did not alter Ca2+ channel functions suggesting that cardiac Ca2+ channels expressed in these cells behave, in terms of lack of PKA control, like Ca2+ channels of smooth muscle cells.  相似文献   

11.
Disruption of phospholipase C-β (PLC) by the norpA mutations of Drosophila renders flies blind by affecting the light-evoked photoreceptor potential. We report here that the norpA-coded PLC modulates the 1,4-dihydropyridine (DHP)-sensitive Ca2+ channels in larval muscles. The DHP-sensitive current was reduced in the norpA mutants. Application of 1 μM phorbol 12-myristate 13-acetate (TPA) and 1 μM phorbol 12,13-didecanoate (PDD), activators of protein kinase C (PKC), rescued the current in the mutant fibers without significantly affecting the normal current. 4α-phorbol 12,13-didecanoate (4αPDD), an inactive analog of PDD, did not affect either the normal or the mutant current. One micromolar bisindolylmaleimide (BIM), an inhibitor of PKC, reduced the current in the normal fibers without affecting the mutant current. 300 μM sn-1,2-dioctanoyl-glycerol (DOG), an analog of diacylglycerol (DAG), increased the current in the mutant fibers. These experiments suggest that the DHP-sensitive Ca2+ channels in Drosophila may be modulated by the PLC-DAG-PKC pathway, and that the same PLC isozyme which is involved in phototransduction in the adult flies may also modulate muscle Ca2+ channels in the larval stage of development. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 265–275, 1997  相似文献   

12.
H Chin  M A Smith  H L Kim  H Kim 《FEBS letters》1992,299(1):69-74
We have localized dihydropyridine (DHP-sensitive calcium channels in rat brain by in situ hybridization and immunohistochemistry. The mRNA for the dihydropyridine-sensitive calcium channel alpha 1 subunit (DHPR-B) is prominently localized in neuronal cells in the olfactory bulb, dentate gyrus, hippocampus, arcuate nucleus, paraventricular nucleus, ventromedial nucleus, cerebral cortex, superior colliculus and the cerebellar Purkinje cell layer. Strong expression of DHPR-B mRNA was also found in the pituitary and pineal glands. DHP-sensitive calcium channel alpha 1 subunit distribution has also been examined immunohistochemically with polyclonal antibodies raised against synthetic peptides specific for the DHPR-B alpha 1 subunit protein. The results from immunohistochemistry were in good agreement with those from in situ hybridization. Thus, regional distribution and localization of DHPR-B mRNA and alpha 1 subunit protein in rat brain suggest that this type of DHP-sensitive brain calcium channel may play an important role in excitation-secretion coupling functions in the neuroendocrine system.  相似文献   

13.
Drosophila has proved to be a valuable system for studying the structure and function of ion channels. However, relatively little is known about the regulation of ion channels, particularly that of Ca2+ channels, in Drosophila. Physiological and pharmacological differences between invertebrate and mammalian L-type Ca2+ channels raise questions on the extent of conservation of Ca2+ channel modulatory pathways. We have examined the role of cyclic adenosine monophosphate (cAMP) cascade in modulating the dihydropyridine (DHP)-sensitive Ca2+ channels in the larval muscles of Drosophila, using mutations and drugs that disrupt specific steps in this pathway. The L-type (DHP-sensitive) Ca2+ channel current was increased in the dunce mutants, which have high cAMP concentration owing to cAMP-specific phosphodiesterase (PDE) disruption. The current was decreased in the rutabaga mutants, where adenylyl cyclase (AC) activity is altered thereby decreasing the cAMP concentration. The dunce effect was mimicked by 8-Br-cAMP, a cAMP analog, and IBMX, a PDE inhibitor. The rutabaga effect was rescued by forskolin, an AC activator. H-89, an inhibitor of protein kinase-A (PKA), reduced the current and inhibited the effect of 8-Br-cAMP. The data suggest modulation of L-type Ca2+ channels of Drosophila via a cAMP-PKA mediated pathway. While there are differences in L-type channels, as well as in components of cAMP cascade, between Drosophila and vertebrates, main features of the modulatory pathway have been conserved. The data also raise questions on the likely role of DHP-sensitive Ca2+ channel modulation in synaptic plasticity, and learning and memory, processes disrupted by the dnc and the rut mutations.  相似文献   

14.
Extracellularly applied ATP mediates a biphasic calcium signal in cultured chick myotubes. A rapid and transient increase in cytosolic calcium was independent of extracellular calcium while a second signal, slower in onset and decay, was absent without extracellular calcium. In depolarized myotubes, the cytosolic [Ca2+] was increased more than ten times above baseline level. Addition of ATP to the incubation medium immediately increased the rate of return of cytosolic Ca2+ levels to baseline. The ATP effect was half-maximal at about 10 microM ATP and was mimicked by ATP S. This ATP-sensitive calcium influx was also rapidly stopped by addition of dihydropyridines such as PN 200-110, suggesting that it is the voltage operated Ca2+-channel that was inactivated by ATP.  相似文献   

15.
1. A dihydropyridine-sensitive calcium channel complex was solubilized from gastric mucosal cell membranes and purified by affinity chromatography on wheat germ agglutinin. 2. The calcium channel complex labeled with [3H]PN200-110, when reconstituted into phosphatidylcholine vesicles, exhibited active 45Ca2+ uptake into intravesicular space as evidenced by La3+ displacement and osmolarity studies. The channel complex responded in a dose-dependent manner to dihydropyridine calcium antagonist, PN200-110, which at 0.5 microM exerted maximal inhibitory effect of 66% in 45Ca2+ uptake. 3. The uptake of 45Ca2+ into vesicle-reconstituted gastric mucosal calcium channel complex was inhibited by GM1-ganglioside. Maximum inhibitory effect was achieved at 10-15 nM GM1, at which point a 74% decrease in 45Ca2+ uptake occurred. Furthermore, GM1 also inhibited dihydropyridine binding to gastric mucosal membranes, indicating the extracellular orientation of calcium channel domains for GM1. 4. The ability of GM1 to modulate the intracellular calcium levels may be an important feature in gastric mucosal protection by this ganglioside.  相似文献   

16.
The dihydropyridine receptor purified from rabbit skeletal muscle yields in the presence of dithiothreitol and sodium dodecyl sulfate on polyacrylamide gels bands of apparent molecular mass 165 +/- 5, 130 +/- 5, 55 +/- 3, 32 +/- 2 and 28 +/- 1 kDa (chi +/- SEM, n = 12). Under nonreducing conditions, the 130 kDa and 28-kDa peptides migrate as a single peptide of 165 kDa. These peptides were separated on a HPLC size-exclusion column. The specific absorption coefficients of the isolated peptides were determined. From these a stoichiometry of 1:1.7 +/- 0.2:1.4 +/- 0.3 (chi +/- SEM of 12 experiments with three different preparations) was calculated for the 165-kDa, 55-kDa and 32-kDa peptides. The relative amount of the 130/28-kDa peptide varied with different preparations. Tryptic, chymotryptic and V-8 protease peptides of the isolated proteins suggested that the 130/28-kDa peptide was not related to the 165-kDa peptide. The dihydropyridine photoaffinity analog (+/-)-azidopine was specifically incorporated only into the 165-kDa peptide with an efficiency of about 2.4%. The azido analog of desmethoxyverapamil, LU 49888, was specifically incorporated into the same peptide with an efficiency of 1.5%. These results suggest that only the 165-kDa peptide contains the regulatory sites detected so far in the voltage-operated L-type calcium channel. They suggest further that the 130/28-kDa peptide, which migrates as a 165-kDa peptide under nonreducing conditions, does not contain high-affinity binding sites for the calcium channel blockers.  相似文献   

17.
Summary La ion behaves as a competitive inhibitor of Ca ions on the calcium spike in the giant muscle fiber of the barnacle,Balanus nubilus. La-treated muscle fibers, in which the rate of rise of the spike was diminished to a known degree, have been examined with the electron-microscope. In such fibers dense particles are seen in association with the surface membrane and external lamina of the cell. La particles are not seen in association with fibers that have been allowed to recover from La inhibition before fixation. The number of La particles seen in association with the muscle fiber increases with increasing La concentration when the Ca and Mg concentrations are held constant and decreases with increasing Ca and Mg concentration when the La concentration is held constant. The results suggest that the La visible in the electron-microscope under the conditions of these experiments is bound to a class of sites similar to those involved in the Ca spike.  相似文献   

18.
Multiple in vivo tyrosine phosphorylation sites in EphB receptors   总被引:8,自引:0,他引:8  
Kalo MS  Pasquale EB 《Biochemistry》1999,38(43):14396-14408
Autophosphorylation regulates the function of receptor tyrosine kinases. To dissect the mechanism by which Eph receptors transmit signals, we have developed an approach using matrix-assisted laser desorption-ionization (MALDI) mass spectrometry to map systematically their in vivo tyrosine phosphorylation sites. With this approach, phosphorylated peptides from receptors digested with various endoproteinases were selectively isolated on immobilized anti-phosphotyrosine antibodies and analyzed directly by MALDI mass spectrometry. Multiple in vivo tyrosine phosphorylation sites were identified in the juxtamembrane region, kinase domain, and carboxy-terminal tail of EphB2 and EphB5, and found to be remarkably conserved between these EphB receptors. A number of these sites were also identified as in vitro autophosphorylation sites of EphB5 by phosphopeptide mapping using two-dimensional chromatography. Only two in vitro tyrosine phosphorylation sites had previously been directly identified for Eph receptors. Our data further indicate that in vivo EphB2 and EphB5 are also extensively phosphorylated on serine and threonine residues. Because phosphorylation at each site can affect receptor signaling properties, the multiple phosphorylation sites identified here for the EphB receptors suggest a complex regulation of their functions, presumably achieved by autophosphorylation as well as phosphorylation by other kinases. In addition, we show that MALDI mass spectrometry can be used to determine the binding sites for Src homology 2 (SH2) domains by identifying the EphB2 phosphopeptides that bind to the SH2 domain of the Src kinase.  相似文献   

19.
M W Platt  J Reizer    S Rottem 《Journal of bacteriology》1990,172(5):2808-2811
Phosphorylation of a major 57-kilodalton protein substrate was observed in cell lysates of Spiroplasma melliferum BC3 incubated with [gamma-32P]ATP. Only serine phosphates have been isolated from the acid hydrolysate of the phosphorylated protein. The 57-kilodalton protein substrate was found, to a large extent, in the cytosolic fraction and, to a lesser extent, associated with cell membranes and was detected in the Triton X-100-insoluble fraction that contained fibrils.  相似文献   

20.
Prophase-arrested oocytes of Ruditapes philippinarum can not be fertilized or stimulated by a depolarizing agent such as an excess of KCl, in contrast to the situation found in Crassostrea gigas. We have performed a comparative study between the two situations found in these species. In vitro, both of these oocytes can be triggered to reinitiate meiosis following a treatment by serotonin which promotes an intracellular calcium surge. Ruditapes and Crassostrea oocytes further arrest in metaphase I, at which stage they can be either activated by sperm or by excess KCl. These treatments trigger an intracellular calcium increase. This suggests that functional voltage-operated Ca2+ channels are expressed in Ruditapes during the course of maturation between prophase and metaphase I. Results obtained using pharmacological tools and direct binding of specific dihydropyridines, strongly suggest that these channels are dihydropyridine-sensitive calcium channels. In Ruditapes they become functional after 5-HT stimulation, their number increasing before GVBD. In Crassostrea the dihydropyridine-sensitive Ca2+ channels are already present at prophase stage and their density is constant from prophase to metaphase I. Moreover, we have shown for Ruditapes and Crassostrea that: 1) the addition of 10 microM of S(-)BayK8644, an agonist of dihydropyridine-sensitive calcium channels to metaphase-arrested oocytes releases them from metaphase block; and 2) incubating these oocytes with nicardipine, a potent blocker of dihydropyridine-sensitive Ca2+ channels, inhibits both their activation by excess KCl or fertilization. Taken together these data suggest that the absence of dihydropyridine-sensitive Ca2+ channels in the membrane of prophase-arrested oocytes of Ruditapes may account for their inability to be fertilized at this stage, while the presence of dihydropyridine-sensitive Ca2+ channels in prophase-arrested oocytes of Crassostrea may explain their fertilizability at this stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号