首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Conjugated linoleic acid (CLA) has attracted as novel type of fatty acids having unusual health-promoting properties such as anticarcinogenic and antiobesitic effects. The present work employed castor oil as substrate for one-pot production of CLA using washed cells of Lactobacillus plantarum (L. plantarum) and lipases as catalysts. Among the screened lipases, the lipase Rhizopus oryzae (ROL) greatly assisted resting cells to produce CLA. Mass spectral analysis of the product showed that two major isomers of CLA were produced in the reaction mixture i.e. cis-9, trans-11 56.55% and trans-10, cis-12 43.45%. Optimum factors for CLA synthesis were found as substrate concentration (8 mg/mL), pH (6.5), washed cell concentration (12% w/v), and incubation time of 20 h. Hence, the combination of ROL with L. plantarum offers one pot production of CLA selectively using castor oil as a cost-effective substrate.  相似文献   

2.
Lee SO  Kim CS  Cho SK  Choi HJ  Ji GE  Oh DK 《Biotechnology letters》2003,25(12):935-938
Conjugated linoleic acid (CLA) was produced at 300 mg l–1 after 24 h culture of Lactobacillus reuteri in de Man–Rogosa–Sharpe medium containing 0.9 g linoleic acid (LA) l–1 and 1.67% (v/v) Tween 80. CLA was mainly located in the extracellular space of the cells. Washed cells previously grown on LA were less active than unadapted washed cells in converting LA into CLA. Most of the CLA transformed by washed L. reuteri cells was located in cells or associated with cells. CLA production by washed L. reuteri cells was most efficient in conversion with 0.45 g LA l–1 at pH 9.5 and 37°C for 1 h.  相似文献   

3.
摘要:【目的】对本实验室从泡菜中筛选到的植物乳杆菌ZS2058完整细胞生物转化共轭亚油酸的反应动力学进行研究。【方法】探讨底物浓度、细胞浓度、反应体系pH值等因素对生物转化共轭亚油酸反应速度的影响,并通过双倒数和Hanes-Woolf作图法拟合反应初始阶段的速度方程。【结果】生物转化共轭亚油酸时存在明显的底物抑制现象,当亚油酸浓度为0.4 mg/mL时产c9, t11-共轭亚油酸的反应速度达最大值15.99 μg/(mL?h);反应速度随细胞浓度增加而上升,当细胞浓度为5×1010 cfu/mL时反应速度达到最高;最适pH值和最适反应温度分别为6.5和40 ℃。利用双倒数和Hanes-Woolf作图法求得米氏常数和最大反应速度,在低底物浓度下,反应初始阶段的反应规律与经典的米氏方程相符,而在高底物浓度下,存在明显的底物抑制现象。【结论】通过对植物乳杆菌ZS2058完整细胞催化合成共轭亚油酸各因素的考察,在得到最佳反应条件的同时建立了不同底物浓度范围内的反应速度方程,这对于实现共轭亚油酸的生产和研究其生理功能具有十分重要的理论价值。  相似文献   

4.
An isomer of the conjugated linoleic acid (CLA) produced from linoleic acid by Lactobacillus plantarum was identified as cis-9,trans-11-octadecadienoic acid by proton nuclear magnetic resonance spectroscopy. Together with earlier results, we concluded that the bacterium produces two CLA isomers, cis-9,trans-11- and trans-9,trans-11-octadecadienoic acid from linoleic acid. The addition of L-serine, glucose, AgNO3, or NaCl to the reaction mixture reduced production of the latter.  相似文献   

5.
本实验旨在研究透性化嗜酸乳杆菌细胞生物转化共轭亚油酸的反应动力学。探讨了细胞浓度、底物浓度、反应体系pH值和温度等因素对生物转化共轭亚油酸反应速度的影响;建立了透性化嗜酸乳杆菌细胞生物转化共轭亚油酸的动力学模型。结果表明,透性化嗜酸乳杆菌细胞有利于共轭亚油酸的生物转化,最适细胞浓度、pH值和反应温度分别为10×1010ufc/mL、4.5和45℃;生物转化共轭亚油酸存在底物抑制现象,当亚油酸的浓度为0.6mg/mL时,反应速度达到最大值17.8μg/(mL·min)。在低亚油酸浓度下,反应初始阶段的反应规律与经典米氏方程相符,而在高亚油酸浓度下,存在底物抑制现象。在最适反应条件下建立了动力学模型,模型基本反映了共轭亚油酸的生物转化特性。  相似文献   

6.
Lee SO  Hong GW  Oh DK 《Biotechnology progress》2003,19(3):1081-1084
Lactobacillus reuteri was immobilized on silica gel to evaluate the bioconversion of linoleic acid (LA) into conjugated linoleic acid (CLA), consisting of cis-9,trans-11 and trans-10,cis-12 isomers. The amount of cell to carrier, the reaction time, and the substrate concentration, pH, and temperature for CLA production were optimized at 10 mg of cells/(g of carrier), 1 h, 500 mg/L LA, 10.5, and 55 degrees C, respectively. In the presence of 1.0 mM Cu(2+), CLA production increased by 110%. Under the optimal conditions, the immobilized cells produced 175 mg/L CLA from 500 mg/L LA for 1 h with a productivity of 175 mg/(L.h) and accumulated 5.5 times more CLA than that obtained from bioconversion by free washed cells. The CLA-producing ability of reused cells was investigated over five reuse reactions and was maximal at pH 7.5, 25 degrees C, and 1.0 mM Cu(2+). The total amount of CLA by the combined five reuse reactions was 344 mg of CLA/L reaction volume. This was 8.6 times higher than the amount obtained from reuse reactions by free washed cells.  相似文献   

7.
8.
9.
Aims:  To study the ability of the probiotic culture Lactobacillus acidophilus La-5 to produce conjugated linoleic acid (CLA), which is a potent anti-carcinogenic agent.
Methods and Results:  The conversion of linoleic acid to CLA was studied both by fermentation in a synthetic medium and by incubation of washed cells. Accumulation of CLA was monitored by gas chromatography analysis of the biomass and supernatants. While the fermentation conditions applied may not be optimal to observe CLA production in growing La-5 cells, the total CLA surpassed 50% of the original content in the washed cells after 48 h under both aerobic and micro-aerobic conditions. The restriction of oxygen did not increase the yield, but favoured the formation of trans, trans isomers.
Conclusions:  The capability of L. acidophilus La-5 to produce CLA is not dependant on the presence of milk fat or anaerobic conditions. Regulation of CLA production in this strain needs to be further investigated to exploit the CLA potential in fermented foods.
Significance and Impact of the study:  Knowledge gained through the conditions on the accumulation of CLA would provide further insight into the fermentation of probiotic dairy products. The capacity of the nongrowing cells to produce CLA is also of great relevance for the emerging nonfermented probiotic foods.  相似文献   

10.
Butyrivibrio fibrisolvens A38 inocula were inhibited by as little as 15 microM linoleic acid (LA), but growing cultures tolerated 10-fold more LA before growth was inhibited. Growing cultures did not produce significant amounts of cis-9, trans-11 conjugated linoleic acid (CLA) until the LA concentration was high enough to inhibit biohydrogenation, growth was inhibited, and lysis was enhanced. Washed-cell suspensions that were incubated anaerobically with 350 microM LA converted most of the LA to hydrogenated products, and little CLA was detected. When the washed-cell suspensions were incubated aerobically, biohydrogenation was inhibited, CLA production was at least twofold greater, and CLA persisted. The LA isomerase reaction was very rapid, but the LA isomerase did not recycle like a normal enzyme to catalyze more substrate. Cells that were preincubated with CLA lost their ability to produce more CLA from LA, and the CLA accumulation was directly proportional (r(2) = 0.98) to the initial cell density. Growing cells were as sensitive to CLA as LA, the LA isomerase and reductases of biohydrogenation were linked, and free CLA was not released. Because growing cultures of B. fibrisolvens A38 did not produce significant amounts of CLA until the LA concentration was high, biohydrogenation was arrested, and the cell density had declined, the flow of CLA from the rumen may be due to LA-dependent bacterial inactivation, death, or lysis.  相似文献   

11.
Five Lactobacillus strains of intestinal and food origins were grown in MRS broth or milk containing various concentrations of linoleic acid or conjugated linoleic acid (CLA). The fatty acids had bacteriostatic, bacteriocidal, or no effect depending on bacterial strain, fatty acid concentration, fatty acid type, and growth medium. Both fatty acids displayed dose-dependent inhibition. All strains were inhibited to a greater extent by the fatty acids in broth than in milk. The CLA isomer mixture was less inhibitory than linoleic acid. Lactobacillus reuteri ATCC 55739, a strain capable of isomerizing linoleic acid to CLA, was the most inhibited strain by the presence of linoleic acid in broth or milk. In contrast, a member of the same species, L. reuteri ATCC 23272, was the least inhibited strain by linoleic acid and CLA. All strains increased membrane linoleic acid or CLA levels when grown with exogenous fatty acid. Lactobacillus reuteri ATCC 55739 had substantial CLA in the membrane when the growth medium was supplemented with linoleic acid. No association between level of fatty acid incorporation into the membrane and inhibition by that fatty acid was observed.  相似文献   

12.
The microbiological isomerization of linoleic acid (LA) to conjugated linoleic acid (CLA) was studied in resting cell suspensions of a propionibacterium and micellar LA to identify factors critical in the isomerization efficiency. These suspensions, containing cells 5x10(10) colony-forming units ml(-1) and 510 micro g LA ml(-1), isomerized about 90% of LA to CLA. However, the yield was not improved with higher amounts of micellar LA, suggesting that the cells had a fixed capacity to carry out the isomerization. This was explained by the fact that the CLA formed had a tendency to accumulate in the cell mass rather than in the aqueous micellar phase during the isomerization. Concomitantly, cell viability and isomerization rates were gradually reduced. Upon cessation of the reaction, about 46% of all the CLA formed was in the cell material. This accumulation to the cells was prevented by adding the detergent in excess to that required for micellization of LA. Then the cells remained viable, but the rate of isomerization was drastically lowered, due to impaired availability of LA from the fortified micellar phase to the cells. It was concluded that the phase distribution of substrate and product plays a critical role in the microbiological production of CLA.  相似文献   

13.
A method for the production of conjugated linoleic acid (CLA) from linoleic acid (LA) using growing cultures of Propionibacterium freudenreichii ssp. shermanii JS was developed. The growth inhibitory effect of LA was eliminated by dispersing it in a sufficient concentration of polyoxyethylene sorbitan monooleate detergent. For the whey permeate medium used, the optimum LA:detergent ratio was 1:15 (w/w). As a result, the cultures tolerated at least 1000 microg x mL(-1) LA, which was converted to CLA with 57%-87% efficiency. The cis-9, trans-11 and trans-9, cis-11 isomers constituted 85%-90% of the CLA produced. The feasibility of the method was demonstrated also in de Man Rogosa-Sharpe (MRS) broth.  相似文献   

14.
The objective of this study was to evaluate the effect of soluble carbohydrates (glucose, cellobiose), pH (6.0, 6.5, 7.0), and rumen microbial growth factors (VFA, vitamins) on biohydrogenation of linoleic acid (LA) by mixed rumen fungi. Addition of glucose or cellobiose to culture media slowed the rate of biohydrogenation;only 35-40% of LA was converted to conjugated linoleic acid (CLA) or vaccenic acid (VA) within 24 h of incubation, whereas in the control treatment, 100% of LA was converted within 24 h. Addition of VFA or vitamins did not affect biohydrogenation activity or CLA production. Culturing rumen fungi at pH 6.0 slowed biohydrogenation compared with pH 6.5 or 7.0. CLA production was reduced by pH 6.0 compared with control (pH 6.5), but was higher with pH 7.0. Biohydrogenation of LA to VA was complete within 72 h at pH 6.0, 24 h at pH 6.5, and 48 h at pH 7.0. It is concluded that optimum conditions for biohydrogenation of LA and for CLA production by rumen fungi were provided without addition of soluble carbohydrates, VFA or vitamins to the culture medium; optimum pH was 6.5 for biohydrogenation and 7.0 for CLA production.  相似文献   

15.
The ability of different Lactobacillus strains to produce conjugated linoleic acid (CLA) was determined. Three species—Lactobacillus plantarum (Lp), Lactobacillus acidophilus (La) and Streptococcus thermophilus (St)—were co-cultured in a medium containing skim-milk supplemented with hydrolyzed safflower oil. This study was aimed at future applications in dairy products. The optimal operation parameters were established by response surface methodology. More CLA was produced by co-culture than by single strain culture. The CLA produced by co-culture of La and Lp (La–Lp) was more than that produced by La and St (La–St). Maximum CLA production of 316.52 μg/mL was obtained with La–Lp co-culture using a substrate concentration of 5.0 %, inoculum size of 5.0 %, an initial medium pH of 6.4 and a temperature of 36.4 °C for 48 h. To our knowledge, this is the first report in the literature of the use of co-cultures of La–St and La–Lp to produce CLA.  相似文献   

16.
共轭亚油酸(Conjugated linoleic acid,CLA)具有抗癌、抗动脉粥样硬化、减肥和免疫调节等生理活性。共轭亚油酸可以通过酶法异构化获得,将底物亚油酸异构形成具有生物活性物质-共轭亚油酸的异构酶称为亚油酸异构酶。因此,通过介绍亚油酸异构酶的来源、作用机制、酶学性质和基因工程菌生产等方面的研究进展,结合不断发展的基因工程技术,旨在提高亚油酸异构酶的活性、产量和异构化效率,以扩大反应底物范围,降低生产成本,从而推进共轭亚油酸的规模化、可持续性的工业生产。  相似文献   

17.
18.
The conversion of β-myrcene to the furanoid flavour compound perillene by Pleurotus ostreatus was investigated using trideutero β-myrcene, trideutero α-(Z)-acaridiol and non-labeled 1,2- and 3,10-epoxy-β-myrcene, α,α-acarilactol, and perillene as substrates. Myrcene diols were formed from the cleavage of myrcene epoxides, but only α-(Z)-acaridiol, a 1,4-butanediol derivative most likely generated through a base-catalysed epoxide opening, was a suitable precursor of perillene. Once formed, this key intermediate was rapidly oxidised and the resulting cyclic lactol was dehydrated to yield perillene. Bioconversion of the supplemented perillene to α,α-acariolide indicated that perillene was another intermediate of the pathway and prone to further oxidative degradation. The data suggest that the fungus converted the cytotoxic β-myrcene in its environment into a metabolically useable carbon source along this route.  相似文献   

19.
Conjugated linoleic acid (CLA) and conjugated linolenic acid (CLNA) isomers have attracted great interest because of their potential health benefits. Formation of CLA and CLNA takes place in the rumen during biohydrogenation. Several studies have indicated that certain types of intestinal bacteria, including bifidobacteria, are able to convert linoleic acid (LA) to CLA. The role of intestinal bacteria in the formation of CLNA isomers is largely unknown. In the present study, a screening of 36 different Bifidobacterium strains for their ability to produce CLA and CLNA from free LA and α-linolenic acid (LNA), respectively, was performed. The strains were grown in MRS broth, to which LA or LNA (0.5 mg ml−1) were added after 7 h of bacterial growth. Cultures were further incubated at 37°C for 72 h. Six strains (four Bifidobacterium breve strains, a Bifidobacterium bifidum strain and a Bifidobacterium pseudolongum strain) were able to produce different CLA and CLNA isomers. Conversion percentages varied from 19.5% to 53.5% for CLA production and from 55.6% to 78.4% for CLNA production among these strains. The CLA isomers produced were further identified with Ag+-HPLC. LA was mainly converted to t9t11-CLA and c9t11-CLA. The main CLNA isomers were identified with GC-MS as c9t11c15-CLNA and t9t11c15-CLNA.  相似文献   

20.
Biomass and lactic acid production by a Lactobacillus plantarum strain isolated from Serrano cheese, a microorganism traditionally used in foods and recognized as a potent probiotic, was optimized. Optimization procedures were carried out in submerged batch bioreactors using cheese whey as the main carbon source. Sequential experimental Plackett–Burman designs followed by central composite design (CCD) were used to assess the influence of temperature, pH, stirring, aeration rate, and concentrations of lactose, peptone, and yeast extract on biomass and lactic acid production. Results showed that temperature, pH, aeration rate, lactose, and peptone were the most influential variables for biomass formation. Under optimized conditions, the CCD for temperature and aeration rate showed that the model predicted maximal biomass production of 14.30 g l−1 (dw) of L. plantarum. At the central point of the CCD, a biomass of 10.2 g l−1 (dw), with conversion rates of 0.10 g of cell g−1 lactose and 1.08 g lactic acid g−1 lactose (w/w), was obtained. These results provide useful information about the optimal cultivation conditions for growing L. plantarum in batch bioreactors in order to boost biomass to be used as industrial probiotic and to obtain high yields of conversion of lactose to lactic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号