首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S Diamant  B Avraham  D Atlas 《FEBS letters》1987,219(2):445-450
The possible involvement of phosphoinositides' turnover in the process of neurotransmitter release in the central nervous system (CNS) was studied using rat brain slices and synaptosomes. A depolarizing concentration of potassium chloride (25 mM) induces an 8.6 +/- 0.4% increase of [3H]noradrenaline [( 3H]NA) fractional release in cerebral cortical slices above spontaneous release, and 15 mM KCl induces a 3-fold increase of [3H]NA release in rat brain synaptosomes. Neomycin, an aminoglycoside which binds phosphoinositides, inhibits the potassium-induced release in cortical slices with an IC50 = 0.5 +/- 0.07 mM and with IC50 = 0.2 +/- 0.03 mM in synaptosomes. Veratridine, a veratrum alkaloid which increases membrane permeability to sodium ions and causes depolarization of neuronal cells, induces a net 13.4 +/- 0.3% increase of [3H]NA fractional release above spontaneous release in cortical slices. In analogy to K+ stimulation, neomycin inhibits the veratridine-stimulated release in cortical slices with an IC50 = 0.65 +/- 0.1 mM. It appears that the recycling of phosphoinositides, which is necessary for Ca2+ mobilization, participates in the Ca2+-dependent induced neurotransmitter release in the central nervous system.  相似文献   

2.
N-Acetylaspartylglutamate (NAAG) is a neuropeptide localized to several putative glutamatergic neuronal systems, including the rodent optic pathway. To determine whether the peptide is released by depolarization, the superior colliculus of the rat was perfused with 2 microCi of [3H]NAAG, then with Krebs-bicarbonate buffer for 1 h, using a microdialysis system. Subsequently, 10-min fractions were collected and analyzed by HPLC for [3H]NAAG. Addition of 100 microM veratridine resulted in a several-fold increase in the evoked release of [3H]NAAG that was virtually abolished by coperfusion with Ca2+-free Krebs buffer containing 1 mM EGTA. When [3H]glutamate was used as the precursor, veratridine depolarization resulted in only an 80% increase in the release of [3H]NAAG. Prior enucleation of the right eye reduced the spontaneous release of [3H]NAAG by 50%, and the veratridine-evoked release by greater than 85%, from the left superior colliculus. These results suggest that NAAG is released upon depolarization and may serve as a neurotransmitter/neuromodulator in the optic tract.  相似文献   

3.
The influence of membrane depolarization on somatostatin secretion and protein synthesis by fetal and neonatal cerebrocortical neurons was studied. Cortical cells obtained by mechanical dispersion were maintained as monolayer cultures for 8 days. The ability of fetal cerebrocortical and hypothalamic cells to release immunoreactive somatostatin (IR-SRIF) was confirmed. Total protein synthesis was determined by the incorporation of [3H]phenylalanine into trichloroacetic acid-precipitable proteins. To study the effect of acute depolarization on protein synthesis, cells were incubated for 30 min with [3H]phenylalanine or [3H]leucine and the depolarizing agent. In fetal cerebrocortical cells, potassium (30 and 56 mM) decreased protein synthesis and RNA levels and increased IR-SRIF release. Depolarization by veratridine, a sodium channel activator, induced a similar effect. The effect of veratridine on IR-SRIF and protein synthesis was reversed by tetrodotoxin, a sodium channel blocker, or verapamil, a calcium channel blocker. These findings suggest that protein synthesis by cerebrocortical cells is decreased in fetal brain cells by membrane depolarization and is dependent on Na+ and Ca2+ entry into cells. In postnatal (day 7) cerebrocortical cells, depolarization induced by high potassium concentrations led to a concomitant increase in protein synthesis, RNA content, and somatostatin release. These findings indicate that depolarization of the cellular membrane is coupled to an increase in protein synthesis in neonatal, but not in fetal, dispersed brain cells.  相似文献   

4.
S Evans  L C Garg  E M Meyer 《Life sciences》1992,51(22):1699-1703
Several cholinergic processes were demonstrated and partially characterized in rabbit kidney cortical minces: choline uptake, acetylcholine synthesis and calcium-dependent release. Minces took up labelled choline, acetylated it, and stored it in a pool that was not readily accessible to physostigmine-sensitive cholinesterase activity. [3H]Acetylcholine synthesis but not [3H]choline uptake was inhibited by the removal of sodium ions or incubation at 0 degrees C. The release of newly synthesized [3H]acetylcholine was increased by 300 mOsmol urea in a calcium-dependent manner, but not by potassium depolarization (300 mOsmol), vasopressin (10 microM), or bradykinin (10 microM). These results suggest that acetylcholine may be synthesized by non-neuronal rabbit kidney cortical cells and that this transmitter may be released in response to physiological levels of urea.  相似文献   

5.
The effect of depolarizing concentrations of potassium (56 mM) on the release of [3H]taurine was examined in two types of cultured neurons from mouse brain: cerebral cortex neurons, which are largely GABAergic, and cerebellar neurons, which after treatment with kainate consist almost entirely of glutamatergic granule cells. The release of [3H]taurine was compared to that of gamma-[3H]aminobutyric acid [( 3H]GABA) in cortical neurons and to that of D-[3H]aspartate in granule cells. Cortical neurons responded to potassium stimulation (1 min or continuously) by an immediate increase in [3H]GABA efflux of more than six times over the basal efflux, followed by a sharp decline despite the persistence of the stimulatory agent. The potassium-induced release of [3H]GABA was largely calcium-dependent. The release of [3H]taurine was considerably less in magnitude, only doubling after the stimulus, with a time course delayed in both onset and decline. The release of [3H]taurine was partially calcium-dependent and was also decreased in low-chloride solutions. In cerebellar granule cells, exposure to potassium resulted in a large (sixfold) and prompt release of D-[3H]aspartate, largely calcium-dependent. A totally different pattern was observed for the release of [3H]taurine. A stimulatory effect occurred only when cells were exposed continuously to potassium. Taurine efflux was very delayed, with a broad stimulus plateau reached after 15-20 min of stimulation. Taurine release was unaffected by omission of calcium, but it was abolished in a low-chloride medium. These results suggest that taurine is released from cells handling other neuroactive amino acids as neurotransmitters.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The sources of noradrenaline (NA) released by excess potassium from isolated perfused rat hearts were investigated by labelling the hearts from normal, reserpine-treated, and 6-hydroxydopamine-treated (6-OHDA-treated) rats with [3H]HA, and measuring the increased rate of efflux induced by perfusion with a Krebs solution containing varying amounts of excess potassium. The [3H]NA and its metabolites in the effluent were separated by adsorption on alumina and a cation-exchange resin (Dowex-50). The release induced by potassium was a linear function of the log of the increased potassium concentration. Following a 1-h efflux period after labelling with [3H]NA, the hearts from reserpine-treated rats retained 1/5 as much [3H]NA, and released, in response to a 56mM elevation in the potassium concentration, less than 1/6 as much tritium label as the hearts from untreated (control) animals. In contrast, the hearts form 6-OHDA-treated animals retained 1/15 of the amount of [3H]NA and released 1/50 of the 3H label as did the control hearts. The potassium-induced increase of 3H-labelled substances in the effluent from the control hearts showed a large (threefold) percentage increase in the [3H]NA fraction, whereas the effluents from the hearts of reserpine- and 6-OHDA-treated animals contained only small increases in the [3H]NA fraction. Based on the assumptions that reserpine prevented retention of NA in the storage granules whereas 6-OHDA prevented almost all neuronal storage, it was concluded that more than 80% of the NA released by potassium excess from perfused normal hearts originated from the storage vesicles of the nerves, the remainder being largely from the cytoplasm of the nerves, with only a small portion from extraneuronal sources.  相似文献   

7.
Dissociated cell cultures derived from whole brains of foetal rats (17 days of gestation) were maintained for periods of up to 21 days in vitro for the purpose of studying the transmitter-releasing properties of the dopaminergic neuronal cells and glial cells. In the neuron-enriched cultures, after 3 days in vitro, [3H]dopamine was released in response to depolarizing stimuli. Both the potassium and veratrine-evoked release of dopamine was Ca2+ dependent. Veratrine-evoked release was reduced in the presence of the calcium channel blocker verapamil and was tetrodotoxin sensitive. Glial cultures, after 7 days in vitro, did not respond to any depolarizing stimuli, although they displayed a significant ability to take up [3H]dopamine. Comparison between static incubations and perfused cultures showed no difference in the patterns of release resulting from veratrine stimulation. Tyrosine hydroxylase activity increased progressively in neuron-enriched cultures but was not detectable in glial cultures. These results show that neuron-enriched cultures respond to depolarizing stimuli in a manner similar to excised adult basal ganglia tissue, with the appearance of functional ionic channels after 3 days in vitro.  相似文献   

8.
Primary neuronal cultures were made from eight-day-old embryonic chick telencephalon. Ten-day-old cultures were used to study the release ofd-[3H]aspartate andl-[3H]glutamate. Thed-[3H]aspartate release was stimulated by increasing potassium concentrations, but it was not calcium dependent. In contrast, the potassium dependentl-[3H]glutamate release was calcium dependent, and furthermorel-[3H]glutamate release was optimal at potassium concentrations<30 mM. The inhibitors of glutamate uptake, dihydrokainate and 1-aminocyclobutane-trans-1,3-dicarboxylic acid (CACB), also referred to as cis-1-aminocyclobutane-1,3-dicarboxylate, were used in the release experiments. Dihydrokainate had no effect on aspartate release, whereas CACB increased both the basal efflux ofd-[3H]aspartate and the potassium evoked release. CACB had no effect on the potassium stimulatedl-glutamate release. We believe thatl-glutamate is released mainly by a vesicular mechanism from the presumably glutamatergic neurons present in our culture.d-aspartate release observed by us, could be mediated by a transporter protein. The cellular origin of this release remains to be assessed.  相似文献   

9.
PC12 pheochromocytoma cells and cultures of early postnatal rat cerebellum were labeled with [3H]glucosamine, [3H]fucose, [3H]leucine, [3H]ethanolamine, or sodium [35S]sulfate and treated with a phosphatidylinositol-specific phospholipase C. Enzyme treatment of [3H]glucosamine- or [3H]fucose-labeled PC12 cells led to a 15-fold increase in released glycoproteins. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, most of the released material migrated as a broad band with an apparent molecular size of 32,000 daltons (Da), which was specifically immunoprecipitated by a monoclonal antibody to the Thy-1 glycoprotein. A second glycoprotein, with an apparent molecular size of 158,000 Da, was also released. After treatment with endo-beta-galactosidase, 40-45% of the [3H]glucosamine or [3H]fucose radioactivity in the phospholipase-released glycoproteins was converted to products of disaccharide size, and the molecular size of the 158-kDa glycoprotein decreased to 145 kDa, demonstrating that it contains fucosylated poly-(N-acetyllactosaminyl) oligosaccharides. The phospholipase also released labeled Thy-1 and the 158-kDa glycoprotein from PC12 cells cultured in the presence of [3H]ethanolamine, which specifically labels this component of the phosphatidylinositol membrane-anchoring sequence, while in the lipid-free protein residue of cells not treated with phospholipase, Thy-1 and a doublet at 46/48 kDa were the only labeled proteins. At least eight early postnatal rat brain glycoproteins also appear to be anchored to the membrane by phosphatidylinositol. Sulfated glycoproteins of 155, 132/134, 61, and 21 kDa are the predominant species released by phospholipase, which does not affect a major 44-kDa protein seen in [3H]ethanolamine-labeled brain cultures. The 44-48- and 155/158-kDa proteins may be common to both PC12 cells and brain.  相似文献   

10.
Release of preloaded D-[3H]aspartate in response to depolarization induced by high potassium, N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) or the endogenous agonist glutamate was studied using cultured glutamatergic cerebellar granule neurons, cerebellar astrocytes, and corresponding cocultures. Release from the vesicular and the cytoplasmic glutamate pools, respectively, was distinguished employing the competitive, non-transportable glutamate transport inhibitor DL-threo-beta-benzyloxyaspartate (DL-TBOA). The results indicate that the release in response to AMPA (30 microM) in the presence of cyclothiazide (50 microM) to block desensitization, was of a vesicular origin. Pulses of 55 mM K+ caused a DL-TBOA resistant efflux of preloaded D-[3H]aspartate from astrocytes, indicating that this release was not mediated by glutamate transporters. The results furthermore support the notion of an important function of the astrocytes in the uptake of released glutamate, because DL-TBOA caused a large, apparent increase in the depolarization-coupled release of preloaded D-[3H]aspartate in the cocultures, compared to neuronal monocultures.  相似文献   

11.
Proteins in the inner surface of the squid axon membrane were labeled by intracellular perfusion of [3H]N-ethylmaleimide (NEM), which forms covalent bonds with free sulfhydryl groups. The excitability of the axon was unaffected by the [3H]NEM perfusion. After washout of the unbound label, the perfusate was monitored for the release of labeled proteins. Labeled proteins were released from the inner membrane surface by potassium depolarization of the axon only in the presence of external calcium ions. Replacement of the fluoride ion in the perfusion medium by various anions also caused labeled protein release. The order of effectiveness was SCN- greater than Br- greater than Cl- greater than F-. The extent of labeled protein release by the various anions was correlated with their effects on axonal excitability. The significance of these results is discussed.  相似文献   

12.
The effect of high potassium depolarization on the release of exogenously supplied [3H]glutamate and endogenous glutamate from tissue slices of the cestode Hymenolepis diminuta was examined. Increasing concentrations of potassium stimulated the release of radiolabel from tissues preloaded with [3H]glutamate. This release was by a partially calcium-dependent, magnesium-antagonized process. In the presence of tetrodotoxin, or absence of sodium, release of radiolabel was depressed, presumably by blockade of sodium-dependent neuronal potentials. The release of glutamate of both exogenous and endogenous origin was specifically and significantly elevated by high potassium; glutamate release was significantly depressed in calcium-free saline. The release of other amino acids of endogenous origin, including aspartate, was not elevated by high potassium. Collectively the data provide strong evidence for glutamate to be viewed as the only acidic amino acid neurotransmitter candidate in the cestodes.  相似文献   

13.
The developmental influence of neuron-target interaction upon transmitter synthesis from labeled precursor and the capacity to release labeled transmitter were examined in dispersed cell cultures of embryonic ciliary ganglion neurons by comparing cultures of neurons plated alone and neurons plated upon pectoral myotubes. Of the total ACh synthesized from radiolabeled choline by neurons plated alone, more than half is via a Na+-dependent path, but a larger fraction of the synthesis is Na+ insensitive in culture than in mature neurons in vivo. In addition, at 1 week in culture the neurons lacking target failed to significantly increase ACh synthesis from the labeled choline in response to a previous high [K+]0 depolarization. Synthetic responsiveness to depolarization is a characteristic of mature nerve terminals in this preparation. One week after plating neurons onto myotube cultures, synthesis of ACh from the exogenous precursor is double that of sibling cultures lacking muscle, and prior depolarization with [K+]0 results in an increase in labeled product. Release from the labeled transmitter pool by the neurons with myotubes was also enhanced. [3H]ACh release elicited by depolarization via a Ca2+-dependent mechanism was more than fivefold higher in the cocultures. The influence of coculture with myotubes upon neuronal development is not duplicated by the neurons themselves despite formation of apparent interneuronal synapses (G. Crean, G. Pilar, J. Tuttle, and K. Vaca, 1982, J. Physiol. (London). 331, 87-104), by "fibroblasts" or medium conditioned over myotube cultures. Neurons under these conditions neither increase synthesis of [3H]ACh in response to a prior depolarization nor demonstrate enhanced basal [3H]ACh synthesis and release. Thus, coculture of embryonic ciliary ganglion neurons with a striated muscle target has a somewhat specific inductive effect, enhancing the capacity for neuronal [3H]ACh synthesis and release toward mature levels. This influence of a readily accessible target upon ciliary neuron cholinergic development in vitro may reflect a normal neuromuscular interaction occurring during embryogenesis.  相似文献   

14.
Evoked release of [3H]-D-aspartate which labels the neurotransmitter glutamate pool in cultured cerebellar granule cells was compared with evoked release of adenosine from similar cultures. It was found that both adenosine and [3H]-D-aspartate could be released from the neurons in a calcium dependent manner after depolarization of the cells with either 10–100 M glutamate or 50 mM KCl. Cultures of cerebellar granule cells treated with 50 M kainate to eliminate GABAergic neurons behaved in the same way. This together with the observation that cultured astrocytes did not exhibit a calcium dependent, potassium stimulated adenosine release strongly suggest that cerebellar granule cells release adenosine in a neurotransmitter-like fashion together with glutamate which is the classical neurotransmitter of these neurons. Studies of the metabolism of adenosine showed that in the granule cells adenosine is rapidly metabolized to ATP, ADP, and AMP, but in spite of this, adenosine was found to be released preferential to ATP.  相似文献   

15.
Incubation of isolated rat islets of Langerhans with melittin resulted in a dose-dependent stimulation of insulin secretion with half the maximal response occurring at 4 micrograms/ml melittin. The effect of melittin on insulin secretion was dependent on extracellular calcium, was inhibited by the phospholipase A2 inhibitor quinacrine and by the lipoxygenase inhibitor nordihydroguaiaretic acid. Stimulation of insulin secretion by melittin was associated with a calcium-dependent loss of [3H]arachidonic acid from phospholipids in islet cells prelabelled with [3H]arachidonic acid. Analysis of the islet phospholipids involved in this response revealed that the [3H]arachidonic acid was released predominantly from phosphatidylcholine. These results suggest that melittin may stimulate insulin secretion by activating phospholipase A2 in islet cells, causing the release of arachidonic acid from membrane phospholipid. The results are consistent with suggestions that the subsequent metabolism of arachidonic acid via the lipoxygenase pathway may be involved in regulating the insulin secretory response.  相似文献   

16.
Neuronal cells from 1-day-old rat brain in primary culture have been utilized in the present study to characterize insulin-binding sites and a possible action of insulin on these cells. Binding of 125I-insulin to neuronal cultures was 90% specific and time-dependent and reached equilibrium in 120 min. Specific binding was reversible with greater than 90% of binding dissociable within 120 min with a t1/2 of dissociation of 15 min. Various insulin analogues competed for 125I-insulin binding to neuronal cultures according to their known biological potencies. Scatchard analysis of competition data yielded a typical curvilinear plot providing a class of high affinity (Kd = 11 nM) and low affinity (Kd = 65 nM) binding sites. Light microscopic autoradiographic analysis of 125I-insulin bound to neuronal cultures revealed the presence of silver grains predominantly on the neurites with occasional occurrence on the cell soma. Insulin had no effect on neuronal 2-deoxyglucose uptake in contrast with our previous findings demonstrating a 2-fold stimulation of 2-dGlc uptake into astrocyte glial cells from rat brain (Clarke, D.W., Boyd, F.T., Jr., Kappy, M.S., and Raizada, M. K. (1984) J. Biol. Chem. 259, 11672-11675). Incubation of neuronal cultures with insulin caused a dose-dependent inhibition of [3H]norepinephrine uptake with significant inhibition occurring at 1.67 X 10(-11) M. These findings demonstrate that: 1) neuronal cells in primary culture possess specific insulin receptors which are predominantly located on neurites and 2) insulin modulates monoamine uptake in these cultures which suggests that insulin may modulate neural signaling via specific neuronal insulin receptors.  相似文献   

17.
The effect of acidification of the incubation medium on the membrane potential and glutamate uptake and release was studied in isolated presynaptic neuronal endings (synaptosomes) from rat brain. Using the fluorescent probe diS-C3-(5), a rapid depolarization of plasma membrane was detected at pH 6.0, most probably as a result of the inhibition of the sodium pump and potassium channel blockade. The membrane potential decrease did not result in increase of basal efflux of glutamate. Glutamate release following K+-induced depolarization was decreased upon lowering pH to 6.0. Acidosis inhibited mainly calcium-dependent (vesicular) release of glutamate and did not significantly reduce [14C]glutamate uptake. This inhibition of glutamate release but not of glutamate uptake may be a mechanism of the protective effect of acidosis during brain ischemia.  相似文献   

18.
A single slice of rat pons that contained the locus ceruleus (LC) or two slices of cerebellum were loaded with [3H]noradrenaline; superfusion with high (35 or 60 mM) potassium solutions evoked a release of 3H. In the presence of normorphine, the release of 3H evoked by 35 mM potassium and 60 mM potassium was reduced. In some of those experiments in which the release of 3H from the LC slice was measured, an intracellular microelectrode was used to measure membrane potential. This showed that solutions of increased potassium concentration depolarized the neurons to a potential at which inward calcium currents flowed (calcium action potentials occurred). Normorphine hyperpolarized the neurons; during this hyperpolarization the depolarization caused by 35 mM potassium did not reach the threshold for significant calcium entry. The results suggest that the inhibition by normorphine of transmitter release evoked by solutions of raised potassium concentration could result in part from the membrane hyperpolarization caused by the normorphine.  相似文献   

19.
In response to an external stimulus, neuronal cells release neurotransmitters from small synaptic vesicles and endocrine cells release secretory proteins from large dense core granules. Despite these differences, endocrine cells express three proteins known to be components of synaptic vesicle membranes. To determine if all three proteins, p38, p65, and SV2, are present in endocrine dense core granule membranes, monoclonal antibodies bound to beads were used to immunoisolate organelles containing the synaptic vesicle antigens. [3H]norepinephrine was used to label both chromaffin granules purified from the bovine adrenal medulla and rat pheochromocytoma (PC12) cells. Up to 80% of the vesicular [3H]norepinephrine was immunoisolated from both labeled purified bovine chromaffin granules and PC12 postnuclear supernatants. In PC12 cells transfected with DNA encoding human growth hormone, the hormone was packaged and released with norepinephrine. 90% of the sedimentable hormone was also immunoisolated by antibodies to all three proteins. Stimulated secretion of PC12 cells via depolarization with 50 mM KCl decreased the amount of [3H]norepinephrine or human growth hormone immunoisolated. Electron microscopy of the immunoisolated fractions revealed large (greater than 100 nm diameter) dense core vesicles adherent to the beads. Thus, large dense core vesicles containing secretory proteins possess all three of the known synaptic vesicle membrane proteins.  相似文献   

20.
Islets of Langerhans isolated from adult rats were maintained in tissue culture for 3 days in the continued presence of [3H]leucine. Labelled proinsulin, C-peptide and insulin were measured by quantitative h.p.l.c., a method which also allowed for resolution of C-peptide I and II, and of insulin I and II (the products of the two rat insulin genes). The results showed that: (1) at early times, proinsulin was the major radiolabelled product; with progressive time in culture, intra-islet levels of [3H]proinsulin decreased, despite continuous labelling with [3H]leucine, indicating that the combined rates of proinsulin conversion into insulin and of proinsulin release, exceeded the rate of synthesis; (2) insulin I levels were always greater than those of insulin II, both in the islets and for products released to the medium; (3) the molar ratio of [3H]insulin I and II to their respective 3H-labelled C-peptides increased with time for products retained within islets, reaching a value close to 3:1 by 3 days; by contrast, for products released to the medium during the culture period, the ratio was always close to unity; (4) when islets were incubated with [3H]leucine for 2 days, and then left for a further 1 day without label (chase period), the intra-islet [3H]insulin/[3H]C-peptide ratios rose to values as high as 9:1. Again, for material released to the medium, the values were close to 1:1; (5) it is concluded that C-peptide is degraded more rapidly than insulin within islet cells, thereby accounting for the elevated insulin/C-peptide ratios. The difference between the ratios observed in the islets and those for material released to the medium is taken to indicate that degradation occurs in a discrete cellular compartment and not in the secretory granule itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号