首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth and product formation kinetics of the bovine pathogen Mannheimia (Pasteurella) haemolytica strain OVI-1 in continuous culture were investigated. The leukotoxin (LKT) concentration and yield on biomass could substantially be enhanced by supplementation of a carbon-limited medium with an amino acid mixture or a mixture of cysteine and glutamine. Acetic acid was a major product, increasing to 1.66 g l(-1) in carbon-limited chemostat culture at intermediate dilution rates and accounting for more than 80% of the glucose carbon, whereas in amino acid-limited cultures high acetic acid concentrations were produced at low dilution rates, suggesting a carbon-overflow metabolism. The maintenance coefficients of carbon-limited and carbon-sufficient cultures were 0.07 and 0.88 mmol glucose g(-1) h(-1), respectively. LKT production was partially growth-associated and the LKT concentration was maximised to 0.15 g l(-1) and acetic acid production minimised by using a carbon-limited medium and a low dilution rate.  相似文献   

2.
AIMS: To quantify the influence of the growth phase, storage temperature and nutritional quality of the plate count medium on the apparent viability of Mannheimia haemolytica during storage at different temperatures. METHODS AND RESULTS: Mannheimia haemolytica was grown in shake flasks and in aerobic continuous culture to investigate factors affecting cell viability during storage, which was determined using plate counts on different media and epifluorescence microscopy. The high specific death rates of cells harvested after cessation of exponential growth and stored at 22, 4, -18 and -75 degrees C could be related to the rapid onset of exponential death in batch cultures. Yeast extract supplementation of the culture medium increased the viability of cells at most of the above-mentioned storage temperatures. Of the total cell count in continuous culture, only 48% could be recovered on brain-heart infusion agar, whereas supplementation of the agar medium with foetal calf serum increased the plate count to 71% of the total count. CONCLUSIONS: Mannheimia haemolytica cells harvested from the exponential growth phase had the highest survival rate during storage at low temperatures. Plate count values also depended on the nutritional quality of the agar medium. SIGNIFICANCE AND IMPACT OF THE STUDY: Results presented here impact on the procedures for culture preservation and plate count enumeration of this fastidious animal pathogen.  相似文献   

3.
Amino acid availability is a key factor that can be controlled to optimize the productivity of fed-batch cultures. To study amino acid limitation effects, a serum-free chemically defined basal medium was formulated to exclude the amino acids that became depleted in batch culture. The effect of limiting glutamine, asparagine, and cysteine on the cell growth, metabolism, antibody productivity, and product glycosylation was investigated in three Chinese hamster ovary (CHO) cell lines (CHO-DXB11, CHO-K1SV, and CHO-S). Cysteine limitation was detrimental to both cell proliferation and productivity for all three CHO cell lines. Glutamine limitation reduced growth but not cell specific productivity, whereas asparagine limitation had no significant effect on either growth or cell specific productivity. Neither glutamine nor asparagine limitation significantly affected antibody glycosylation. Replenishing the CHO-DXB11 culture with cysteine after 1 day of cysteine limitation allowed the cells to partially recover their growth and productivity. This recovery was not observed after 2 days of cysteine limitation. Based on these findings, a fed-batch protocol was developed using single or mixed amino acid supplementation. Although cell density and antibody concentration were lower compared to a commercial feed, the feeds based on cysteine supplementation yielded comparable cell specific productivity. Overall, this study showed that different amino acid limitations have varied effects on the performance of CHO cell cultures and that maintaining cysteine availability is a critical process parameter for the three cell lines investigated.  相似文献   

4.
AIMS: To compare the abilities of two obligately acidophilic heterotrophic bacteria, Acidiphilium acidophilum and Acidiphilium SJH, to reduce ferric iron to ferrous when grown under different culture conditions. METHODS AND RESULTS: Bacteria were grown in batch culture, under different aeration status, and in the presence of either ferrous or ferric iron. The specific rates of ferric iron reduction by fermenter-grown Acidiphilium SJH were unaffected by dissolved oxygen (DO) concentrations, while iron reduction by A. acidophilum was highly dependent on DO concentrations in the growth media. The ionic form of iron present (ferrous or ferric) had a minimal effect on the abilities of harvested cells to reduce ferric iron. Whole cell protein profiles of Acidiphilium SJH were very similar, regardless of the DO status of the growth medium, while additional proteins were present in A. acidophilum grown microaerobically compared with aerobically-grown cells. CONCLUSIONS: The dissimilatory reduction of ferric iron is constitutive in Acidiphilium SJH while it is inducible in A. acidophilum. SIGNIFICANCE AND IMPACT OF THE STUDY: Ferric iron reduction by Acidiphilium spp. may occur in oxygen-containing as well as anoxic acidic environments. This will detract from the effectiveness of bioremediation systems where removal of iron from polluted waters is mediated via oxidation and precipitation of the metal.  相似文献   

5.
Industrial therapeutic protein production has been greatly improved through fed‐batch development. In this study, improvement to the productivity of a tissue‐plasminogen activator (t‐PA) expressing Chinese hamster ovary (CHO) cell line was investigated in shake flask culture through the optimization of the fed‐batch feed and the reduction of ammonia generation by glutamine replacement. The t‐PA titer was increased from 33 mg/L under batch conditions to 250 mg/L with daily feeding starting after three days of culture. A commercially available fed‐batch feed was supplemented with cotton seed hydrolysate and the four depleted amino acids, aspartic acid, asparagine, cysteine, and tyrosine. The fed‐batch operation increased the generation of by‐products such as lactate and ammonia that can adversely affect the fed‐batch performance. To reduce the ammonia production, a glutamine‐containing dipeptide, pyruvate, glutamate, and wheat gluten hydrolysate, were investigated as glutamine substitutes. To minimize the lag phase as the cells adjusted to the new energy source, a feed glutamine replacement process was developed where the cells were initially cultured with a glutamine containing basal medium to establish cell growth followed by feeding with a feed containing the glutamine substitutes. This two‐step feed glutamine replacement process not only reduced the ammonia levels by over 45% but, in the case of using wheat gluten hydrolysate, almost doubled the t‐PA titer to over 420 mg/L without compromising the t‐PA product quality or glycosylation pattern. The feed glutamine replacement process combined with optimizing other feed medium components provided a simple, practical, and effective fed‐batch strategy that could be applied to the production of other recombinant therapeutic proteins. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

6.
We have determined the 1.35- and 1.45-A structures, respectively, of closed and open iron-loaded forms of Mannheimia haemolytica ferric ion-binding protein A. M. haemolytica is the causative agent in the economically important and fatal disease of cattle termed shipping fever. The periplasmic iron-binding protein of this gram-negative bacterium, which has homologous counterparts in many other pathogenic species, performs a key role in iron acquisition from mammalian host serum iron transport proteins and is essential for the survival of the pathogen within the host. The ferric (Fe(3+)) ion in the closed structure is bound by a novel asymmetric constellation of four ligands, including a synergistic carbonate anion. The open structure is ligated by three tyrosyl residues and a dynamically disordered solvent-exposed anion. Our results clearly implicate the synergistic anion as the primary mediator of global protein conformation and provide detailed insights into the molecular mechanisms of iron binding and release in the periplasm.  相似文献   

7.
To analyse the role of Pasteurella haemolytica Leukotoxin (LKT) in the mechanism of apoptotic cell death of bovine lymphocytes, we evaluated DNA fragmentation and p53 and c-myc expression. P. haemolytica strain ATCC 14003 was cultivated for LKT production. DNA fragmentation was analysed by electrophoresis on Agarose gel. DNA strand breaks in individual apoptotic cells were also detected by an in situ Terminal deoxy nucleotidyl Transferase (TdT). The Polymerase Chain Reaction (PCR) procedure was used for verified p53 and c-myc activation by P. haemolytica LKT. LKT was able to induce DNA fragmentation in a dose and time-dependent fashion. The greatest apoptotic effect was obtained using LKT at a concentration of 0.25 U. The results show that p53 and c-myc activation by LKT is correlated with apoptosis of bovine lymphocytes and monocytes. Our data suggest that LKT may have an important role in the bacterial virulence of Pasteurella haemolytica.  相似文献   

8.
The contribution of intracellular calcium stores to Mannheimia haemolytica leukotoxin (LKT)-induced increase in cytosolic calcium concentration was studied by pharmacologically inhibiting transport of calcium across the plasma and endoplasmic reticulum membranes of bovine neutrophils exposed to LKT. Active intracellular storage of calcium by sarcoplasmic/endoplasmic reticulum calcium ATPase, influx of extracellular calcium across the plasma membrane, and release of stored calcium via inositol triphosphate receptors and ryanodine-sensitive calcium channels were inhibited using thapsigargin, lanthanum chloride, xestospongin C, and magnesium chloride, respectively. Pre-incubation with thapsigargin attenuated the increase in cytosolic calcium concentration produced by LKT, thus confirming the involvement of intracellular calcium stores. Inhibitory effects of lanthanum chloride, xestospongin C, and magnesium chloride indicated that the increase in cytosolic calcium concentration induced by LKT resulted from both influx of calcium across the plasma membrane and release of calcium from intracellular stores.  相似文献   

9.
Summary Recombinant human interferon- production by Chinese hamster ovary cells was restricted to the growth phase of batch cultures in serum-free medium. The specific interferon production rate was highest during the initial period of exponential growth but declined subsequently in parallel with specific growth rate. This decline in specific growth rate and interferon productivity was associated with a decline in specific metabolic activity as determined by the rate of glucose uptake and the rates of lactate and ammonia production. The ammonia and lactate concentrations that had accumulated by the end of the batch culture were not inhibitory to growth. Glucose was exhausted by the end of the growth phase but increased glucose concentrations did not improve the cell yield or interferon production kinetics. Analysis of amino acid metabolism showed that glutamine and asparagine were exhausted by the end of the growth phase, but supplementation of these amino acids did not improve either cell or product yields. When glutamine was omitted from the growth medium there was no cell proliferation but interferon production occurred, suggesting that recombinant protein production can be uncoupled from cell proliferation. Offprint requests to: P. M. Hayter  相似文献   

10.
Recent developments in gene therapy using adenoviral (Ad) vectors have fueled renewed interest in the 293 human embryonic kidney cell line traditionally used to produce these vectors. Low-glutamine fed-batch cultures of serum-free, suspension cells in a 5-L bioreactor were conducted. Our aim was to tighten the control on glutamine metabolism and hence reduce ammonia and lactate accumulation. Online direct measurement of glutamine was effected via a continuous cell-exclusion system that allows for aseptic, cell-free sampling of the culture broth. A feedback control algorithm was used to maintain the glutamine concentration at a level as low as 0.1 mM with a concentrated glucose-free feed medium. This was tested in two media: a commercial formulation (SFM II) and a chemically defined DMEM/F12 formulation. The fed-batch and batch cultures were started at the same glucose concentration, and it was not controlled at any point in the fed-batch cultures. In all cases, fed-batch cultures with double the cell density and extended viable culture time compared to the batch cultures were achieved. An infection study on the high density fed-batch culture using adenovirus-green fluorescent protein (Ad-GFP) construct was also done to ascertain the production capacity of the culture. Virus titers from the infected fed-batch culture showed that there is an approximately 10-fold improvement over a batch infection culture. The results have shown that the control of glutamine at low levels in cultures is sufficient to yield significant improvements in both cell densities and viral production. The applicability of this fed-batch system to cultures in different media and also infected cultures suggests its potential for application to generic mammalian cell cultures.  相似文献   

11.
Lactate and ammonia accumulation is a major factor limiting the performance of fed‐batch strategies for mammalian cell culture processes. In addition to the detrimental effects of these by‐products on production yield, ammonia also contributes to recombinant glycoprotein quality deterioration. In this study, we tackled the accumulation of these two inhibiting metabolic wastes by culturing in glutamine‐free fed‐batch cultures an engineered HEK293 cell line displaying an improved central carbon metabolism. Batch cultures highlighted the ability of PYC2‐overexpressing HEK293 cells to grow and sustain a relatively high viability in absence of glutamine without prior adaptation to the culture medium. In fed‐batch cultures designed to maintain glucose at high concentration by daily feeding a glutamine‐free concentrated nutrient feed, the maximum lactate and ammonia concentrations did not exceed 5 and 1 mM, respectively. In flask, this resulted in more than a 2.5‐fold increase in IFNα2b titer in comparison to the control glutamine‐supplied fed‐batch. In bioreactor, this strategy led to similar reductions in lactate and ammonia accumulation and an increase in IFNα2b production. Of utmost importance, this strategy did not affect IFNα2b quality with respect to sialylation and glycoform distribution as confirmed by surface plasmon resonance biosensing and LC‐MS, respectively. Our strategy thus offers an attractive and simple approach for the development of efficient cell culture processes for the mass production of high‐quality therapeutic glycoproteins. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:494–504, 2018  相似文献   

12.
Separate pathways for transport of nontransferrin ferric and ferrous iron into tissue cultured cells were demonstrated. Neither the ferric nor ferrous pathway was shared with either zinc or copper. Manganese shared the ferrous pathway but had no effect on cellular uptake of ferric iron. We postulate that ferric iron was transported into cells via beta(3)-integrin and mobilferrin (IMP), whereas ferrous iron uptake was facilitated by divalent metal transporter-1 (DMT-1; Nramp-2). These conclusions were documented by competitive inhibition studies, utilization of a beta(3)-integrin antibody that blocked uptake of ferric but not ferrous iron, development of an anti-DMT-1 antibody that blocked ferrous iron and manganese uptake but not ferric iron, transfection of DMT-1 DNA into tissue culture cells that showed enhanced uptake of ferrous iron and manganese but neither ferric iron nor zinc, hepatic metal concentrations in mk mice showing decreased iron and manganese but not zinc or copper, and data showing that the addition of reducing agents to tissue culture media altered iron binding to proteins of the IMP and DMT-1 pathways. Although these experiments show ferric and ferrous iron can enter cells via different pathways, they do not indicate which pathway is dominant in humans.  相似文献   

13.
For the mouse hybridoma cell line VO 208, kinetics of growth, consumption of glucose and glutamine, and production of lactate, ammonia and antibodies were compared in batch and continuous cultures. At a given specific growth rate, different metabolic activities were observed: a 40% lower glucose and glutamine consumption rate, but a 70% higher antibody production rate in continuous than in batch culture. Much higher metabolic rates were also measured during the initial lag phase of the batch culture. When representing the variation of the specific antibody production rate as a function of the specific growth rate, there was a positive association between growth and antibody production in the batch culture, but a negative association during the transient phase of the continuous culture. The kinetic differences between cellular metabolism in batch and continuous cultures may be result of modifications in the physiology and metabolism of cells which, in continuous cultures, were extensively exposed to glucose limitations.Institut National Polytechnique de Lorraine, ENSAIA BP 172, 2 avenue de la forêt de Haye, 54505, Vandoeuvre Cedex France  相似文献   

14.
The effects of the microenvironment and the nature of the limiting nutrient on culture viability and overall MAb productivity were explored using a hybridoma cell line which characteristically produces MAb in the stationary phase. A direct comparison was made of the changes in the metabolic profiles of suspension and PEG-alginate immobilized (0.8 mm beads) batch cultures upon entry into the stationary phase. The shifts in glucose, glutamine, and amino acid metabolism upon entry into the stationary phase were similar for both microenvironments. While the utilization of most nutrients in the stationary phase decreased to below 20% of that in the growth phase, antibody production was not dramatically affected. The immobilized culture did exhibit a 1.5-fold increase in the specific antibody rate over the suspension culture in both the growth and stationary phases. The role of limiting nutrient on MAb production and cell viability was assessed by artificially depleting a specific nutrient to 1% of its control concentration. An exponentially growing population of HB121 cells exposed to these various depletions responded with dramatically different viability profiles and MAb production kinetics. All depletions resulted in growth-arrested cultures and nongrowth-associated MAb production. Depletions in energy sources (glucose, glutamine) or essential amino acids (isoleucine) resulted in either poor viability or low antibody productivity. A phosphate or serum depletion maintained antibody production over at least a six day period with each resulting in a 3-fold higher antibody production rate than in growing batch cultures. These results were translated to a high-density perfusion culture of immobilized cells in the growth-arrested state with continued MAb expression for 20 days at a specific rate equal to that observed in the phosphate- and serum-depleted batch cultures.  相似文献   

15.
Semisteady state cultures are useful for studying cell physiology and facilitating media development. Two semisteady states with a viable cell density of 5.5 million cells/mL were obtained in CHO cell cultures and compared with a fed‐batch mode control. In the first semisteady state, the culture was maintained at 5 mM glucose and 0.5 mM glutamine. The second condition had threefold higher concentrations of both nutrients, which led to a 10% increase in lactate production, a 78% increase in ammonia production, and a 30% reduction in cell growth rate. The differences between the two semisteady states indicate that maintaining relatively low levels of glucose and glutamine can reduce the production of lactate and ammonia. Specific amino acid production and consumption indicated further metabolic differences between the two semisteady states and fed‐batch mode. The results from this experiment shed light in the feeding strategy for a fed‐batch process and feed medium enhancement. The fed‐batch process utilizes a feeding strategy whereby the feed added was based on glucose levels in the bioreactor. To evaluate if a fixed feed strategy would improve robustness and process consistency, two alternative feeding strategies were implemented. A constant volume feed of 30% or 40% of the initial culture volume fed over the course of cell culture was evaluated. The results indicate that a constant volumetric‐based feed can be more beneficial than a glucose‐based feeding strategy. This study demonstrated the applicability of analyzing CHO cultures in semisteady state for feed enhancement and continuous process improvement. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

16.
Under conditions of iron limitation many rhizospheric bacteria produce siderophores, ferric iron-specific ligands, which may enhance plant growth by increasing the availability of iron near the roots. Thirty-five strains of Rhizobium ciceri, specific to chickpea (Cicer arietinum L.), were screened for their ability to grow on iron-deficient medium and to produce siderophores. Maximal growth of all strains previously depleted in iron was obtained in medium containing 5 to 10 m of ferric iron. When iron limitation was achieved by the addition of 2,2-bipyridyl or EDDHA [ethylene diamine di(o-hydroxyphenyl) acetic acid] to the medium, only two strains were able to scavenge iron and grow. Siderophore production by these two strains was detected by the Chrome Azurol S assay (CAS), a universal test for siderophores. No hydroxamate-type siderophores were detected in the supernatants of Rhizobium ciceri cultures. However, some strains secreted salicylic acid and 2,3-dihydroxybenzoic acid as phenolate-type siderophores. Addition of ferric iron to the culture medium increased growth yield significantly but depressed the production of siderophores. Although these compounds are produced in response to iron deficiency, nutritive components of the culture medium significantly affected their production. It seems that CuII, MoVI and MnII ions bound competitively with iron to siderophores, resulting in a 34 to 100% increase in production.  相似文献   

17.
AIMS: Exopolysaccharides (EPS) were produced by Lactobacillus rhamnosus RW-9595M during pH-controlled batch cultures with free cells and repeated-batch cultures with cells immobilized on solid porous supports (ImmobaSil). METHODS AND RESULTS: Cultures were conducted in supplemented whey permeate (SWP) medium containing 5 or 8% (w/w) whey permeate. For free-cell batch cultures in 8% SWP medium, very high maximum cell counts (1.3 x 10(10) CFU ml(-1)) and EPS production (2350 mg l(-1)) were measured. A high EPS production (1750 mg l(-1)) was measured after four cycles for a short incubation period of only 7 h. Several methods for immobilized biomass determination based on analysis of biomass components (proteins, ATP and DNA) were tested. The DNA analysis method proved to be the most appropriate under these circumstances. This method revealed a high maximum immobilized biomass of 8.5 x 10(11) CFU ml(-1) support during repeated immobilized cell cultures in 5% SWP. The high immobilized biomass increased maximum EPS volumetric productivity (250 mg l(-1) h(-1) after 7 h culture) compared with free-cell batch cultures (110 mg l(-1) h(-1) after 18 h culture). CONCLUSIONS: High EPS productions were achieved during batch cultures of Lact. rhamnosus RW-9595M in SWP medium, exceeding 1.7 g EPS per litre. Repeated-batch cultures with immobilized cells resulted in increased EPS productivity compared with traditional free-cell cultures. SIGNIFICANCE AND IMPACT OF THE STUDY: The study clearly shows the high potential of the strain Lact. rhamnosus RW-9595M and immobilized cell technology for production of EPS as a functional food ingredient.  相似文献   

18.
Batch and fed-batch cultures of a murine hybridomacell line (AFP-27) were performed in a stirred tankreactor to estimate the effect of feed rate on growthrate, macromolecular metabolism and antibodyproduction. Macromolecular composition was foundto change dynamically during batch culture ofhybridoma cells possibly due to active production ofDNA, RNA and protein during the exponential phase.Antibody synthesis is expected to compete with theproduction of cellular proteins from the amino acidpool. Therefore, it is necessary to examine therelationship between cell growth in terms of cellularmacromolecules and antibody production. In this study,we searched for an optimum feeding strategy bychanging the target specific growth rate in fed-batchculture to give higher antibody productivity whileexamining the macromolecular composition. Concentratedglucose (60 mM) and glutamine (20 mM) in DR medium(1:1 mixture of DMEM and RPMI) with additional aminoacids were fed continuously to the culture and thefeed rate was updated after every sampling to ensureexponential feeding (or approximately constantspecific growth rate). Specific antibody productionrate was found to be significantly increased in thefed-batch cultures at the near-zero specific growthrate in which the productions of cellular DNA, RNA,protein and polysaccharide were strictly limited byslow feeding of glucose, glutamine and other nutrients. Possible implications of these results are discussed.  相似文献   

19.
Fusarium venenatum A3/5 was grown in iron-restricted batch cultures and iron-limited chemostat cultures to determine how environmental conditions affected siderophore production. The specific growth rate in iron-restricted batch cultures was 0.22 h(-1), which was reduced to 0.12 h(-1) when no iron was added to the culture. D(crit) in iron-limited chemostat culture was 0.1 h(-1). Siderophore production was correlated with specific growth rate, with the highest siderophore production occurring at D=0.08 h(-1) and the lowest at D=0.03 h(-1). Siderophore production was greatest at pH 4.7 and was significantly reduced at pHs above 6.0. Siderophore production could be enhanced by providing insoluble iron instead of soluble iron in continuous flow cultures.  相似文献   

20.
Summary Absorption and translocation of iron by intact watercress plants (Rorippa nasturtium-aquaticum (L) Hayek) was studied in short period uptake experiments utilising 59Fe labelled ferric chloride. Total translocation of iron was inhibited by increasing levels of phosphorus, zinc and manganese in the nutrient medium; the elevated phosphorus and zinc concentrations enhanced iron absorption into roots, but increased retention of absorbed iron in translocating portions of the plant. High levels of manganese in the medium reduced the initial absorption of iron into the root system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号