首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To explore possible pathways for anions to enter the xylem in the root during the transport of salts to the shoot, we used the patch-clamp method on protoplasts prepared from the xylem parenchyma of barley (Hordeum vulgare L.) plants. K(+) currents were suppressed by tetraethylammonium or N-methylglucamine in the solutions in the pipette and the bath, and the permeating anions were Cl(-) or NO(3)(-). We recorded the activities of three distinct anion conductances: (a) an inwardly rectifying anion channel (X-IRAC), characterized by activation at hyperpolarization and open times of up to several seconds; (b) a quickly activating anion conductance (X-QUAC), important for anion efflux at voltages between -50 mV and the equilibrium potential of the prevailing anion; and (c) a slowly activating anion conductance (X-SLAC), activating above -100 mV. Both X-IRAC and X-QUAC were permeable for Cl(-) and NO(3)(-); X-QUAC was also permeable for malate. The occurrence of X-IRAC became more frequent with an increase in cytoplasmic Ca(2+), while the occurrence of X-QUAC decreased. Anion currents through X-SLAC, and particularly through X-QUAC, were estimated to be large enough to account for reported rates of xylem loading, which is in accordance with the notion that xylem loading is a passive process.  相似文献   

2.
The distribution frequency patterns of diameter of xylem vessels and percentage of total predicted axial conductances were studied in 190-day and 212-day-old main roots of grapevine (Vitis vinifera L. cv. Shiraz) grown under well-watered and stressed conditions. The protoxylem were the first to mature and were responsible for most of the theoretical conductance in root segments between the tip and 2.5 cm from the tip. Some large xylem vessels retained cross walls and protoplasm up to 22.5 cm from the tip. Statistical tests using the Kolmogorov-Smirnov two sample test showed that the pattern of distribution frequency of xylem vessels classified in different diameter classes varied with distance from the root tip. The distribution frequency of xylem vessels was similar in both well-watered and stressed plants from the tip up to 15 cm from the tip. At distances further from the tip the distribution frequency of xylem vessels of well-watered plants was significantly different from that of stressed plants, with the former having more larger vessels than the latter. The pattern of vessel distribution frequency was different from that of percent total axial conductance (Kh) predicted with fewer large vessels carrying most of the axial flow.  相似文献   

3.
Drought induces stomatal closure, a response that is associated with the activation of plasma membrane anion channels in guard cells, by the phytohormone abscisic acid (ABA). In several species, this response is associated with changes in the cytoplasmic free Ca(2+) concentration. In Vicia faba, however, guard cell anion channels activate in a Ca(2+)-independent manner. Because of potential differences between species, Nicotiana tabacum guard cells were studied in intact plants, with simultaneous recordings of the plasma membrane conductance and the cytoplasmic free Ca(2+) concentration. ABA triggered transient rises in cytoplasmic Ca(2+) in the majority of the guard cells (14 out of 19). In seven out of 14 guard cells, the change in cytoplasmic free Ca(2+) closely matched the activation of anion channels, while the Ca(2+) rise was delayed in seven other cells. In the remaining five cells, ABA stimulated anion channels without a change in the cytoplasmic Ca(2+) level. Even though ABA could activate anion channels in N. tabacum guard cells independent of a rise in the cytoplasmic Ca(2+) concentration, patch clamp experiments showed that anion channels in these cells are stimulated by elevated Ca(2+) in an ATP-dependent manner. Guard cells thus seem to have evolved both Ca(2+)-independent and -dependent ABA signaling pathways. Guard cells of N. tabacum apparently utilize both pathways, while ABA signaling in V. faba seems to be restricted to the Ca(2+)-independent pathway.  相似文献   

4.
Many different techniques have been used for xylem sap collection, but few direct comparisons of techniques have been conducted and few comparisons have been based on comprehensive analyses of xylem sap. Moreover, the suitability of extraction techniques for use on plants grown under water-stress conditions has not been addressed. Xylem sap was extracted from both well-watered and water-stressed Zea mays plants using three different techniques. The main aim was to determine how the extraction method altered the correlations between sap constituents and stomatal conductance in order to determine which relationships change with extraction technique. A 'root pressure' technique was the simplest method of extracting large volumes of sap, but the low sap delivery rates altered the composition of sap. Two pressurization techniques that varied in the position from which sap was collected were tested. The pressurization techniques allowed for the control of delivery rates that influence sap constituent concentrations. The position from which xylem sap was collected on the plant was also found to be important. All three techniques produced consistent correlations between ABA and chloride delivery rates and changes in stomatal conductance, suggesting that each technique could be applied to identify certain putative xylem-borne signals.  相似文献   

5.
We report here that NO(3)(-) in the xylem exerts positive feedback on its loading into the xylem through a change in the voltage dependence of the Quickly Activating Anion Conductance, X-QUAC. Properties of this conductance were investigated on xylem-parenchyma protoplasts prepared from roots of Hordeum vulgare by applying the patch-clamp technique. Chord conductances were minimal around -40 mV and increased with plasma membrane depolarisation as well as with hyperpolarisation. Two gates with opposite voltage dependences were postulated. When 30 mM Cl- in the bath was replaced by NO(3)(-), a shift in the midpoint potential of the depolarisation-activated gate by about -60 mV from 43 to -16 mV occurred (K(m) = 3.4 mM). No such effect was seen when chloride was replaced by malate. Addition of 10 mM NO(3)(-)to the pipette solution and reduction of [Cl-] from 124 to 4 mM (to simulate cytoplasmic concentrations) did not interfere with the voltage dependence of X-QUAC activation, nor was it affected by changes in external [K+]. If only the NO(3)(-) effect on gating was considered, an increase of the NO(3)(-) concentration in the xylem sap to 5 mM would result in an enhancement of NO(3)(-) efflux by about 30%. Although the driving force for NO(3)(-) efflux would be reduced simultaneously, NO(3)(-) efflux into the xylem through X-QUAC would be maintained with high NO(3)(-) concentrations in the xylem sap; a situation which occurs for instance during the night.  相似文献   

6.
Analysis of an electrogenic pump in the plasma membrane of xylem-parenchyma protoplasts from barley roots was performed using the patch-clamp technique in the whole-cell configuration. Particularly with regard to understanding xylem loading and unloading, the study of the electrogenic pump from this cell type is important; its functional confirmation was lacking to date. About one-half of the investigated protoplasts displayed current responses with reversal potentials between −80 and −200 mV. The application of fusicoccin, an H+-pump stimulator, caused an increase in currents recorded at a membrane potential of 0 mV and a shift of the reversal potential by about −50 mV. Treatment with dicylohexylcarbodiimid, an H+-pump inhibitor, resulted in the reduction of the current at 0 mV. The Ca2+-pump inhibitor, erythrosin B, showed no effect on current density at 0 mV and on the polarisation of the membrane potential. Enlarging the transmembrane pH gradient by raising the pH of the extracellular solution from 5.8 to 8.8 stimulated the currents. These are strong indications that the electrogenic pump was an H+-pump. Neither intracellular pH nor the intracellular Ca2+ concentration affected its activity. Simultaneous activity of the electrogenic pump and anion conductances could produce states in which protoplasts exhibited 'intermediate' reversal potentials. It was concluded that the electrogenic pump was not directly involved in the loading of KCl and KNO3 into the xylem but, in combination with anion channel activities, contributed to the establishment of membrane potentials at which electroneutral salt transport and acid release can proceed.  相似文献   

7.
Abscisic acid (ABA), conjugated abscisic acid, phaseic acid (PA), and conjugated phaseic acid were determined by enzyme-linked immunosorbent assay (ELISA) and gas chromatography (GC) in xylem sap of well-watered and drought-stressed sunflower plants. Conjugated ABA and conjugated PA were determined indirectly after chemical or enzymatic hydrolysis. Conjugated ABA was found to be the predominant ABA metabolite in xylem sap. In xylem sap from well-watered plants at least five, and in sap from drought-stressed plants at least six alkaline hydrolysable ABA conjugates were found. One of them corresponds chromatographically (HPLC) with abscisic acid glucose ester (ABAGE). Under drought conditions the concentrations of ABA, alkaline hydrolysable ABA conjugates, -glucosidase hydrolysable ABA conjugates, PA, and conjugated PA increased. After rewatering the drought-stressed plants, the ABA and the conjugated ABA content decreased. The possible function of the ABA conjugates in the xylem sap as a source of free ABA is discussed.  相似文献   

8.
Sang J  Zhang A  Lin F  Tan M  Jiang M 《Cell research》2008,18(5):577-588
Using pharmacological and biochemical approaches, the signaling pathways between hydrogen peroxide (H2O2), calcium (Ca^2+)-calmodulin (CAM), and nitric oxide (NO) in abscisic acid (ABA)-induced antioxidant defense were investigated in leaves of maize (Zea mays L.) plants. Treatments with ABA, H2O2, and CaCl2 induced increases in the generation of NO in maize mesophyll cells and the activity of nitric oxide synthase (NOS) in the cytosolic and microsomal fractions of maize leaves. However, such increases were blocked by the pretreatments with Ca^2+ inhibitors and CaM antagonists. Meanwhile, pretreatments with two NOS inhibitors also suppressed the Ca^2+-induced increase in the production of NO. On the other hand, treatments with ABA and the NO donor sodium nitroprusside (SNP) also led to increases in the concentration of cytosolic Ca^2+ in protoplasts of mesophyll cells and in the expression of calmodulin 1 (CaM1) gene and the contents of CaM in leaves of maize plants, and the increases induced by ABA were reduced by the pretreatments with a NO scavenger and a NOS inhibitor. Moreover, SNP-induced increases in the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes were arrested by the pretreatments with Ca^2+ inhibitors and CaM antagonists. Our results suggest that Ca^2+-CaM functions both upstream and downstream of NO production, which is mainly from NOS, in ABA- and H2O2-induced antioxidant defense in leaves of maize plants.  相似文献   

9.
Abstract. Maize seedlings ( Zea mays L. John Innes F1 hybrid) were grown in a greenhouse in l-m-long tubes of soil. When the plants were well established, water was withheld from half of the tubes. Control plants were watered every day during the 20-d experimental period. The soil drying treatment resulted in a substantial restriction of stomatal conductance and a limitation in shoot growth, even though there was no detectable difference in the water relations of watered and unwatered plants. From day 7 of the soil drying treatment, xylem ABA concentrations (measured using the sap exuded from detopped plants) were substantially increased in unwatered plants compared to values recorded with sap from plants watered every day. Measurements of water potential through the profile of unwatered soil suggest that xylem ABA concentrations reflects the extent of soil drying. Leaf ABA content was a much less sensitive indicator of the effect of soil drying and during the whole of experimental period there was no significant difference between ABA concentration in leaves of well watered and unwatered plants. In a second set of experiments, ABA was fed to part of the roots of potted maize plants to manipulate xylem ABA concentration. These manipulations suggested that the increases in ABA concentration in xylem sap, which resulted from soil drying, were adequate to explain the observed variation in stomatal conductance and might also explain the restriction in leaf growth rate. These results are discussed in the light of recent work which suggests that stomatal responses to soil drying are partly attributable to an as-yet unidentified inhibitor of stomatal opening.  相似文献   

10.
Hu X  Jiang M  Zhang J  Zhang A  Lin F  Tan M 《The New phytologist》2007,173(1):27-38
* Using pharmacological and biochemical approaches, the role of calmodulin (CaM) and the relationship between CaM and hydrogen peroxide (H(2)O(2)) in abscisic acid (ABA)-induced antioxidant defense in leaves of maize (Zea mays) plants were investigated. * Treatment with ABA or H(2)O(2) led to significant increases in the concentration of cytosolic Ca(2+) in the protoplasts of mesophyll cells and in the expression of the calmodulin 1 (CaM1) gene and the content of CaM in leaves of maize plants, and enhanced the expression of the antioxidant genes superoxide dismutase 4 (SOD4), cytosolic ascorbate peroxidase (cAPX), and glutathione reductase 1 (GR1) and the activities of the chloroplastic and cytosolic antioxidant enzymes. The up-regulation of the antioxidant enzymes was almost completely blocked by pretreatments with two CaM antagonists. * Pretreatments with CaM antagonists almost completely inhibited ABA-induced H(2)O(2) production throughout ABA treatment, but pretreatment with an inhibitor or scavenger of reactive oxygen species (ROS) did not affect the initial increase in the contents of CaM induced by ABA. * Our results suggest that Ca(2+)-CaM is involved in ABA-induced antioxidant defense, and that cross-talk between Ca(2+)-CaM and H(2)O(2) plays a pivotal role in ABA signaling.  相似文献   

11.
? Currents through anion channels in the plasma membrane of Lilium longiflorum pollen grain protoplasts were studied under conditions of symmetrical anionic concentrations by means of patch-clamp whole-cell configuration. ? With Cl(-) -based intra- and extracellular solutions, three outward-rectifying anion conductances, I(Cl1) , I(Cl2) and I(Cl3) , were identified. These three activities were discriminated by differential rundown behaviour and sensitivity to 5-nitro-2-(phenylpropylamino)-benzoate (NPPB), which could not be attributed to one or more channel types. All shared strong outward rectification, activated instantaneously and displayed a slow time-dependent activation for positive potentials. All showed modulation by intracellular calcium ([Ca(2+) ](in) ), increasing intensity from 6.04 nM up to 0.5 mM (I(Cl1) ), or reaching a maximum value with 8.50 μM (I(Cl2) and I(Cl3) ). ? After rundown, the anionic currents measured using NO(3) (-) -based solutions were indistinguishable, indicating that the permeabilities of the channels for Cl(-) and NO(3) (-) are similar. Additionally, unitary anionic currents were measured from outside-out excised patches, confirming the presence of individual anionic channels. ? This study shows for the first time the presence of a large anionic conductance across the membrane of pollen protoplasts, resulting from the presence of Ca(2+) -regulated channels. A similar conductance was also found in germinated pollen. We hypothesize that these putative channels may be responsible for the large anionic fluxes previously detected by means of self-referencing vibrating probes.  相似文献   

12.
Zhang WH  Ryan PR  Tyerman SD 《Plant physiology》2004,136(3):3771-3783
White lupin (Lupinus albus) is well adapted to phosphorus deficiency by developing cluster roots that release large amounts of citrate into the rhizosphere to mobilize the sparingly soluble phosphorus. To determine the mechanism underlying citrate release from cluster roots, we isolated protoplasts from different types of roots of white lupin plants grown in phosphorus-replete (+P) and phosphorus-deficient (-P) conditions and used the patch-clamp technique to measure the whole-cell currents flowing across plasma membrane of these protoplasts. Two main types of anion conductance were observed in protoplasts prepared from cluster root tissue: (1) an inwardly rectifying anion conductance (IRAC) activated by membrane hyperpolarization, and (2) an outwardly rectifying anion conductance (ORAC) that became more activated with membrane depolarization. Although ORAC was an outward rectifier, it did allow substantial inward current (anion efflux) to occur. Both conductances showed citrate permeability, with IRAC being more selective for citrate3- than Cl- (PCit/PCl = 26.3), while ORAC was selective for Cl- over citrate (PCl/PCit = 3.7). Both IRAC and ORAC were sensitive to the anion channel blocker anthracene-9-carboxylic acid. These currents were also detected in protoplasts derived from noncluster roots of -P plants, as well as from normal (noncluster) roots of plants grown with 25 microm phosphorus (+P). No differences were observed in the magnitude or frequency of IRAC and ORAC currents between the cluster roots and noncluster roots of -P plants. However, the IRAC current from +P plants occurred less frequently than in the -P plants. IRAC was unaffected by external phosphate, but ORAC had reduced inward current (anion efflux) when phosphate was present in the external medium. Our data suggest that IRAC is the main pathway for citrate efflux from white lupin roots, but ORAC may also contribute to citrate efflux.  相似文献   

13.
How Do Stomata Read Abscisic Acid Signals?   总被引:22,自引:2,他引:20       下载免费PDF全文
When abscisic acid (ABA) was fed to isolated epidermis of Commelina communis L., stomata showed marked sensitivity to concentrations of ABA lower than those commonly found in the xylem sap of well-watered plants. Stomata were also sensitive to the flux of hormone molecules across the epidermal strip. Stomata in intact leaves of Phaseolus acutifolius were much less sensitive to ABA delivered through the petiole than were stomata in isolated epidermis, suggesting that mesophyll tissue and/or xylem must substantially reduce the dose or activity of ABA received by guard cells. Delivery of the hormone to the leaf was varied by changing transpiration flux and/or concentration. Varying delivery by up to 7-fold by changing transpiration rate had little effect on conductance. At a given delivery rate, variation in concentration by 1 order of magnitude significantly affected conductance at all but the highest concentration fed. The results are discussed in terms of the control of stomatal behavior in the field, where the delivery of ABA to the leaf will vary greatly as a function of both the concentration of hormone in the xylem and the transpiration rate of the plant.  相似文献   

14.
Salah H  Tardieu F 《Plant physiology》1997,114(3):893-900
We have analyzed the possibility that chemical signaling does not entirely account for the effect of water deficit on the maize (Zea mays L.) leaf elongation rate (LER) under high evaporative demand. We followed time courses of LER (0.2-h interval) and spatial distribution of elongation rate in leaves of either water-deficient or abscisic acid (ABA)-fed plants subjected to varying transpiration rates in the field, in the greenhouse, and in the growth chamber. At low transpiration rates the effect of the soil water status on LER was related to the concentration of ABA in the xylem sap and could be mimicked by feeding artificial ABA. Transpiring plants experienced a further reduction in LER, directly linked to the transpiration rate or leaf water status. Leaf zones located at more than 20 mm from the ligule stopped expanding during the day and renewed expansion during the night. Neither ABA concentration in the xylem sap, which did not appreciably vary during the day, nor ABA flux into shoots could account for the effect of evaporative demand. In particular, maximum LER was observed simultaneously with a minimum ABA flux in the droughted plants, but with a maximum ABA flux in ABA-fed plants. All data were interpreted as the superposition of two additive effects: the first involved ABA signaling and was observed during the night and in ABA-fed plants, and the second involved the transpiration rate and was observed even in well-watered plants. We suggest that a hydraulic signal is the most likely candidate for this second effect.  相似文献   

15.
Sycamore seedlings were grown with their root systems dividedequally between two containers. Water was withheld from onecontainer while the other container was kept well-watered. Effectsof soil drying on stomatal behaviour, shoot water status, andabscisic acid (ABA) concentration in roots, xylem sap and leaveswere evaluated. At 3 d, root ABA in the drying container increased significantly,while the root ABA in the unstressed container of the same plantsdid not differ from that of the control. The increase in rootABA was associated with the increase in xylem sap ABA and withthe decrease in stomatal conductance without any significantperturbation in shoot water status. At 7 d, despite the continuous increase in root ABA concentration,xylem sap ABA showed a marked decline when soil water contentwas depleted below 013 g g–1. This reduction in xylemsap ABA coincided with a partial recovery of stomatal conductance.The results indicate that xylem sap ABA is a function of rootABA as well as the flow rate of water from roots to shoots,and that this ABA can be a sensitive indicator to the shootof the effect of soil drying. Key words: Acer pseudoplatanus L., soil drying, stomatal behaviour, xylem sap ABA  相似文献   

16.
Most studies on the role of ABA in the stomatal response of the whole plant to drought rely on a good estimate of ABA concentration in xylem sap. In this report, varying volumes of sap (V(sap)) were collected by pressurizing leaves cut from several lines of N. plumbaginifolia with modified capacities to synthesize ABA. Leaves were fed with solutions of known ABA concentration ([ABA](solution) from 0-500 micromol m(-3)) for 2-3 h before sap collection. ABA concentration in extruded sap ([ABA](sap)) was compared with [ABA](solution). In low-volume extracts (less than 0.35 mm(3) cm(-2) leaf area) collected from leaves of well-watered plants, [ABA](sap) was close to [ABA](solution). For all lines, [ABA](sap) decreased with increasing V(sap). The same dilution effect was observed for leaves pressurized just after sampling on droughted plants, suggesting, as for detached leaves fed with ABA, that [ABA](sap) in low-volume extracts approximated well with the concentration of ABA entering leaves still attached on droughted plants. However, ABA-fed leaves sampled from droughted plants yielded higher [ABA](sap) than ABA-fed leaves sampled from well-watered plants. [ABA](sap) was also increased, although very slightly, when leaves were preincubated in highly enriched ABA solution. This indicates that some leaf ABA contributed to the ABA concentration returned in the extruded sap. Consistently, [ABA](sap) in medium-volume extracts (0.35-0.65 mm(3) cm(-2) leaf area) was lower for leaves sampled on under-producing lines than on the wild type. Despite these distortions between [ABA](solution) and [ABA](sap) in medium-volume extracts, stomatal conductance of ABA-fed leaves closely correlated with [ABA](sap) with a similar relationship in all cases, whilst relationships with [ABA](solution) were more scattered.  相似文献   

17.
Ca(2+)-induced enzyme secretion in the exocrine pancreas is not completely understood. We have proposed that Ca(2+)-induced enzyme secretion in the exocrine pancreas involves activation of ion conductances in the membrane of zymogen granules (ZG). Here we have identified a Ca(2+)-activated anion conductance in rat pancreatic ZG membranes (ZGM). Ca(2+) (2.5-50 microM) increased the conductance for I(-), NO(3)(-), Br(-), or HCO(3)(-), but not for Cl(-), as determined by the rate of valinomycin-induced osmotic lysis of ZG suspended in isotonic K(+)-salts. 4,4'-Diisothiocyanatodihydrostilbene-2,2'-disulfonate (100 microM) or 25 microM dithiothreitol strongly inhibited Ca(2+)-dependent lysis. The permeability sequence, Ca(2+) dependence, and inhibitor sensitivity of ZG anion conductance are reminiscent of a family of epithelial Ca(2+)-activated anion channels (CLCA). CLCA expression was confirmed by RT-PCR with rat pancreatic mRNA and mouse CLCA1 primers. A PCR product (580bp) exhibited 81%, 77%, and 57% amino acid similarity to the three mouse isoforms mCLCA-1, -2, and -3 (mgob-5), respectively. Antibodies against bovine tracheal CLCA1 showed CLCA expression in ZGM by immunoblotting, immunoperoxidase light microscopy, and immunogold labeling. These findings suggest that a CLCA-related protein could account for the Ca(2+)-activated HCO(3)(-) conductance of rat pancreatic ZGM and contribute to hormone-stimulated enzyme secretion.  相似文献   

18.
Airway epithelia are confronted with distinct signals emanating from the luminal and/or serosal environments. This study tested whether airway epithelia exhibit polarized intracellular free calcium (Ca(2+)(i)) and anion secretory responses to 5' triphosphate nucleotides (ATP/UTP), which may be released across both barriers of these epithelia. In both normal and cystic fibrosis (CF) airway epithelia, mucosal exposure to ATP/UTP increased Ca(2+)(i) and anion secretion, but both responses were greater in magnitude for CF epithelia. In CF epithelia, the mucosal nucleotide-induced response was mediated exclusively via Ca(2+)(i) interacting with a Ca(2+)-activated Cl(-) channel (CaCC). In normal airway epithelia (but not CF), nucleotides stimulated a component of anion secretion via a chelerythrine-sensitive, Ca(2+)-independent PKC activation of cystic fibrosis transmembrane conductance regulator. In normal and CF airway epithelia, serosally applied ATP or UTP were equally effective in mobilizing Ca(2+)(i). However, serosally applied nucleotides failed to induce anion transport in CF epithelia, whereas a PKC-regulated anion secretory response was detected in normal airway epithelia. We conclude that (1) in normal nasal epithelium, apical/basolateral purinergic receptor activation by ATP/UTP regulates separate Ca(2+)-sensitive and Ca(2+)-insensitive (PKC-mediated) anion conductances; (2) in CF airway epithelia, the mucosal ATP/UTP-dependent anion secretory response is mediated exclusively via Ca(2+)(i); and (3) Ca(2+)(i) regulation of the Ca(2+)-sensitive anion conductance (via CaCC) is compartmentalized in both CF and normal airway epithelia, with basolaterally released Ca(2+)(i) failing to activate CaCC in both epithelia.  相似文献   

19.
Calcium (Ca) uptake into fruit and leaves is dependent on xylemic water movement, and hence presumably driven by transpiration and growth. High leaf transpiration is thought to restrict Ca movement to low-transpiring tomato fruit, which may increase fruit susceptibility to the Ca-deficiency disorder, blossom end rot (BER). The objective of this study was to analyse the effect of reduced leaf transpiration in abscisic acid (ABA)-treated plants on fruit and leaf Ca uptake and BER development. Tomato cultivars Ace 55 (Vf) and AB2 were grown in a greenhouse environment under Ca-deficit conditions and plants were treated weekly after pollination with water (control) or 500 mg l(-1) ABA. BER incidence was completely prevented in the ABA-treated plants and reached values of 30-45% in the water-treated controls. ABA-treated plants had higher stem water potential, lower leaf stomatal conductance, and lower whole-plant water loss than water-treated plants. ABA treatment increased total tissue and apoplastic water-soluble Ca concentrations in the fruit, and decreased Ca concentrations in leaves. In ABA-treated plants, fruit had a higher number of Safranin-O-stained xylem vessels at early stages of growth and development. ABA treatment reduced the phloem/xylem ratio of fruit sap uptake. The results indicate that ABA prevents BER development by increasing fruit Ca uptake, possibly by a combination of whole-plant and fruit-specific mechanisms.  相似文献   

20.
Overexpression of genes that respond to drought stress is a seemingly attractive approach for improving drought resistance in crops. However, the consequences for both water-use efficiency and productivity must be considered if agronomic utility is sought. Here, we characterize two tomato (Solanum lycopersicum) lines (sp12 and sp5) that overexpress a gene encoding 9-cis-epoxycarotenoid dioxygenase, the enzyme that catalyzes a key rate-limiting step in abscisic acid (ABA) biosynthesis. Both lines contained more ABA than the wild type, with sp5 accumulating more than sp12. Both had higher transpiration efficiency because of their lower stomatal conductance, as demonstrated by increases in delta(13)C and delta(18)O, and also by gravimetric and gas-exchange methods. They also had greater root hydraulic conductivity. Under well-watered glasshouse conditions, mature sp5 plants were found to have a shoot biomass equal to the wild type despite their lower assimilation rate per unit leaf area. These plants also had longer petioles, larger leaf area, increased specific leaf area, and reduced leaf epinasty. When exposed to root-zone water deficits, line sp12 showed an increase in xylem ABA concentration and a reduction in stomatal conductance to the same final levels as the wild type, but from a different basal level. Indeed, the main difference between the high ABA plants and the wild type was their performance under well-watered conditions: the former conserved soil water by limiting maximum stomatal conductance per unit leaf area, but also, at least in the case of sp5, developed a canopy more suited to light interception, maximizing assimilation per plant, possibly due to improved turgor or suppression of epinasty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号