首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Some photosynthetic characteristics of mutant barley Chlorina f, were studied in comparison with that of normal variety. They were quite different in chlo- roplast membrane structures, pigment protein complexes, the content of electron transport components and photosynthetic functions. The absence of Chlb in mutant barley, as demonstrated by absorption and fluorescence excitation spectra, caused some defects of membrane structure and lose of the ability to regulate the distribution of excitation energy between PSII and PSⅠ. In comparison with the normal variety, the mutant barley contained much less chlorophyll per leaf area, but more P700, Cyt f and PQ on the chlorophyll basis. These differences surely affect their photochemical activities. As envisaged by fluorescence spectra, peripheral antenna of PSⅠ is absent in mutant barley membrane besides the lacking of Chl a/b-protein of PSⅡ. Fluorescence induction transient of mutant barley leaf did not show the typical time course of O→P→S→M→T. The coexistence of light harvesting Chl a/b-protein eomplex of PSⅡ and peripheral antenna of PSI and their cooperation with each other seem to be necessary for the occurence of typical fluorescence induction transient.  相似文献   

2.
A new computational procedure to resolve the contribution of Photosystem I (PSI) and Photosystem II (PSII) to the leaf chlorophyll fluorescence emission spectra at room temperature has been developed. It is based on the Principal Component Analysis (PCA) of the leaf fluorescence emission spectra measured during the OI photochemical phase of fluorescence induction kinetics. During this phase, we can assume that only two spectral components are present, one of which is constant (PSI) and the other variable in intensity (PSII). Application of the PCA method to the measured fluorescence emission spectra of Ficus benjamina L. evidences that the temporal variation in the spectra can be ascribed to a single spectral component (the first principal component extracted by PCA), which can be considered to be a good approximation of the PSII fluorescence emission spectrum. The PSI fluorescence emission spectrum was deduced by difference between measured spectra and the first principal component. A single-band spectrum for the PSI fluorescence emission, peaked at about 735?nm, and a 2-band spectrum with maxima at 685 and 740?nm for the PSII were obtained. A linear combination of only these two spectral shapes produced a good fit for any measured emission spectrum of the leaf under investigation and can be used to obtain the fluorescence emission contributions of photosystems under different conditions. With the use of our approach, the dynamics of energy distribution between the two photosystems, such as state transition, can be monitored in vivo, directly at physiological temperatures. Separation of the PSI and PSII emission components can improve the understanding of the fluorescence signal changes induced by environmental factors or stress conditions on plants.  相似文献   

3.
The effects of changes in the chlorophyll (chl) content on the kinetics of the OJIP fluorescence transient were studied using two different approaches. An extensive chl loss (up to 5-fold decrease) occurs in leaves suffering from either an Mg(2+) or SO(4)(2-) deficiency. The effects of these treatments on the chl a/b ratio, which is related to antenna size, were very limited. This observation was confirmed by the identical light intensity dependencies of the K, J and I-steps of the fluorescence rise for three of the four treatments and by the absence of changes in the F(685 nm)/F(695 nm)-ratio of fluorescence emission spectra measured at 77K. Under these conditions, the F(0) and F(M)-values were essentially insensitive to the chl content. A second experimental approach consisted of the treatment of wheat leaves with specifically designed antisense oligodeoxynucleotides that interfered with the translation of mRNA of the genes coding for chl a/b binding proteins. This way, leaves with a wide range of chl a/b ratios were created. Under these conditions, an inverse proportional relationship between the F(M) values and the chl a/b ratio was observed. A strong effect of the chl a/b ratio on the fluorescence intensity was also observed for barley Chlorina f2 plants that lack chl b. The data suggest that the chl a/b ratio (antenna size) is a more important determinant of the maximum fluorescence intensity than the chl content of the leaf.  相似文献   

4.
After exposing etiolated wheat seedlings to intermittent light (cycle of 2 min. light, 118 min. dark) for 24 hr., we obtained an incompletely developed chloroplast membrane. It was then compared with a completely developed chloroplast membrane obtaining from wheat seedlings grown under normal light-dark regime. We investgated the effect of various cations and their concentrations on the absorption spectrum and the photosystem Ⅱ function of the above two types of chloroplast membranes. A similar effect of potassium and magnesium ions on the absorption spectra of completely developed chloroplast membrane was observed. They decreased the absorption peak values at both the red and blue regions of the chloroplast membrane in the same manner. The degree of decrease in the peak value is proportional to ion concentration. But in the incompletely developed chloroplast membranes similar phenomenon was not observed. In the presence of K+ and Mg2+ of various concentrations, the absorptionn peaks at the red region overlapped almost completely, and these at the blue region only changed slightly with ion concentrations. DCIP photoreduction rate of the two types of chloroplast membranes was stimulated by the addition of K+ and Mg2+ in various concentrations. But the degree of stimulation in the two types of membranes was quite different. In the presence of l00 mM KCl or 5.0 mM MgCl2, DCIP photoreduction rate of completely developed chloroplast membranes was enhanced by 76.8% and 68.9% respectively, whereas in incompletely developed chloroplast membranes it was only increased by 56.3% and 36.4% respectively. The causes of the effects of cations on the absorption spectrum and the photosystem Ⅱ function of two types of chloroplast membranes were discussed.  相似文献   

5.
尖叶拟船叶藓的77K荧光光谱及对强光照的短期适应   总被引:1,自引:0,他引:1  
报道了东亚特有濒危植物尖叶拟船叶藓(Dolichomitriopsis diversiformis)在不同光质的光照诱导下的低温77K荧光光谱及状态转移的初步研究结果,实验中,尖叶拟船叶藓在77K下出现了3条发射带,分别是F680、F685、F720nm,并没有出现存在于大部分高等植物中的F695nm和F740nm两个峰.经过PSⅡ光诱导后、在77K下出现了F680nm,这个峰在77K下出现是首次报道,而以前的研究认为只在4K下才出现这一条光谱带,这一结果表明尖叶拟船叶藓叶绿体的两个光系统结构与其他高等植物存在着差异。在自然光下,PSⅡ与PSⅠ的总能量比是2.04,经过15min的PSⅡ光(670nm)诱导后,PSⅡ与PSⅠ的总能量比变成了1.28(状态2),当用15min的PSⅠ光(716nm)照射后,PSⅡ与PSⅠ的总能量比从2.04变成了3.4l(状态1)。在自然光下,由尖叶拟船叶藓的光系统的外部LHCⅡ所吸收的激发能是整个光系统激发能的21.19%.这说明尖叶拟船叶藓对光的短期调节能力是21.19%.尖叶拟船叶藓的光系统的外部LHCⅡ有51.7%位于PSⅡ中,48.3%在PSⅠ中.  相似文献   

6.
The features of the two types of short-term light-adaptations of photosynthetic apparatus, State 1/State 2 transitions, and non-photochemical fluorescence quenching of phycobilisomes (PBS) by orange carotene-protein (OCP) were compared in the cyanobacterium Synechocystis sp. PCC 6803 wild type, CK pigment mutant lacking phycocyanin, and PAL mutant totally devoid of phycobiliproteins. The permanent presence of PBS-specific peaks in the in situ action spectra of photosystem I (PSI) and photosystem II (PSII), as well as in the 77 K fluorescence excitation spectra for chlorophyll emission at 690 nm (PSII) and 725 nm (PSI) showed that PBS are constitutive antenna complexes of both photosystems. The mutant strains compensated the lack of phycobiliproteins by higher PSII content and by intensification of photosynthetic linear electron transfer. The detectable changes of energy migration from PBS to the PSI and PSII in the Synechocystis wild type and the CK mutant in State 1 and State 2 according to the fluorescence excitation spectra measurements were not registered. The constant level of fluorescence emission of PSI during State 1/State 2 transitions and simultaneous increase of chlorophyll fluorescence emission of PSII in State 1 in Synechocystis PAL mutant allowed to propose that spillover is an unlikely mechanism of state transitions. Blue–green light absorbed by OCP diminished the rout of energy from PBS to PSI while energy migration from PBS to PSII was less influenced. Therefore, the main role of OCP-induced quenching of PBS is the limitation of PSI activity and cyclic electron transport under relatively high light conditions.  相似文献   

7.
Abstract. Chlorophyll fluorescence emission spectra and the kinetics of 685 mm fluorescence emission from wheat leaf tissue and thylakoids isolated from such tissue were examined as a function of excitation wavelength. A considerable enhancement of fluorescence emission above 700 nm relative to that at 685 nm was observed from leaf tissue when it was excited with 550 nm rather than 450 nm radiation. Such excitation wavelength dependent changes in the emission spectrum occurred over an excitation spectral range of 440–660 nm and appeared to be directly related to the total quantity of radiation absorbed at a given excitation wavelength. Experiments with isolated thylakoid preparations demonstrated that changes in the fluorescence emission spectrum of the leaf were attributable to the optical properties of the leaf and were not due to the intrinsic characteristies of the thylakoid photochemical apparatus. This was not the case for the observed excitation wavelength dependent changes in the 685 nm fluorescence induction curve obtained from leaf tissue infiltrated with DCMU. Excitation wavelength dependent changes in the ratio of the variable to maximal fluorescence emission and the shape of the variable fluorescence induction were observed for leaf tissue. Isolated thylakoid studies showed that such changes in the leaf fluorescence kinetics were representative of the way in which the photochemical apparatus in vivo was processing the absorbed radiation at the different excitation wavelengths. The results are considered in the context of the use of fluorescence emission characteristics of leaves as non-destructive probes of the photochemical apparatus in vivo.  相似文献   

8.
为了探讨毛竹(Phyllostachys pubescens)茎秆的光合特性,以1龄和3龄毛竹为材料,观察了茎秆和叶中叶绿体的超微结构,测定了光合色素含量以及发射荧光光谱。结果表明:茎秆中叶绿体发育完整,其类囊体垛叠程度高于叶,并含有淀粉粒。茎秆中叶绿素总含量、类胡萝卜素及Chla/b含量显著低于叶(FI〈O.05)。茎秆发射荧光光谱在735nm处没有明显的主峰,1龄和3龄毛竹茎秆光系统lI与光系统I的半峰宽比值分别比叶降低了7.0%和11.3%(P〈0.05),峰高比值比叶分别增加了6.5%和18.3%(P〈0.05)。四阶导数光谱在650—800nm波长范围内出现了6个极大值,代表LHCII、CP43、CP47、RCI和ILHCI的发射荧光峰以及PSI和PSII的发射荧光副振峰:其中,茎秆中RCI和LHCI特征发射荧光峰与叶相比有不同程度的红移。表明毛竹茎秆叶绿体通过提高Chlb的相对含量和增加类囊体垛叠以及降低LHCI含量,来适应毛竹茎秆以红光为主的光环境。进而协调激发能在2个光系统间的分配。  相似文献   

9.
Low-temperature emission spectra and excitation spectra for chlorophyll fluorescence were recorded from leaves of species of the genus Flaveria (Asteraceae) with C3, C3-C4-intermediate, C4-like, and C4 photosynthesis. Among the latter two groups, high chlorophyll b absorption was observed in excitation spectra for photosystem I (PSI) fluorescence. By comparing leaf data with those from isolated chloroplast fractions, the high chlorophyll b absorption was attributed to the specific properties of the bundle-sheath chloroplasts in leaves from C4 plants. The deconvolution of the PSI excitation spectra and the use of a model revealed that the contribution of photosystem II absorption to the functional antenna of PSI was markedly increased in leaves from three of the five C4-like and C4 species investigated in detail. The two other species exhibited normal, C3-like light-harvesting properties of PSI. The former species are known for efficient carbon assimilation, the latter for decreased efficiencies of carbon assimilation. It is concluded that photosystem II becomes a substantial part of the functional PSI antenna late in the evolution of C4 photosynthesis, and that the composite antenna optimizes the light-harvesting of PSI in bundle-sheath chloroplasts to meet the energy requirements of C4 photosynthesis.  相似文献   

10.
Heat-induced changes in photosystem I (PSI) have been studied in terms of rates of oxygen consumption using various donors (DCPIPH2, TMPDred and DADred), formation of photo-oxidized P700 and changes in Chl a fluorescence emission at 77 K. Linear heating of thylakoid membranes from 35 degrees C to 70 degrees C caused an enhancement in PSI-mediated electron transfer rates (DCPIPH2-->MV) up to 55 degrees C. However, no change was observed in PSI rates when other electron donors were used (TMPDred and DADred). Similarly, Chl a fluorescence emission spectra at 77 K of heat-treated thylakoid membranes did not show any increase in peak at 735 nm, however, a significant decrease was observed as a function of temperature in the peaks at 685 and 694 nm. In DCMU-treated control thylakoid membranes maximum photo-oxidized P700 was generated at g = 2.0025. In heat-treated thylakoid membranes maximum intensity of photo-oxidized P700 signal was observed at approximately 50-55 degrees C without DCMU treatment. The steady-state signal of the photo-oxidized P700 was studied in the presence of DCPIPH2 and TMPDred as electron donors in DCMU-treated control and in 50 degrees C treated thylakoid membranes. We present here the first of such comparative study of PSI activity in terms of the rates of oxygen consumption and re-reduction kinetics of photo-oxidized P700 in the presence of different electron donors. It appears that the formation of the P700+ signal in heat-treated thylakoid membranes is due to an inhibited electron supply from PSII and not due to spillover or antenna migration.  相似文献   

11.
The stability of chlorophyll-protein complexes of photosystem I (PSI) and photosystem II (PSII) was investigated by chlorophyll (Chl) fluorescence spectroscopy, absorption spectra and native green gel separation system during flag leaf senescence of two rice varieties (IIyou 129 and Shanyou 63) grown under outdoor conditions. During leaf senescence, photosynthetic CO(2) assimilation rate, carboxylase activity of Rubisco, chlorophyll and carotenoids contents, and the chlorophyll a/b ratio decreased significantly. The 77 K Chl fluorescence emission spectra of thylakoid membranes from mature leaves had two peaks at around 685 and 735 nm emitting mainly from PSII and PSI, respectively. The total Chl fluorescence yields of PSI and PSII decreased significantly with senescence progressing. However, the decrease in the Chl fluorescence yield of PSI was greater than in the yield of PSII, suggesting that the rate of degradation in chlorophyll-protein complexes of PSI was greater than in chlorophyll-protein complexes of PSII. The fluorescence yields for all chlorophyll-protein complexes decreased significantly with leaf senescence in two rice varieties but the extents of their decrease were significantly different. The greatest decrease in the Chl fluorescence yield was in PSI core, followed by LHCI, CP47, CP43, and LHCII. These results indicate that the rate of degradation for each chlorophyll-protein complex was different and the order for the stability of chlorophyll-protein complexes during leaf senescence was: LHCII>CP43>CP47>LHCI>PSI core, which was partly supported by the green gel electrophoresis of the chlorophyll-protein complexes.  相似文献   

12.
Structure and function of chloroplasts are known to after during senescence. The senescence-induced specific changes in light harvesting antenna of photosystem II (PSII) and photosystem I (PSI) were investigated in Cucumis cotyledons. Purified light harvesting complex II (LHCII) and photosystem I complex were isolated from 6-day non-senescing and 27-day senescing Cucumis cotyledons. The chlorophyll a/b ratio of LHCII obtained from 6-day-old control cotyledons and their absorption, chlorophyll a fluorescence emission and the circular dichroism (CD) spectral properties were comparable to the LHCII preparations from other plants such as pea and spinach. The purified LHCII obtained from 27-day senescing cotyledons had a Chl a/b ratio of 1.25 instead of 1.2 as with 6-day LHCII and also exhibited significant changes in the visible CD spectrum compared to that of 6-day LHCII, indicating some specific alterations in the organisation of chlorophylls of LHCII. The light harvesting antenna of photosystems are likely to be altered due to aging. The room temperature absorption spectrum of LHCII obtained from 27-day senescing cotyledons showed changes in the peak positions. Similarly, comparison of 77K chlorophyll a fluorescence emission characteristics of LHCII preparation from senescing cotyledons with that of control showed a small shift in the peak position and the alteration in the emission profile, which is suggestive of possible changes in energy transfer within LHCII chlorophylls. Further, the salt induced aggregation of LHCII samples was lower, resulting in lower yields of LHCII from 27-day cotyledons than from normal cotyledons. Moreover, the PSI preparations of 6-day cotyledons showed Chl a/b ratios of 5 to 5.5, where as the PSI sample of 27-day cotyledons had a Chl a/b ratio of 2.9 suggesting LHCII association with PSI. The absorption, fluorescence emission and visible CD spectral measurements as well as the polypeptide profiles of 27-day cotyledon-PSI complexes indicated age-induced association of LHCII of PSII with PSI obtained from 27-day cotyledons. We modified our isolation protocols by increasing the duration of detergent Triton X-100 treatment for preparing the PSI and LHCII complexes from 27-day cotyledons. However, the PSI complexes isolated from senescing samples invariably proved to have significantly low Chl a/b ratio suggesting an age induced lateral movement and possible association of LHCII with PSI complexes. The analyses of polypeptide compositions of LHCII and PSI holocomplexes isolated from 6-day control and 27-day senescing cotyledons showed distinctive differences in their profiles. The presence of 26-28 kDa polypeptide in PSI complexes from 27-day cotyledons, but not in 6-day control PSI complexes is in agreement with the notion that senescence induced migration of LHCII to stroma lamellae and its possible association with PSI. We suggest that the migration of LHCII to the stroma lamellae region and its possible association with PSI might cause the destacking and flattening of grana structure during senescence of the chloroplasts. Such structural changes in light harvesting antenna are likely to alter energy transfer between two photosystems. The nature of aging induced migration and association of LHCII with PSI and its existence in other senescing systems need to be estimated in the future.  相似文献   

13.
The origination of the peak at 730 nm in the delayed fluorescence (DF) spectrum of chloroplasts was studied using various optical analysis methods. The DF spectrum showed that the main emission peak was at about 685 nm, with a small shoulder at 730 nm when the chloroplast concentration was < 7.8 microg/mL. The intensity of the peak at 685 nm decreased, while the intensity of the peak at 730 nm increased, when the chloroplast concentrations were increased from 7.8 to 31.2 microg/mL. With the concentration increasing, the peak at 730 nm became dominant while the peak at 685 nm finally disappeared. The DF decay kinetic curves showed that the intensity of the peak at 730 nm decayed as the same speed as the intensity of the peak at 685 nm during the entire relaxation process (0.5-30.5 s). With the excitation wavelength at 685 nm, the emission intensity was stronger in the excitation spectrum at 730 nm. The absorption spectrum demonstrated that the ratio A(685):A(730) remained almost constant when the chloroplast concentration increased. The results suggest that the peak at 730 nm appearing in DF is mainly contributed by the fluorescence of photosystem I (PSI), generated by the re-absorption of 685 nm band DF.  相似文献   

14.
At 77 K, under excitation at 440 nm, two major fluorescence emission peaks were observed in envelope membranes from spinach chloroplasts at 636 and 680 nm. A narrow range of wavelengths around 440 nm and a wider range of wavelengths between 390 and 440 nm, respectively, were responsible for excitation of the 636 and 680 nm fluorescence emissions which, in marked contrast with thylakoid fluorescence emission, were devoid of any exciting components between 460 and 500 nm. In acetonic extract of envelope membranes, two fluorescence emission peaks were observed at 635 and 675 nm. After extraction of the acetonic solution by nonpolar solvents (petroleum ether or hexane), the 675 nm fluorescence emission was partitioned between the polar and nonpolar phases whereas the 635 nm fluorescence emission was solely recovered in the polar phase. All together, the results obtained suggest that envelope membranes contain low amounts of pigments having the absorption and fluorescence spectroscopic properties, together with the behavior in polar/nonpolar solvents, of protochlorophyllide and chlorophyllide. In addition, modulation of the level of fluorescence at 636 and 680 nm could be obtained by addition of NADPH to envelope membranes under illumination. The presence of protochlorophyllide in chloroplast envelope membranes together with its possible photoconversion into chlorophyllide could have major implication for the understanding of chlorophyll biosynthesis in mature chloroplasts.  相似文献   

15.
Eight chlorophyll b deficient nuclear mutants of pea (Pisum sativum L.) have been characterized by low temperature fluorescence emission spectra of their leaves and by the ultrastructure, photochemical activities and polypeptide compositions of the thylakoid membranes. The room temperature fluorescence induction kinetics of leaves and isolated thylakoids have also been recorded. In addition, the effects of Mg2+ on the fluorescence kinetics of the membranes have been investigated. The mutants are all deficient in the major polypeptide of the light-harvesting chlorophyll a/b protein of photosystem II. The low temperature fluorescence emission spectra of aurea-5106, xantha-5371 and –5820 show little or no fluorescence around 730 nm (photosystem I fluorescence), but possess maxima at 685 and 695 nm (photosystem II fluorescence). These three mutants have low photosystem II activities, but significant photosystem I activities. The long-wavelength fluorescence maximum is reduced for three other mutants. The Mg2+ effect on the variable component of the room temperature fluorescence (685 nm) induction kinetics is reduced in all mutants, and completely absent in aurea-5106 and xantha-5820. The thylakoid membranes of these 2 mutants are appressed pairwise in 2-disc grana of large diameter. Chlorotica-1-206A and–130A have significant long-wavelength maxima in the fluorescence spectra and show the largest Mg2+ enhancement of the variable part of the fluorescence kinetics. These two mutants have rather normally structured chloroplast membranes, though the stroma regions are reduced. The four remaining mutants are in several respects of an intermediate type.Abbreviations Chl chlorophyll - CPI Chi-protein complex I, Fo, Fv - Fm parameters of room temperature chlorophyll fluorescence induction kinetics - F685, F695 and F-1 components of low temperature chlorophyll emission with maximum at 685, 695 and ca 735 nm, respectively - PSI photosystem I - PSII photosystem II - LHCI and LHCII light-harvesting chlorophyll a/b complexes associated with PSI and PSII, respectively - SDS sodium dodecyl sulfate  相似文献   

16.
《BBA》2020,1861(11):148274
In higher-plant Photosystem I (PSI), the majority of “red” chlorophylls (absorbing at longer wavelengths than the reaction centre P700) are located in the peripheral antenna, but contradicting reports are given about red forms in the core complex. Here we attempt to clarify the spectroscopic characteristics and quantify the red forms in the PSI core complex, which have profound implication on understanding the energy transfer and charge separation dynamics. To this end we compare the steady-state absorption and fluorescence spectra and picosecond time-resolved fluorescence kinetics of isolated PSI core complex and PSI–LHCI supercomplex from Pisum sativum recorded at 77 K. Gaussian decomposition of the absorption spectra revealed a broad band at 705 nm in the core complex with an oscillator strength of three chlorophylls. Additional absorption at 703 nm and 711 nm in PSI–LHCI indicated up to five red chlorophylls in the peripheral antenna. Analysis of fluorescence emission spectra resolved states emitting at 705, 715 and 722 nm in the core and additional states around 705–710 nm and 733 nm in PSI–LHCI. The red states compete with P700 in trapping excitations in the bulk antenna, which occurs on a timescale of ~20 ps. The three red forms in the core have distinct decay kinetics, probably in part determined by the rate of quenching by the oxidized P700. These results affirm that the red chlorophylls in the core complex must not be neglected when interpreting kinetic experimental results of PSI.  相似文献   

17.
Stationary delayed fluorescence (DF) of chlorophyll in isolated membrane preparations from thermophilic cyanobacterium Synechococcus elongatus was investigated as a function of temperature. Two peaks at different temperatures were observed. The low-temperature peak (54-60 degrees C) coincided with the main maximum of the thermally-induced delayed fluorescence of chlorophyll in intact cells and PSII-particles with active oxygen-evolving system. The high-temperature peak (78 degrees C) coincided with the minor band of delayed light emitted by intact cells. It was also observed in the delayed fluorescence emission from a PSI-enriched fraction preparation. The intensities of the DF peaks were dependent on the presence of inhibitors, donors and acceptors that cause specific effects on electron transport of the two photosystems. The low-temperature and high-temperature peaks were related to PSII and PSI, respectively. The manifestation of delayed fluorescence from PSI and PSII at different temperatures seems to be a specific property of thermophilic cyanobacteria. The reason for this may be a high thermal stability of the photosystems and the lack of the PSII antenna complex in isolated membranes. Consequently, the relative yield of delayed fluorescence from PSI markedly increases. Thermally-induced fluorescence seen in membranes of cyanobacteria showed a high sensitivity to structural and functional membrane alterations induced by pH changes, different electron transport stabilizing agents or different concentrations of MgCl2.  相似文献   

18.
When the thylakoid membranes of blue-green algae were broken by ultrasonic vibrations and subjected to polyacrylamide gel electrophoresis at 4℃, six green zones were resolved. They were designated as CPIa, CPlb, CPI; CPal, CPa2, and FC. The absorption spectrum of CPI had a red maximum at 674 nm and a peak in the blue at 435 nm. It was identified as PS chlorophyll a-protein Complex, but was contaminated with minor PSⅡ which was implied by the appearance of fluorescence emission peak at 680 nm besides the main one at 725 nm at 77 K. The spectral properties of CPIa and CPlb were similar to that of CPl. The absorption spectra of CPa1 and CPa2 were similar, both having red maxima at 667 nm and peaks in the blue at 431.5 nm. Their fluorescence emission had the same peaks at 684 nm at 77 K indicating that they belonged to PSⅡ. It was recognized that CPal of 47 kD is the reaction center complex of photosystem Ⅱ and CPa2 of 40 kD is the internal antenna complex of photosystem Ⅱ. The spectral characteristics of the chlorophyll-protein complexes resolved by ultrasonic method were similar to those of the same complexes resolved by SDS solubilization, except the absorbance positions of CPa1 and CPa2 in the blue peak and the red one which shifted to blue about 3–5 nm. It was calculated that in thylakoid membranes of blue-green algae 40.93% chlorophyll was in PSⅠ, while 38.78% of chlorophyll in PSⅡ. The difference of chlorophyll contents between PSⅠ and PSⅡ was only 2.15%. Concerning the fact that minor PSⅡ compound remained in the part of PSⅠ zones, it might be concluded that the distribution of chlorophyll between PSⅠ and PSⅡ in blue-green algae was equal. This result was in agreement with the hypothesis that PSⅠ and PSⅡ operates in series in photosynthetic electron transport.  相似文献   

19.
In this work, the transfer of excitation energy was studied in native and cation-depletion induced, unstacked thylakoid membranes of spinach by steady-state and time-resolved fluorescence spectroscopy. Fluorescence emission spectra at 5 K show an increase in photosystem I (PSI) emission upon unstacking, which suggests an increase of its antenna size. Fluorescence excitation measurements at 77 K indicate that the increase of PSI emission upon unstacking is caused both by a direct spillover from the photosystem II (PSII) core antenna and by a functional association of light-harvesting complex II (LHCII) to PSI, which is most likely caused by the formation of LHCII-LHCI-PSI supercomplexes. Time-resolved fluorescence measurements, both at room temperature and at 77 K, reveal differences in the fluorescence decay kinetics of stacked and unstacked membranes. Energy transfer between LHCII and PSI is observed to take place within 25 ps at room temperature and within 38 ps at 77 K, consistent with the formation of LHCII-LHCI-PSI supercomplexes. At the 150–160 ps timescale, both energy transfer from LHCII to PSI as well as spillover from the core antenna of PSII to PSI is shown to occur at 77 K. At room temperature the spillover and energy transfer to PSI is less clear at the 150 ps timescale, because these processes compete with charge separation in the PSII reaction center, which also takes place at a timescale of about 150 ps.  相似文献   

20.
The effects of various concentrations of linolenic acid on the structure and the absorption and fluorescence spectra of wheat chloroplast membranes were studied. Linolenic acid increases the absorption peaks in both red and blue regions of the chloroplast membranes. The degree of increase in the absorption peaks is proportional to the concentration within a range of concentration. Linolenic acid increased the fluorescence yield of F685 and F738 of chloroplast membranes. Electron microscopical studies revealed that the increases were mainly due to the disappearance of grana stacks and the unfolding of thylakoid membranes. The causes of effects of linolenic acid on the absorption and fluorescence spectra and the structure of chloroplast membranes as well as the reversion and regulation by MgCl2 were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号