首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tapetum of Pulsatilla chinensis is of secretory type. Its development proceeds rapidly in following sequence: (1) The stage of initiation-differentiation. At this stage cytological and histochemical features have been described in detail in this paper. (2) The stage of growth- synthesis: This stage appears to be the most important anabolic phase during the development of the tapetum. The salient features are that the tapetal cells become relatively enlarged and form two polyploid nuclei or aberrent polyploid nuclei resulting in synthetizing maximum proteins, fluorescing substances and maximum fluorescent Pro-Ubisch bodies in the tapetal cytoplasm. (3) The stage of secretion-disorganization: After the disintegration of the tapetal wall the enlarged naked cells appear at once. This is an important secretion period in which Pro-Ubisch bodies as well as all other fluorescing substances, carbohydrate or some enzymes are released into anther loculus. The naked cell layer becomes disorgnized until the beginning divition of the pollen grains into two ceils. As to peritapetal membrane of P. chinensis, mainly based on the membrane being on the outer side of the tapetum enclosing both the pollen, tapetal cytoplasm and Ubisch bodies, and the cellular configurations facing the pollen, Authors postulate that peritapetal membrane might be survival of the cytoplasmic membrane of tapetal cells. However, the peritapetal membrane of P. chinensis is similar to that of plasmodial, tapetum reported in certain Compositae and that of secretory tapetum reported in Pinus banksiana. Heslop-Harrison and Gupta et al. had conceded that the tapetal and peritapetal membrane belong to the general class of sporopollenin. On the contrary in P. chinensis the sporopollenin property of peritapetal membrane is only confined to its inner surface. But the thin mem- brane itself with the reticulate sporopollenin attched on its inner side appears negative staining reactions for sporopollenin though it has an ability to resist the acetolysis as well. In P. chinensis the Ubisch body is short necked flask shaped and their size is very similar. Ubisch body is either single or 2–5 in a group, resulting in compound bodies. When the Pro-Ubisch body is still within the tapetal cell it shows positive fluorescent reaction, while it eomletely unstains with Teluidine blue O. So Authors infer that the sporopollenin precur- sors may have permeated through Pro-Ubisch bodies. Finally, How sporopollenin precursor is synthesized in the tapetal cells, transported to pollen locula and polymerized into the sporopollenin on pollen, Ubisch body and peritapetal membrane? Future works along these problems may yield fruitful results.  相似文献   

2.
H. G. Dickinson  P. R. Bell 《Planta》1972,107(3):205-215
Summary In the microsporangium of Pinus the outer layer of the peritapetal membrane and the pro-orbicular cores are not only formed in a similar manner, but are composed of apparently identical materials. Precursors for this lipoidal material are produced by the tapetal protoplasts, as are the precursors of sporopollenin. Production the precursors is sequential and appears to involve different cytoplasmic structures.The sporopollenin synthesised by the tapetum condenses upon the pro-orbicular cores, the peritapetal membrane, the exine initials and, on fragmentation of the tapetum, parts of the disintegrating cytoplasm. The evident unpolarised nature of the tapetal protoplasts, and the sequential nature of the synthesis of the lipoid and the sporopollenin by them, may point to orbicule formation in gymnosperms being a necessary by-product of the development of the peritapetal membrane.  相似文献   

3.
4.
As meiosis is completed, and following the synthesis of lipidduring meiotic prophase, the tapetum begins to form precursorsof sporopollenin. These accumulate in cisternae of the endoplasmicreticulum, resembling large dictyosome vesicles. They are releasedfrom the tapetal protoplasts intact, but rupture in the loculus.The liberated precursors polymerize either on lipid dropletsin the expanded tapetal walls, forming the orbicules, or onthe lipid layer surrounding the loculus, forming the secondcomponent of the peritapetal membrane. On rupture of the callosewall condensation also proceeds on the walls of the meiospores,already coated with a thin layer of sporopollenin synthesizedby the spore itself. The tapetal protoplasts expand considerablyduring synthesis of the precursors. Wide channels also formbetween the protoplasts, and the nuclei undergo irregular divisions. Ribosomes are conspicuous in the tapetal cytoplasm during thesporopollenin synthesis, but protein levels are low. It is proposedthat protein is exported to the loculus and untimately incorporatedinto the developing microspores. In the final phase of microsporogenesis the tapetum fragments,and parts move into the loculus.Protein levels in the tapetumare now high, possible indicating the massive synthesis of hydrolaseswhich accomplish the dissolution of the tissue. Removal of thelipid component of the peritapetal membrane precedes the desiccationof the anther. The surfaces of the mature pollen lack organizedor irregular deposits of tapetal debris.  相似文献   

5.
地黄绒毡层二型性的超微结构研究   总被引:2,自引:0,他引:2  
地黄的花药绒毡层具二型性,来源于初生壁细胞的p-绒毡层,细胞较小,为分泌型绒毡层,在小孢子阶段产生乌氏体,于两细胞花粉阶段解体,来源于药隔的c-绒毡层细胞较大,解体的时间早于p-绒毡层,不同药室的c-绒毡层解体的起始时间不一致,可始于小孢母细胞减数分裂,四分体或小孢子阶段,其径向壁面向药室的壁也较早地开始解体,细胞质碎片与细胞器流入药室,分散在小孢子之间,较早解体的c-绒毡层细胞不产生原乌氏体与乌  相似文献   

6.
Summary This paper reports the results of a study of the first beginnings of sporopollenin granules in the cells of the tapetum. The endoplasmic reticulum was observed to be the system responsible for their production, first by the formation of electron-dense bodies (pro-Ubisch bodies). These constitute the nuclei of the sporopollenin granules upon which laminae with the characteristics observed in the exine of pollen-grains are deposited in formation of the young Ubisch bodies. The latter ultimately assume a spherical shape (adult Ubisch bodies), whereupon they seem to be carried by channels across the cytoplasm of the tapetum into the locule of the pollen-sac.The origin, development and possible function of sporopollenin granules are discussed in the light of the theories and observations of other authors and of the writers themselves.  相似文献   

7.
绒毡层凋亡过程是小孢子发生中的重要事件,以往的研究主要集中在被子植物,蕨类植物尚未见此方面的报道。该研究首次采用透射电镜和免疫荧光技术对蕨类植物紫萁(Osmunda japonica Thunb.)绒毡层细胞凋亡的细胞学过程进行了观察,以明确紫萁绒毡层细胞的发育类型和凋亡特征,为蕨类植物绒毡层细胞凋亡的深入研究以及孢子发育研究提供依据。结果显示:(1)紫萁的绒毡层属于复合型,即外层绒毡层为分泌型,该层细胞发育过程中液泡化,营养物质被吸收;内层绒毡层为原生质团型,经历了细胞凋亡的过程。(2)绒毡层内层细胞在凋亡过程中细胞壁和细胞膜降解,细胞质浓缩且空泡化;细胞核内陷、变形,染色质浓缩凝聚,形成多数小核仁,DAPI荧光由强变弱;线粒体、质体、内质网、高尔基体等细胞器逐渐退化,液泡中多包含纤维状物、絮状物、黑色嗜锇颗粒和小囊泡等;出现多泡体、多膜体和细胞质凋亡小体,上述特征与种子植物绒毡层凋亡特征基本一致。(3)与种子植物相比,紫萁绒毡层的细胞凋亡开始得早,在整个凋亡过程中没有核凋亡小体的产生;除了产生孢粉素外,绒毡层细胞内产生了大量的丝状物质、絮状物质和电子染色暗的颗粒物,这些物质可能用于...  相似文献   

8.
云南松(Pinus yunnanensis Fr.)在小孢子囊发育早期,绒毡层原生质体发生收缩,并伴随着细胞壁厚度的增加。脂肪微滴和孢粉素物质沉积而形成周缘绒毡层膜。随着孢粉素物质的产生,绒毡层细胞质明显地液泡化。孢粉素物质在绒毡层细胞膨大的内质网槽库中形成,随后被排放到近邻的小液泡内或游离于细胞质中。孢粉素物质也可在特化的含片层的质体中形成,孢粉素依附在片层膜上,或释放到细胞质中。  相似文献   

9.
麦冬花药绒毡层和乌氏体的细微结构   总被引:2,自引:0,他引:2  
麦冬(Ophiopogon japonicus)的绒毡层发育为分泌型。在小孢子母细胞时期,绒毡层细胞达到了发育的高峰。此时,绒毡层细胞中细胞器非常丰富,具大量线粒体、高尔基体和质体,尤以肉质网含量最多;原乌氏体出现较早,在小孢子母细胞时期绒毡层细胞中就已出现;四分体时期,大量原乌氏体被排入内切向面的质膜和纤维素壁之间;到了小孢子早期,绒毡层细胞失去细胞壁,原乌氏体分布在质膜的凹陷处,孢粉素物质在其上沉积,发育为乌氏体,乌氏体有单个和复合两种类型;当花粉成熟时,绒毡层细胞完全解体。  相似文献   

10.
Summary A study of pollen development in wheat was made using transmission electron microscopy (TEM). Microspores contain undifferentiated plastids and mitochondria that are dividing. Vacuolation occurs, probably due to the coalescence of small vacuoles budded off the endoplasmic reticulum (ER). As the pollen grain is formed and matures, the ER becomes distended with deposits of granular storage material. Mitochondria proliferate and become filled with cristae. Similarly, plastids divide and accumulate starch. The exine wall is deposited at a rapid rate throughout development, and the precursors appear to be synthesized in the tapetum. Tapetal cells become binucleate during the meiosis stage, and Ubisch bodies form on the plasma membrane surface that faces the locule. Tapetal plastids become surrounded by an electron-translucent halo. Rough ER is associated with the halo around the plastids and with the plasma membrane. We hypothesize that the sporopollenin precursors for both the Ubisch bodies and exine pollen wall are synthesized in the tapetal plastids and are transported to the tapetal cell surface via the ER. The microspore plastids appear to be involved in activities other than precursor synthesis: plastid proliferation in young microspores, and starch synthesis later in development. Plants treated with the chemical hybridizing agent RH0007 show a pattern of development similar to that shown by untreated control plants through the meiosis stage. In the young microspore stage the exine wall is deposited irregularly and is thinner than that of control plants. In many cases the microspores are seen to have wavy contours. With the onset of vacuolation, microspores become plasmolyzed and abort. The tapetal cells in RH0007-treated locules divide normally through the meiosis stage. Less sporopollenin is deposited in the Ubisch bodies, and the pattern is less regular than that of the control. In many cases, the tapetal cells expand into the locule. At the base of one of the locules treated with a dosage of RH0007 that causes 95% male sterility, several microspores survived and developed into pollen grains that were sterile. The conditions at the base of the locule may have reduced the osmotic stress on the microspores, allowing them to survive. Preliminary work showed that the extractable quantity of carotenoids in RHOOO7-treated anthers was slightly greater than in controls. We concluded that RH0007 appears to interfere with the polymerization of carotenoid precursors into the exine wall and Ubisch bodies, rather than interfering with the synthesis of the precursors.  相似文献   

11.
芝麻(Sesamum indicum)核雄性不育系ms86-1姊妹交后代表现为可育、部分不育(即微粉)及完全不育(简称不育)3种类型。不同育性类型的花药及花粉粒形态差异明显。Alexander染色实验显示微粉植株花粉粒外壁为蓝绿色, 内部为不均一洋红色, 与可育株及不育株花粉粒的染色特征均不相同。为探明芝麻微粉发生机理, 在电子显微镜下比较观察了可育、微粉、不育类型的小孢子发育过程。结果表明, 可育株小孢子母细胞减数分裂时期代谢旺盛, 胞质中出现大量脂质小球; 四分体时期绒毡层细胞开始降解, 单核小孢子时期开始出现乌氏体, 成熟花粉时期花粉囊腔内及花粉粒周围分布着大量乌氏体, 花粉粒外壁有11–13个棱状凸起, 表面存在大量基粒棒, 形成紧密的覆盖层。不育株小孢子发育异常显现于减数分裂时期, 此时胞质中无脂质小球出现, 细胞壁开始积累胼胝质; 四分体时期绒毡层细胞未见降解; 单核小孢子时期无乌氏体出现; 成熟花粉时期花粉囊腔中未发现正常的乌氏体, 存在大量空瘪的败育小孢子, 外壁积累胼胝质, 缺乏基粒棒。微粉株小孢子在减数分裂时期可见胞质内有大量脂质小球, 四分体时期部分绒毡层发生变形, 单核小孢子时期有部分绒毡层开始降解; 绒毡层细胞降解滞后为少量发育进程迟缓的小孢子提供了营养物质, 部分小孢子发育为正常花粉粒; 这些花粉粒比较饱满, 表面有少量颗粒状突起, 但未能形成覆盖层, 花粉囊腔中及小孢子周围存在少量的乌氏体。小孢子形成的育性类型与绒毡层降解是否正常有关。  相似文献   

12.
Following the diffuse stage, the progression of meiosis in Pinus sylvestris unlike that earlier in meiosis, was conspicuously asynchronous. During the diffuse stage of meiosis tapetal cells dedifferentiated. Plasmodesmata were formed, the cells developed a uniform, meristematic appearance and the nuclei underwent mitosis. Throughout the stages covered by this report tapetal cells redifferentiated, again becoming hypersecretory cells, and Ubisch bodies (orbicules) formed. In angio-sperms Ubisch bodies apparently form only once whereas in Pinus they are produced several or many times with a different and characteristic form each time. The future Ubisch bodies are filled from connections with cisternae of the endoplasmic reticu-lum, then coated by plasma membrane and its glycocalyx. The plasma membrane and glycocalyx coating are likely to be responsible for the specific exine form of Ubisch bodies. Cytokinesis after meiosis was typical of plant cells, but no cell wall formed. Thus deep invasions of callose between microspores give an appearance of furrowing, as was often suggested in classical literature.  相似文献   

13.
The development of microspores/pollen grains and tapetum was studied in fertile Rosmarinus officinalis L. (Lamiaceae). Most parts of the cell walls of the secretory anther tapetum undergo modifications before and during meiosis: the inner tangential and radial cell walls, and often also the outer tangential and radial wall, acquire a fibrous appearance; these walls become later transformed into a thin poly-saccharidic film, which is finally dissolved after microspore mitosis. Electron opaque granules found within the fibrous/lamellated tapetal walls consist of sporopollenin-like material, but cannot be interpreted as Ubisch bodies. The middle lamella and the primary wall of the outer tangential and radial tapetal walls remain unmodified, but get covered by an electron opaque, sporopollenin-like layer. Pollenkitt is formed only by lipid droplets from the ground plasma and/or ER profiles, the plastids do not form pollenkitt precursor lipids. Tapetum maturation (“degeneration”) does not take place before late vacuolate stage.

The apertures are determined during meiosis by vesicles or membrane stacks on the surface of the plasma membrane. The procolumellae are conical, but at maturity the columellae are more cylindrical in shape. The columellar bases often fuse, but a genuine foot layer is lacking. The formation of the endexine starts with sporopollenin-accumulating white lines adjacent to the columellar bases. Later, the endexine grows more irregularly by the accumulation of sporopollenin globules. In mature pollen the intine is clearly bilayered.

Generative cells (GCs) and sperm cells contain a comparatively large amount of cytoplasm, and organelles like mitochondria, dictyosomes, ER, and multi-vesicular bodies, but no plastids; GCs and sperms are separated from the vegetative cell only by two plasma membranes.  相似文献   

14.
The development of the tapetum in Ophiopogon ]aponicus is of secretory type Tapetum develops at their peak during the microspore mother cell stage. There are abundant organelles, consisting of a lot of mitochondria, dictyosomes and plastids, especially endoplasmic reticulum. Pro-Ubisch bodies e. merge as early as at the stage of microspore mother cell. At tetrad stage, a large number of pro-Ubisch bodies accumulate between inner tangential face of the plasmalemma and the cell wall. At the early microspore stage, pro-Ubisch bodies are distributed in the small embayments of the plasmalemma. As the sporopollenin begins to deposit on them, proubisch bodies develop into Ubisch bodies which consist of two types: single and aggregated. Tapetal cells degenerate completely when pollen grains reach maturity.  相似文献   

15.
水稻花药绒毡层及乌氏体的超微结构观察   总被引:1,自引:0,他引:1  
在花粉母细胞期,水稻花药绒毡层细胞原生质浓,细胞器丰富,各轴向壁厚度较一致.随着药室腔扩大,绒毡层细胞体积迅速增大,且外切向壁增厚,径切向壁部分区域消失,细胞间形成原生质桥.在单胞花粉早期,乌氏前体排列于绒毡层内切向细胞膜内,随后移向膜外,且外侧增厚形成乌氏体.在花粉单核靠边期,绒毡层细胞的细胞器开始解体,到花粉充实期完全解体,但乌氏体结构直到花粉成熟保持不变.  相似文献   

16.
连翘绒毡层发育中的内质网活动   总被引:4,自引:0,他引:4  
超微结构研究表明,内质网在连翘(Forsythiasuspensa(Thunb.)Vahl)绒毡层发育中十分活跃,参与了许多功能的实现:1.在小抱子母细胞减数分裂时期产生前乌氏体;2.分布在前质体边缘,参与了前质体向造油体的转化;3.参与了抱粉素物质的分泌;4.粗面内质网的槽库曾两度膨大,并分割、包围细胞质,形成球形体和内质网兜(ERpockets),参与了绒毡层细胞壁的加厚和外壁蛋白的分泌。  相似文献   

17.
百合花药壁层的发育及组织化学研究   总被引:4,自引:1,他引:3  
赵桦 《西北植物学报》1994,14(3):183-188
对生长在陕西留坝的百合的花药壁层发育过程,特别是绒毡层的发育做了形态学观察。其结果是:百合花药壁层的发育方式为基本型。花药绒毡层属腺质绒毡层类型。在单细胞花粉阶段后期,部分花粉粒壁一侧凹陷时,绒毡层细胞内切向面上出现乌氏体。随着发育阶段的推移,乌氏体的数量有所增加。在光学显微镜下观察:每个乌氏体只有一个乌氏体芯。在乌氏体出现时,也可观察到花粉外壁外层的出现。到二细胞花粉时,花药开裂之前,绒毡层细胞  相似文献   

18.
The histochemistry of different developmental stages of the pollen wall, aperture, and Ubisch bodies of Triticum aestivum is examined with light and transmission electron microscopy. Various parts of the callosic envelope of the tetrad spores stain differentially. At the late tetrad stage, the probacules and the coat of pro-Ubisch bodies are densely stained for acidic polysaccharides, protein, and neutral polysaccharides. The protectum and the core of pro-Ubisch bodies are moderately stained. Upon release of microspores from the callosic cell envelope, the stainability for acidic polysaccharides increases in the exine and in the wall of Ubisch bodies, becoming very intense in the wall of mature pollen grains and Ubisch bodies. The stainability for neutral polysaccharides is decreased in the mature pollen wall and in the Ubisch bodies, while the stainability for protein increases. The results also indicate the probability of the presence of unsaturated lipids and the absence of free aldehydes in the pollen wall and Ubisch bodies.  相似文献   

19.
Anther development of the C-cytoplasmic male-sterile (cms C) and the normal cytoplasm version (N) in the W182BN corn inbred was studied by light and electron microscopy. Deviation from normal pollen development was first observed in the tapetal cells at the tetrad stage of development. Two types of tapetal abnormalities were observed in plants with C cytoplasm. The first behaved like the N anther until the tetrad stage, when numerous small vacuoles appeared in the tapetal cells. Inner and radial tapetal cell walls broke down normally, but irregular Ubisch body deposition was observed, and exine development was inhibited and delayed. The tapetum and microspores disintegrated at the intermediate microspore stage. The second type of tapetum was highly vacuolated at the early tetrad stage, with dense inner and radial cell walls that remained intact and enlarged when the tetrads aborted. No organellar abnormalities, such as the mitochondrial changes observed in cms T, were observed in C anthers.  相似文献   

20.
Microsporogenesis, microgametogenesis and pollen morphology of six species of genus Passiflora L. belonging to three subgenera ( Passiflora , Dysosmia , Decaloba ) were studied with light and scanning microscopy; P. caerulea was also examined with transmission microscopy. The tapetum is secretory, microspore tetrads are tetrahedral and pollen grains are two-celled when shed. Small Ubisch bodies are attached to a peritapetal membrane; they are a product of tapetal activity and the rough endoplasmic reticulum (ERr) appears to be involved in their origin. The pollen grains of all the species are subspheroidal, zonocolpate, geminicolpate. Each pair of colpi anastomoses at the poles. The exine is semitectate, reticulate, heterobrochate. The muri are simplibaculate, wavy. The lumina have clavate bacula of varying height. The colpus structure is similar to that of the lumina but generally with fewer and smaller bacula. Lumina size and amount of bacula inside the lumina vary between subgenera. The grains from subgenera Passiflora and Dysosmia differ from those of Decaloba in their size and number of colpi. The pollen and microsporangium morphology of the species of subgenera Passiflora and Dysosmia are more similar than those of subgenus Decaloba . The results are discussed in relation to the current taxonomic classification.  © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society of London , 2002, 139 , 383–394.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号