首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Both abscisic acid (ABA) and jasmonates are known to promote leaf senescence. Since ABA and jasmonates have both chemical and physiological similarities, we are interested to know whether senescence of detached rice leaves induced by methyl jasmonate (MJ) is mediated through an increase in endogenous ABA levels. In darkness, the endogenous level of ABA in detached rice leaves remained unchanged in the first day of incubation in water and increased about 5 times its initial value in the second day. However, the pattern of senescence, as judged by protein loss, was rapid during the first day. MJ significantly promoted senescence of detached rice leaves. Contrary to our expectation, endogenous ABA levels decreased in MJ-treated detached rice leaves. Similar to the effect of MJ, endogenous ABA levels decreased in detached rice leaves which were induced to senesce by treatment with NH4Cl. These results suggest that endogenous ABA levels are not linked to MJ-induced senescence of detached rice leaves.  相似文献   

2.
萝卜离体子叶衰老与膜脂过氧化的关系   总被引:10,自引:0,他引:10  
萝卜离体子叶在光下或暗中衰老及激素调节衰老过程中,作为叶片衰老指标的叶绿素和蛋白质含量的降低,发生在MDA含量增高之前,更早于SOD活性的下降。表明由SOD活性降低所导致的膜脂过氧化的增强,并非衰老的原初反应,而是叶片衰老到一定程度的生理变化。因此,至少在萝卜离体子叶上,不能将其衰老的启动归因于受SOD控制的膜脂过氧化作用导致的膜累积性质变。  相似文献   

3.
The role of ethylene in jasmonate-promoted senescence of detached rice leaves was investigated. Ethylene production in methyl jasmonate-treated leaf segments of rice was lower than in the control leaves. Treatment of leaf segments with silver nitrate or/and silver thiosulfate, inhibitors of ethylene action, inhibited methyl jasmonate-, jasmonic acid-, linolenic acid-, and abscisic acid-promoted senescence of detached leaves. We suggest that an increase in ethylene sensitivity, but not ethylene level, is the initial event triggering the enhanced senescence by jasmonates of detached rice leaves.Abbreviations JA jasmonic acid - MJ methyl jasmonate - STS silver thiosulfate - ABA abscisic acid  相似文献   

4.
Ammonium accumulation is associated with senescence of rice leaves   总被引:6,自引:0,他引:6  
The relationship between ammonium accumulation and senescence of detached rice leaves was investigated. Ammonium accumulation in detached rice leaves coincided closely with dark-induced senescence. Exogenous NH4Cl and methionine sulfoximine, which caused an accumulation of ammonium in detached rice leaves, promoted senescence. Treatments such as light and benzyladenine, which retarded senescence, decreased ammonium level in detached rice leaves. Abscisic acid, which promoted senescence, increased ammonium level in detached rice leaves. The current results suggest that ammonium accumulation may be involved in regulating senescence. Evidence was presented to show that ammonium accumulated in detached rice leaves increases tissue sensitivity to ethylene. The accumulation of ammonium in detached rice leaves during dark-induced senescence is attributed to a decrease in glutamine synthetase activity and an increase in reduction of nitrate.  相似文献   

5.
Kar M  Mishra D 《Plant physiology》1976,57(2):315-319
The activities of catalase, peroxidase, and polyphenoloxidase were studied in attached and detached rice (Oryza sativa L. cv. Ratna) leaves. Catalase activity decreased while peroxidase and polyphenoloxidase activities increased during senescence of both attached and detached rice leaves. Kinetic (5 mum) and benzimidazole (1 mm), which are known to delay the senescence of detached rice leaves, retarded the decrease of catalase activity during detached leaf senescence. On the other hand, these chemicals accelerated the increase of peroxidase and polyphenoloxidase activities over the water control. Total phenolics accumulated in detached and darkened rice leaves, but in attached leaf senescence in light no accumulation of phenolics was observed.  相似文献   

6.
棉花叶片衰老过程中激素和膜脂过氧化的关系   总被引:21,自引:0,他引:21  
以陆地棉品种辽棉9号的去根幼苗为材料,对其进行暗诱导衰老培养.在培养液中分别加入6-BA、ABA、GSH、H2O2、CaCl2、A23187 和A23187 CaCl2,测定在不同培养条件下棉花去根幼苗叶片内源激素、SOD酶活性和MDA含量的变化.结果表明:棉花叶片衰老表现为细胞分裂素含量的下降和ABA含量的上升.6-BA、GSH和钙离子均延缓叶片的衰老,ABA和H2O2促进叶片的衰老.  相似文献   

7.
The role of H2O2 in the senescence of detached rice leaves induced by methyl jasmonate (MJ) was investigated. MJ treatment resulted in H2O2 production in detached rice leaves, which was prior to the occurrence of leaf senescence. Dimethylthiourea, a chemical trap of H2O2, was observed to be effective in inhibiting MJ‐induced senescence and MJ‐increased malondialdehyde (MDA) content in detached rice leaves. Diphenyleneiodonium chloride (DPI) and imidazole (IMD), inhibitors of NADPH oxidase, prevented MJ‐induced H2O2 production, suggesting that NADPH oxidase is a H2O2‐generating enzyme in MJ‐treated detached rice leaves. DPI and IMD also inhibited MJ‐promoted senescence and MJ‐increased MDA content in detached rice leaves. Phosphatidylinositol 3‐kinase inhibitors wortmannin (WM) or LY 294002 (LY) inhibited MJ‐induced H2O2 production and senescence of detached rice leaves. Exogenous H2O2 reversed the inhibitory effect of WM or LY. In terms of leaf senescence, it was observed that rice seedlings of cultivar Taichung Native 1 (TN1) are jasmonic acid (JA)‐sensitive and those of cultivar Tainung 67 (TNG67) are JA‐insensitive. On treatment with JA, H2O2 accumulated in the leaves of TN1 seedlings but not in the leaves of TNG67. Evidence was also provided to show that MJ‐induced H2O2 production in detached rice leaves is abscisic acid (ABA)‐independent. Ethylene action inhibitor, silver thiosulfate, was observed to inhibit MJ‐ and ABA‐induced H2O2 production and senescence of detached rice leaves, suggesting that the action of MJ and ABA is ethylene‐dependent.  相似文献   

8.
Leaf senescence is induced or accelerated when leaves are detached. However, the senescence process and expression pattern of senescence-associated genes (SAGs) when leaves are detached are not clearly understood. To detect senescence-associated physiological changes and SAG expression, wheat (Triticum aestivum L.) leaves were detached and treated with light, darkness, low temperature (4 C), jasmonic acid (JA), abscisic acid (ABA), and salicylic acid (SA). The leaf phenotypes, chlorophyll content, delayed fluorescence (DF), and expression levels of two SAGs, namely, TaSAG3 and TaSAG5, were analyzed. Under these different treatments, the detached leaves turned yellow with different patterns and varying chlorophyll content. DF significantly decreased after the dark, ABA, JA and SA treatments. TaSAG3 and TaSAG5, which are expressed in natural senescent leaves, showed different expression patterns under various treatments. However, both TaSAG3 and TaSAG5 were upregulated after leaf detachment. Our results revealed senescence-associated physiological changes and molecular differences in leaves, which induced leaf senescence during different stress treatments.  相似文献   

9.
采后衰老进程在很大程度上受到内源和外源激素的影响。抑制拟南芥中磷脂酶Dα1(phospholipaseDtxl,PLDod)的表达后,使得外源脱落酸(abscisic acid,ABA)和乙烯加速的离体叶片衰老过程在一定程度上得到了缓解。然而,内源激素在这个过程中的作用尚不清楚。本研究对比分析了野生型和PLDα1缺失型两种基因型拟南芥叶片在3种不同人工老化过程中(离体诱导的、外源ABA和乙烯促进的衰老过程),内源ABA,茉莉酸甲酯(methyl jasmonate,MeJA)、吲哚乙酸(indole-3-acetic acid,IAA)、玉米素核苷(zeatin riboside,ZR)和赤霉素(gibberellic acid,GA,)的含量变化。这5种激素对3种不同衰老处理方式的响应模式表明了人工老化过程存在着两个不同阶段,并且在衰老早期每种激素的变化模式相同。PLDα1功能缺失使得激素加速的衰老过程得以延缓,这与内源ABA、MeJA、ZR和IAA的含量变化有关。而与GA、的含量变化无关。同时,ZR和IAA的变化模式也说明了这两种激素的变化可能是缺失PLDα1延缓激素加速的衰老过程这一事件的原因而非结果。  相似文献   

10.
水稻叶片中存在着氨肽酶,其最适反应pH和最适反应温度分别为8.2℃和40℃,酶促反应的产物量在最初30min内与时间呈直线相关。 水稻叶片衰老过程中叶绿素和蛋白质含量下降,而氨肽酶比活上升;用植物激素延缓或促进叶片衰老蛋白质降解的同时也抑制或促进了氨肽酶比活的上升,说明氨肽酶在水稻叶片衰老蛋白质降解过程中起一定的作用。根据水稻叶片衰老过程中大分子化合物和叶片外部形态的变化,可将叶片衰老过程划分为缓衰期、急衰期和竭衰期。  相似文献   

11.
With wheat leaves as material, the changes of superoxide dismutase (SOD), lipid peroxi-dation and membrane permeability during leaf senescence in light or dark, and treated withphytohormones (KT or ABA) have been studied. The changes of chlorophyll content, lipidperoxidation and fine structure of spinach chloroplasts senescing in light or dark have alsobeen studied. When leaves senesce in light, the activity of SOD increased at first then decreased. The increase of SOD activity was able to result from the synthesis of new protein. Lightwas found to delay the leaf senescence obviously but also accelerate leaf senescence by causinglipid peroxidation when prolonged the illumination time. The delay or acceleration of leafsenescence by exogenous hormones were observed, it may be due to the control of lipid peroxi-dation by adjusting the activity of SOD. O2-participated the chlorophyll decomposition andlipid peroxidation during chloroplasts senesce in light. A favourable role of light in mainta-lng the fine structure of isolated chloroplasts was clear.  相似文献   

12.
采后衰老进程在很大程度上受到内源和外源激素的影响。抑制拟南芥中磷脂酶Dα1 (phospholipase Dα1, PLDα1)的表达后,使得外源脱落酸(abscisic acid,ABA)和乙烯加速的离体叶片衰老过程在一定程度上得到了缓解。然而,内源激素在这个过程中的作用尚不清楚。本研究对比分析了野生型和PLDα1缺失型两种基因型拟南芥叶片在3种不同人工老化过程中(离体诱导的、外源ABA和乙烯促进的衰老过程),内源ABA,茉莉酸甲酯(methyl jasmonate,MeJA)、 吲哚乙酸(indole 3 acetic acid,IAA)、玉米素核苷(zeatin riboside,ZR)和赤霉素(gibberellic acid,GA3)的含量变化。这5种激素对3种不同衰老处理方式的响应模式表明了人工老化过程存在着两个不同阶段,并且在衰老早期每种激素的变化模式相同。PLDα1功能缺失使得激素加速的衰老过程得以延缓,这与内源ABA、MeJA、ZR和IAA的含量变化有关,而与GA3的含量变化无关。同时,ZR和IAA的变化模式也说明了这两种激素的变化可能是缺失PLDα1延缓激素加速的衰老过程这一事件的原因而非结果。  相似文献   

13.
Water stress, ammonium, and leaf senescence in detached rice leaves   总被引:1,自引:0,他引:1  
Ammonium accumulation in relation to water stress-promoted senescence of detached rice leaves was investigated. The effect of water stress on the senescence of detached rice leaves is associated with the accumulation of ammonium. The accumulation of ammonium in detached rice leaves by water stress is attributed to a decrease in glutamine synthetase activity. Ammonium accumulation in detached rice leaves, induced by water stress, was accompanied by an increase in tissue sensitivity to ethylene which, in turn, accelerated leaf senescence.  相似文献   

14.

Nitrogen (N) deficiency is one of the critical environmental factors that induce leaf senescence, and its occurrence may cause the shorten leaf photosynthetic period and markedly lowered grain yield. However, the physiological metabolism underlying N deficiency-induced leaf senescence and its relationship with the abscisic acid (ABA) concentration and reactive oxygen species (ROS) burst in leaf tissues are not well understood. In this paper, the effect of N supply on several senescence-related physiological parameters and its relation to the temporal patterns of ABA concentration and ROS accumulation during leaf senescence were investigated using the premature senescence of flag leaf mutant rice (psf) and its wild type under three N treatments. The results showed that N deficiency hastened the initiation and progression of leaf senescence, and this occurrence was closely associated with the upregulated expression of 9-cis-epoxycarotenoiddioxygenase genes (NCEDs) and with the downregulated expression of two ABA 8′-hydroxylase isoform genes (ABA8ox2 and ABA8ox3) under LN treatment. Contrarily, HN supply delayed the initiation and progression of leaf senescence, concurrently with the suppressed ABA biosynthesis and relatively lower level of ABA concentration in leaf tissues. Exogenous ABA incubation enhanced ROS generation and MDA accumulation in a dose-dependent manner, but it decreased the activities of glutamine synthetase (GS) and glutamate dehydrogenase (GDH) in detached leaf. These results suggested that the participation of ABA in the regulation of ROS generation and N assimilating/remobilizing metabolism in rice leaves was strongly responsible for induction of leaf senescence by N deficiency.

  相似文献   

15.
The effects of methyl jasmonate (MJ) and abscisic acid (ABA) on some physiological processes of rice were compared. MJ exhibited ABA-like effects by promoting senescence of detached leaves, by inducing acid phosphatase activity of detached leaves, by inhibiting ethylene production and shoot growth of seedlings, as well as inhibiting callus formation from anthers. However, MJ and ABA had opposite effects on 1-aminocyclopropane-1-carboxylic acid-dependent ethylene production in detached leaves. The regeneration ability of anther-derived callus was inhibited by MJ but not by ABA. MJ but not ABA markedly induced peroxidase activity in senescing detached leaves. It is concluded that not all physiological processes of rice affected by MJ are similar to those by ABA.Abbreviations ABA abscisic acid - MJ methyl jasmonate - ACC 1-aminocyclopropane-l-carboxylic acid - Apase acid phosphatase  相似文献   

16.
Aharoni N 《Plant physiology》1978,62(2):224-228
Levels of gibberillins (GAs) and of abscisic acid (ABA) in attached leaves of romaine lettuce (Lactuca sativa L.) declined as the leaf became older. The time course of changes in hormone levels, determined in detached lettuce leaves kept in darkness, revealed that a sharp decline in GAs accompanied by a moderate rise in ABA occurred before the onset of chlorophyll degradation. As senescence advanced, no GAs could be detected and a considerable rise of ABA was observed. A similar sequence of hormonal modifications, but more pronounced, was observed in the course of accelerated senescence induced by either Ethephon or water stress. When kinetin or GA3 was applied to detached leaves, the loss of chlorophyll and the rise in ABA were reduced. Bound GAs were detected in senescent leaves. They were not found in the kinetin-treated leaves, which contained a relatively high level of free GAs. The results suggest that senescence in detached romaine lettuce leaves is connected with a depletion of free GAs and cytokinins, which is thereafter followed by a great surge in ABA.  相似文献   

17.
Schwabe, W. W. and Kulkarni, V. J. 1987. Senescence-associatedchanges during long-day-induced leaf senescence and the natureof the graft-transmissible senescence substance in Kleinia articulata.— J. exp. Bot. 38: 1741–1755. The long-day-induced senescence in Kleinia articulata leaveswas characterized by a loss in fresh and dry weight, in therate of leaf expansion and progressive loss of chlorophyll inthe detached rooted leaves. Ultrastructural examination of mesophyllcells of leaves from plants grown in continuous light showedthat osmiophilic globules accumulating in the chloroplasts werethe first visible sign of senescence in the organdies. Thesefirst signs of senescence could be detected in very young leavesof plants in continuous light, even before the leaves had expanded.Attempts were made to study the cause of this photoperiodicsenescence which, from previous work, appeared to involve agraft-transmissible substance. Leaves in continuous light showed reduced stomatal opening andextracts from them had very much higher activity in the Commelinastomatal closure assay (ABA-like activity ?) compared with non-senescingleaves grown in short days (8 h). However, even if all the activitywere due to ABA, this on its own does not appear to be the senescencesubstance because a much longer exposure to continuous lightwas required to induce irreversible senescence than to reachmaximum stomatal closure promoting activity in the bioassay.Moreover, severe water stress (high ABA?) did not lead to senescenceunless combined with continuous light or ethylene treatment.It is postulated that while ABA may play an important role inKleinia leaf senescence its lethal effect may not be realizedunless ethylene-induced membrane changes may synergisticallyassist. Key words: Leaf senescence, ABA, Daylength, stomatal movement, Kleinia  相似文献   

18.
兼性CAM植物在转为CAM型后,CAM代谢的关键酶磷酸烯醇式丙酮酸(PEP)核化酶会出现昼夜调节特性的变化(Osmond1978)。关于PEP梭化酶昼夜调节特性的机理存在两种观点:1.PEPK化酶昼夜聚合度发生了变化,白天为二聚体PEPK化酶,对苹果酸抑制敏感;而夜间为四聚体,对苹果酸抑制不敏感(U和Wedding1985)。2·nsv$化酶昼夜磷酸化状态发生变化,夜间PEPW化酶磷酸化,对苹果酸抑制不敏感;而白天PEP$化酶脱磷酸化,对苹果酸抑制敏感(Nimmo等1986)。植物生长调节物质如ABA和细胞分裂素对兼性CAM植物PEP&化酶的表达有诱…  相似文献   

19.
6-BA延缓大豆叶片衰老的作用与膜蛋白磷酸化状态的关系   总被引:1,自引:0,他引:1  
蛋白激酶(proteinkinase,PK)和蛋白磷酸酯酶(pIDt6inphOSpha~,PP)是生物体内催化蛋白质磷酸化/脱磷酸化过程的两种重要酶类。目前已有越来越多的实验证据表明:这种可逆的磷酸化/脱磷酸化过程所导致的蛋白质(酶)活性的改变是生物体内信号传导过程中的重要环节(Hunter1995)。已有一些实验系统涉及了植物激素对于植物蛋白磷酸化过程的影响(Mi-zogUchi等1994,Sano和Youssefian1994),并有一些与此相关的蛋白激酶和蛋白磷酸酯酶的基因被克隆(kleber等1993,temp等1994)。细胞分裂素延缓植物叶片衰老的作用早已被各种实…  相似文献   

20.
The role of proteolytic enzymes in protein degradation of detached and intact leaves of rice seedling ( Oryza sativa L. cv. Taiching Native 1) during senescence and of mature leaves during reproductive development was investigated. The amount of soluble protein decreased by about 50% in 2, 4, and 15 days for detached, intact and mature leaves, respectively. Three proteolytic enzyme activities were monitored with pH optima of 4.5 for hemoglobin-digesting proteinase, 5.5 for carboxypeptidase and 8.0 for aminopeptidase. No azocoll-digesting proteinase activity could be detected in rice leaves. Dialysis did not alter the activities of any of the three proteolytic enzymes. Acid proteinase activity and aminopeptidase activity were highly unstable during storage of the enzyme extracts at 4°C. Proteolysis was stimulated by inclusion of meroaptoethanal either in the extraction medium or the assay medium.
Acid proteinase, carboxypeptidase and aminopeptidase were all present in detached, intact and mature leaves throughout senescence. There seems to be a direct correlation between protein degradation and increases of acid proteinase and carboxypeptidase activity in seedling leaves (detached and intact) during senescence. In senescing (detached and intact) leaves of seedlings the acid proteinase activity developed first, while that of carboxypeptidase developed later. Acid proteinase and carboxypeptidase may play major roles in protein degradation of leaves from seedlings during senscence. During reproductive development, protein degradation was associated with decreases in the activities of acid proteinase, carboxypeptidase and aminopeptidase in mature leaves suggesting that the enzymes were less important for protein degradation in this system. Hence, the role of protelytic enzymes in protein degradation during senescence of rice leaves appears to depend largely on the leaf system used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号