首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At least 13 chlorophyll bands from the thylakoid membranes of blue-green algae could be clearly resolved by SDS-PAGE employing a new improved procedure. They were designated as CPIa, CPIb, CPIc, CPId, CPIe, CPIf, CPIg, CHIh, CPal, CPa2, CPa3, CPa4 and FC. 8 chlorophyll-protein complexes, CPIa-CPIh, had the same absorption spectrum at 676 nm in the red and 436 nm in the blue region. They belonged to the chlorophyll-protein complexes of PS Ⅰ. 4 chlorophyll-protein complexes, CPal-CPa4, had a red absorption peak at 670­672 nm and a blue one at 436 nm. Their fluorescence emission peak at 77K was at 685 nm. They were chlorophyll-protein complexes of PS Ⅱ.  相似文献   

2.
properties, pigment compositions, Chl a/b ratios and apparent molecular weights of chlorophyll-protein complexes were compared between spinach and a marine green alga, Bryopsis corticulans. The results are as follows: 1. Ten chlorophyll-protein complexes were resolved from spinach thylakoid membranes solubilized by SDS in a final SDS/Chl weight ratio of 10:1, and subjected to SDS-PAGE with 11% resolution gel. CPIa 1–3 and CPI belonged to photosystem Ⅰ, and the rest to phorosystem Ⅱ. The maximum absorption of CPIa2, CPIas and CPI were all at 674nm, but that of CPIa1 at 670nm, and those of LHCII and D2 at 670 and 673nm, respectively. Chlorophyll ia PSⅡ was 63% of the total. In PSⅡ, most of chlorophyll was in LHCII which contained 86% of the chlorophyll in PSⅡ. In PSⅠ, chlorophyll in CPla was 72% of the total. Chlorophyll a was the main pigment in PSⅠ components which have Chl a/b ratio over 15. 2. Eight chlorophyll-protein complexes were isolated from B. corticulans with a SDS/Chi weight ratio of 8:1 and 8% resolution gel. The maximum absorption of CPIa, CPI, LHCII and D2 were respectively at 671nm, 673nm, 669nm and 664nm. PSⅡ contained 77% of the total chlorophyll. LHCII chlorophyll was 95% of the PSⅡ chlorophyll. CPI held 77% of PSⅠ chloro~ phyll. There was more chlorophyll b in Bryopsis complexes, especially in LHCI1 (Chl a/b< 0.8). The molecular weights of Bryopsis complexes were higher than those of the spinach complexes. Bryopsis LHCII contained siphoxanthin and siphothin, the marked pigments of Siphohales, as functional pigments. The above results revealed three points of difference between these two plants. Firstly, Chl a is the main pigment in spinach, whereas in Bryopsis the main pigments are Chl b and siphoxanthin. This is in accordance with the suggestion that plants may change their pigment composition to adapt light regime in the environment during evolution. Secondly, in Bryopsis, chlorophyll is concentrated in photosystem Ⅱ, but in spinach chlorophyll is shared evenly by two photosystems. Finally, CPI in Bryopsis contained the major part of chlorophyll in PSⅠ, yet in spinach CPIa is the superior.  相似文献   

3.
In white light of 33.2 μmol . m?2 . s?1 oxygen evolution of Chlorella kessleri is about 30 % higher after growth in blue light than after growth in red light of the same quantum fluence rate. When determined by the light-induced absorbance change at γ 820 nm, blue light-adapted cells possess about 60% more reaction centres per total chlorophyll in photosystem II. Correspondingly, the cells exhibit about 30% more Hill activity of PS II. Conversely, red light-adapted cells contain relatively more reaction centres and higher electron flow capacities of photosystem I. The distribution of total chlorophyll among the pigment-protein complexes, CPI, CPIa, CPa, and LHC II, corresponds to these data. There is more chlorophyll associated with the light-harvesting complex of PS II, LHC II, in cells under blue light conditions, but more chlorophyll bound to both complexes of PS I, CPI and CPIa, in cells under red light conditions. The respective ratios of chlorophyll a/chlorophyll b of all complexes are identical for blue and red light-adapted cells. This results in a higher relative amount of chlorophyll b in blue light-adapted cells. Total carotenoids per total chlorophyll are increased by 20% in red light-adapted cells. Their distribution among the pigment-protein complexes is unknown, however the ratios of lutein, neoxanthin and violaxanthin extractable from LHC II are different in blue (32.1:35.9:32.0) and in red (51.4:26.7:21.9) light-adaptod cells.  相似文献   

4.
当突变种大麦Chlorina-f 2的类囊体膜在SDS/叶绿素的重量比为10:1,叶绿素的浓度为0.5mg/ml的条件下增溶,并在SDS-聚丙烯酰胺凝胶电泳中进行分离时,共出现4条含叶绿素的带。按电泳迁移率的增加,这些带分别是CP Ⅰ,CPa 1,CPa 2和FC。光谱测定表明CP Ⅰ为混有少量光系统Ⅱ??成分的光系统Ⅰ反应中心复合体,CPa 2为光系统Ⅱ反应中心复合体,CPa 2为光系统Ⅱ内周天线复合体。属于光系统Ⅰ的CP Ⅰ的叶绿素含量占总叶绿素的45.6%,而属于光系统Ⅱ的CPa Ⅰ和CPa 2的叶绿素之和则占总叶绿素的43.2%。可见在缺b大麦中,两个都失缺其外周天线的光系统的叶绿素含量是基本相等的。这和光合作用中两个光反应相互串联的理论是完全一致的。  相似文献   

5.
采用去污剂TritonX-100增溶类囊体膜和高速离心的方法,首次分离和纯化了毕氏海蓬子的光系统Ⅱ(photosystemⅡ,PSⅡ)颗粒,通过光谱学和SDS-PAGE对其进行鉴定并与类囊体膜进行比较。室温吸收光谱结果表明,PSⅡ颗粒在蓝区的叶绿素(chlorophyll,ChOb和胡萝卜素类吸收峰为485nm,在红区的Ch1b吸收峰为655nm,这两个峰值均低于类囊体膜中的。77K荧光发射光谱结果表明,提取的PSⅡ颗粒基本不含光系统Ⅰ(photosystemⅠ,PSI)的低温荧光反射峰737nm。77K荧光激发光谱结果显示,海蓬子PSⅡ颗粒在470-485am之间的Ch1b 和胡萝卜素类的荧光发射峰明显低于类囊体膜的。这说明在PSⅡ中大部分的PSI已被除去。电泳结果显示,海蓬子PSⅡ颗粒缺少PSI反应中心蛋白质亚基PsaA和PsaB,这说明提取到的PSⅡ纯度较高,这为进一步研究毕氏海蓬子PSⅡ的结构与功能奠定基础。  相似文献   

6.
The excitation energy transfer from light harvesting chlorophyll protein complexes to PS Ⅱ was inhibited under water stress. The contents of iriternal antennae chlorophyll-protein complexes of PS Ⅱ (CPa), light harvesting chlorophyll-protein complexes of PS Ⅱ (LHC Ⅱ ), light harvesting chlorophyll-protein of PS Ⅰ (LHC Ⅰ ) and chlorophyll a protein complex of reaction center of PS Ⅰ were decreased by water stress. The decrease of chlorophyll-protein complexes of PS Ⅱ was greater than that of PS Ⅰ . It was indicated that the amount of 25 kD polypeptide of LHC Ⅱ in particular, as well as that of 43 and 47 kD polypeptides of CPa, and 21 kD polypeptide of LHC Ⅰ , were reduced by water stress.  相似文献   

7.
Etiolated bean plants were grown in intermittent light with dark intervals of shorter or longer duration, to modulate the rate of chlorophyll accumulation, relative to that of the other thylakoid components formed. We thus produced conditions under which chlorophyll becomes more or less a limiting factor. We then tested whether LHC complexes can be incorporated in the thylakoid. It was found that an equal amount of chlorophyll, formed under the same total irradiation received, may be used for the stabilization of few and large-in-size PS units containing LHC components (short dark-interval intermittent light), or for the stabilization of many and small-in-size PS units with no LHC components (long dark-interval intermittent light). The size of the PS units diminishes as the dark-interval duration is increased, with no further change after 98 minutes. The PSII/cytf ratio remains constant throughout development in intermittent light and equal to that of mature chloroplasts (PSII/cytf = 1) except in the case of very long dark-interval regimes, where about half PSII units per cytf are present. The PSII/PSI ratio was found to be correlated with the PSII unit size (the larger the size, the lower the ratio). The number of PSI units operating on the same electron transfer chain varied depending on the size of the PSII unit (the larger the PSII unit size, the more the PSI units per chain). The results suggest that it is not the chlorophyll content per se which regulates the stabilization of LHC in developing thylakoids and consequently the size of the PS units, but rather the rate by which it is accumulated, relative to that of the other thylakoid components.Abbreviations Chl Chlorophyll - CL Continuous light - CPa the reaction center complex of PSII - CPI the reaction center complex of PSI - CPIa Chlorophyll protein complex containing the CPI and the light harvesting complex of PSI - fr w fresh weight - LDC Light dark cycles - LHC-I Light-harvesting complex of PSI - LHC-II Light harvesting complex of PSII - PS photosystem - PSI photosystem I - PSII photosystem II  相似文献   

8.
Isolated photosystem I (PSI)-110 particles, prepared using a minimal concentration of Triton X-100 [J. E. Mullet, J. J. Burke, and C. J. Arntzen (1980) Plant Physiol. 65, 814-822] and further subjected to short-term solubilization with sodium dodecyl sulfate (SDS), were resolved into four pigment-containing bands on polyacrylamide gel electrophoresis (PAGE). We have identified these in order of increasing electrophoretic mobility as being (a) CPIa, (b) CPI, (c) the light-harvesting complex of photosystem I (LHC-I), and (d) a free pigment-zone. LHC-I had an absorption maximum in the red at 668-669 nm and a shoulder at 650 nm, which was resolved by its first-derivative spectrum to indicate the presence of chlorophyll b. LHC-I exhibited a 77 degrees K fluorescence emission maximum at 729-730 nm. The 77 degrees K fluorescence emission maxima of CPIa and CPI, excised from the gel, were at 729 and 722 nm, respectively. The LHC-I band, excised from the gel and rerun on dissociating SDS-PAGE, was resolved into two polypeptide doublets of 24-22.5 and 21-20.5 kDa. The CPIa band under similar conditions was resolved into polypeptides of 68, 24, 22.5, 21, 20.5, 19, 15, and 14 kDa; on the contrary, CPI contained only the 68-kDa polypeptide. When intact thylakoids were subjected to "nondenaturing" SDS-PAGE, LHC-I comigrated with an oligomeric form (dimer) of the light-harvesting chlorophyll a/b pigment-protein that preferentially serves photosystem II (LHCP-II). When this combined LHC-I/LHCP-II pigment-protein band was prepared by SDS-PAGE from isolated stroma lamellae, it exhibited a long-wavelength fluorescence band near 730 nm at 77 degrees K. When a similar preparation was obtained from sucrose density gradients containing SDS [J. Argyroudi-Akoyunoglou and H. Thomou (1981) FEBS Lett. 135, 171-181], it was found to be enriched in a 21-kDa polypeptide. The data suggest that the 21-kDa polypeptide of LHC-I is the chlorophyll-containing polypeptide responsible for the long-wavelength fluorescence of LHC-I; other polypeptides in the complex (20.5, 22.5, and 24 kDa) presumably bind chlorophyll and also serve an antennae function.  相似文献   

9.
Evidences were provided in this paper that the relative distribution of chl-protein complexes of PSⅠ and PSⅡ could be regulated by Mg2+. addition of Mg2+ led to decrease in the amount of chl-protein complexes of PSⅠ and increase in the amount of chl-protein in complexes of PSⅡ. There was no effect of Mg2+ on the spectral property of LHCP1, but the addition of Mg2+ could change the spectral property of LHCP2 so that it became similar to that of the LHC-Ⅰ. CPIa2 was a complex of reaction centre of PSⅠ and LHC-I. LHC-I might be contacted specially with LHCP2 in chloroplast membranes. Addition of Mg2+ probably cansed the motion of LHC-I from PSⅠ to PSⅡ and became more closely connected with LHCP2. The relative amount of CPIa2, CPIa1, LHCP1 and LHCP2 in chloroplast membranes could be regulated by different light intensity. There were more CPIa2, LHCP1 and less LHCP2 in chloroplast membranes from the shade plant Malaxis monophyllos and sunflower grown under weak light, both of them lacked equally CPIa1. There were less CPIa2, LHCP1 and more LHCP2 in the sun plant spinach and sunflower grown under strong light, and they possessed equally CPIa1 chl-protein complexes. It is suggested that LHCP1 and LHCP2 are different light-harvesting Chl-protein complexes. The LHC-I and LHCP2 are mobile light-harvesting chl-protein complexes and shuttle back and forth between PSⅠ and PSⅡ They play an important role in the regulation and distribution of excitation energy between the two photosystems.  相似文献   

10.
A chlorophyll (a + b)--protein complex associated with photosystem I (PSI) was isolated from a larger PSI complex (CPIa) produced by electrophoresis of barley thylakoids solubilized with 300 mM octyl glucoside. It had an apparent Mr of 35,000-43,000 on 7.5% and 10% acrylamide gels respectively, and a chlorophyll a/b ratio of 2.5 +/- 1.5. Denaturation released four polypeptides migrating between 21-24 kDa. They were well separated from the polypeptides of the two photosystem II chlorophyll a + b antenna complexes: LHCII (25-27 kDa) and CP29 (28-29 kDa). In order to study the PSI antenna complex, antibodies were raised against highly purified CPIa. The antigen appeared to be pure when electrophoresed, blotted and reacted with its antiserum, i.e. anti-CPIa detected only the 64-66-kDa CPI apoprotein and the four 21-24 kDa antenna polypeptides. However, when blotted against the whole spectrum of thylakoid proteins, it cross-reacted with both LHCII and CP29 apoproteins. Removal of anti-CPI activity from the anti-CPIa did not affect these cross-reactions, showing that they were not due to antibodies directed against CPI. To show that the same antibody population was reacting with both the photosystem I and photosystem II antenna polypeptides, anti-CPIa was adsorbed onto highly purified CPIa on nitrocellulose. The bound antibody was eluted and used again in a Western blot against whole thylakoid proteins. This selected antibody population showed the same relative strength of reaction with photosystem I and photosystem II antenna polypeptides as the original antibody population had. Similar observations have been made with antibodies to the two photosystem II antenna complexes. We therefore conclude that there are antigenic determinants in common among the chlorophyll a + b binding polypeptides, and predict that there could be amino acid sequence similarities.  相似文献   

11.
Surfactants are widely used in the purification and research of structure and function of the protein complexes in photosynthetic membrane. To elucidate the mechanism of interaction between surfactants and photosystem Ⅰ (PSⅠ), effects of two typical surfactants, Triton X-100 and sodium dodecyl sulfate (SDS) on PSⅠ, were studied at different concentrations. The results were: SDS led to the reduction of apparent absorption intensity and blue shift of absorption peaks; while Triton X-100 led to the decrease of apparent absorption intensity in red region and blue shift of the peak, but to the increase of apparent absorption intensity in blue region. The fourth derivative spectra show that the longwavelength (669 nm and 683 nm) absorbing chlorophyll a was affected greatly and their relative changes of absorbance were axially symmetrical. The presence of surfactant could make the long wavelength fluorescence emission decrease greatly and a new fluorescence peak appeared around 680 nm, it was obvious that the surfactant interceded the transfer of excitation energy from antenna pigments to reaction center. The surfactants might affect the microenvironment of proteins, even the structure of PSⅠ protein subunits and hence changed the binding status of pigments with protein subunits, or the pigments might be released from the subunits. All of these might affect the absorption and the transfer of excitation energy.  相似文献   

12.
Lin  Zhi-Fang  Peng  Chang-Lian  Lin  Gui-Zhu  Zhang  Jing-Liu 《Photosynthetica》2003,41(4):589-595
Two new yellow rice chlorophyll (Chl) b-less (lack) mutants VG28-1 and VG30-5 differ from the other known Chl b-less mutants with larger amounts of soluble protein and ribulose-1,5-bisphosphate carboxylase/oxygenase small sub-unit and smaller amounts of Chl a. We investigated the altered features of Chl-protein complexes and excitation energy distribution in these two mutants, as compared with wild type (WT) rice cv. Zhonghua 11 by using native mild green gel electrophoresis and SDS-PAGE, and 77 K Chl fluorescence in the presence of Mg2+. WT rice revealed five pigment-protein bands and fourteen polypeptides in thylakoid membranes. Two Chl b-less mutants showed only CPI and CPa pigment bands, and contained no 25 and 26 kDa polypeptides, reduced amounts of the 21 kDa polypeptide, but increased quantities of 32, 33, 56, 66, and 19 kDa polypeptides. The enhanced absorption of CPI and CPa and the higher Chl fluorescence emission ratio of F685/F720 were also observed in these mutants. This suggested that the reduction or loss of the antenna LHC1 and LHC2 was compensated by an increment in core component and the capacity to harvest photon energy of photosystem (PS) 1 and PS2, as well as in the fraction of excitation energy distributed to PS2 in the two mutants. 77 K Chl fluorescence spectra of thylakoid membranes showed that the PS1 fluorescence emission was shifted from 730 nm in WT rice to 720 nm in the mutants. The regulation of Mg2+ to excitation energy distribution between the two photosystems was complicated. 10 mM Mg2+ did not affect noticeably the F685/F730 emission ratio of WT thylakoid membranes, but increased the ratio of F685/F720 in the two mutants due to a reduced emission at 685 nm as compared to that at 720 nm.  相似文献   

13.
采用聚丙烯酰胺凝胶电泳(PAGE)和蔗糖密度梯度超速离心方法分离了假根羽藻(Bryopsis corticulans)的色素-蛋白复合物,并对其特性进行分析。结果表明:采用PAGE分离得到7条色素-蛋白复合物带,分别是CPⅠa1、CPⅠa2、CPⅠ、LHCP1、LHCP2、CPa、LHCP3+3,和2条游离色素(free pigment,FP)FCa、FC。用改进的不连续蔗糖密度梯度离心法分离到五条带。区带Ⅰ是FP;区带Ⅱ主要是小分子量的PSⅡ捕光复合物LHCP3+3;区带Ⅲ以PSⅡ捕光复合物的聚集体LHCP1为主,区带Ⅱ和Ⅲ的吸收光谱中除了Chla外,还含有大量的Chlb和管藻黄素,是管藻黄素-Chla/b-蛋白质复合物;区带Ⅳ在PAGE中只显示一条带,光谱中有Chlb吸收肩峰,含有66和56kDa两种多肽,是较小的PSⅠ复合物CPⅠa。  相似文献   

14.
以褐藻裙带菜(Undaria pinnatifida)为实验材料,采用蔗糖密度梯度超速离心的方法,去污剂SDS为增溶剂(SDS:Chl=20:1,4℃增溶20 min),蔗糖密度梯度为60%、50%、40%、30%、20%、15%和10%,分离制备光系统Ⅰ(PSⅠ)复合物。结果表明, 40% 蔗糖层带所含色素蛋白复合物是PSⅠ复合物。利用红藻作参照对比,光谱结果表明从裙带菜中得到的PSⅠ复合物没有730 nm的荧光峰。分析认为这是所有褐藻包括裙带菜PSⅠ复合物的荧光特异性。  相似文献   

15.
It is well known that no chlorophyll synthesis and photosystem biogenesis have been detected in dark-grown angiosperm seedlings. However, in this report, we showed that both PSⅡ and PSⅠ could be formed in dark-grown lotus ( Nelumbo nucifera Gaertn.) seedlings. Lots of evidence were given: First, during the dark-grown period, the single fluorescence emission peak at 679 nm in lotus embryo red-shifted and transformed into the normal PSⅡ fluorescence emission; Simultaneously, PSⅠ fluorescence emission at 730 nm appeared and increased obviously; Second, with partial denaturing SDS-PAGE method, PSⅠ chlorophyll-protein complex could be clearly separated from 10 days dark-grown lotus seedlings; Third, the existence of Lhca1 was also proved by Western blots. Moreover, measurements of electron transfer rate demonstrated that both PSⅡand PSⅠ core in dark-grown lotus seedlings were photochemically active.  相似文献   

16.
Cucumber (Cucumis sativus L. cultivar "Changchun Mici") seedlings were cultured in Hoagland solution under irradiation with different light spectra (8 h per day) for 20 days. The red light (λmax 658 nm, λ1/2 25 nm), blue light (λmax 450 nm, λ1/2 43 nm) and white fluorescent light possessed the same fluent rate (20 μmol· m-2·s-1 ). The experimental results showed that chlorophyll content of the leaves grown under white light was 7 % and 22.4% higher than those in red and blue light, respectively. Compared with white and blue light, red light induced a lower Chl a/b ratio and a higher level of Chl b in the cucumber leaves. Measurements of the low temperature (77 K) fluorescence emission spectra and kinetics of Chl a fluorescence induction of the leaves proved that the leaves grown under red light expressed the highest PSⅡ and the lowest PSⅠactivities while the leaves under blue light had the lowest PSⅡand the highest PSⅠ activities. The O2 evolution rate of red light-grown leaves was 44.9% higher than that of the white light-grown leaves, while blue light effect was similar to that of white in respect of O2 evolution. It is concluded that light quality is an important factor in regulating the development and activities of PSⅡ and PSⅡand the O2 evolution of photosynthesis in cucumber leaves.  相似文献   

17.
Red algae are a group of eukaryotic photosynthetic organisms. Phycobilisomes (PBSs), which are composed of various types of phycobiliproteins and linker polypeptides, are the main light-harvesting antennae in red algae, as in cyanobacteria. Two morphological types of PBSs, hemispherical- and hemidiscoidal-shaped, are found in different red algae species. PBSs harvest solar energy and efficiently transfer it to photosystem II (PS II) and finally to photosystem I (PS I). The PS I of red algae uses light-harvesting complex of PS I (LHC I) as a light-harvesting antennae, which is phylogenetically related to the LHC I found in higher plants. PBSs, PS II, and PS I are all distributed throughout the entire thylakoid membrane, a pattern that is different from the one found in higher plants. Photosynthesis processes, especially those of the light reactions, are carried out by the supramolecular complexes located in/on the thylakoid membranes. Here, the supramolecular architecture, function and regulation of thylakoid membranes in red algal are reviewed.  相似文献   

18.
Three chlorophyll-protein complexes have been resolved from blue-green algae using an improved procedure for membrane solubilization and electrophoretic fractionation. One complex has a red absorbance maximum of 676 nm and a molecular weight equivalency of 255 000 +/- 15 000. A second complex has an absorbance maximum of 676 nm, a molecular weight equivalency of 118 000 +/- 8000, and resembles the previously described P-700-chlorophyll a-protein (CPI) of higher plants and algae. The third chlorophyll-protein has a red absorbance maximum of 671 nm and a molecular weight equivalency of 58 000 +/- 5000. Blue-green algal membrane fractions enriched in Photosystem I and heterocyst cells do not contain this third chlorophyll-protein, whereas Photosystem II-enriched membrane fractions and vegetative cells do. A component of the same spectral characteristics and molecular weight equivalency was also observed in chlorophyll b-deficient mutants of barley and maize. It is hypothesized that this third complex is involved in some manner with Photosystem II.  相似文献   

19.
The UV light (337 nm) induced blue-green fluorescence emission of green leaves is characterized at room temperature (298 K) by a maximum near 450 nm (blue region) and a shoulder near 525 nm (green region) and was here also studied at 77 K. At liquid nitrogen temperature (77 K) the blue (F450) and green fluorescence (F525) are much enhanced as is the red chlorophyll fluorescence near 735 nm. During development of green tobacco leaves the blue fluorescence F450 (77 K) is shifted towards longer wavelengths from about 410 nm to 450 nm. The isolated leaf epidermis of tobacco showed only slight fluorescence emission with a maximum near 410 nm. The green fluorescence F525 was found to mainly originate from the mesophyll of the leaf, its intensity increased when the epidermis was removed. The red chlorophyll fluorescence emission was also enhanced when the epidermis was stripped off; this considerably changed the blue/red fluorescence ratios F450/F690 and F450/F735. The epidermis, with its cell wall and UV-light-absorbing substances in its vacuole, plays the role of a barrier for the exciting UV-light. In contrast to intact and homogenized leaves, isolated intact chloroplasts and thylakoid membranes did not exhibit a blue-green fluorescence emission.  相似文献   

20.
裙带菜的类囊体膜经过去污剂癸基-N-甲基匍萄糖胺增溶,采用SDS-PAGE分离技术,在Tris-Gly和Tris-硼酸两种电泳系统中分离其色素-蛋白质复合物,并比较其复合物的光谱特性。结果表明:采用Tris-Gly电泳分离系统从裙带菜中分离到8种色食-蛋白质复合物,分别是CP Ia、CPI、LHC1、CPa、LHC2、LHC3、LHC4和LHC5。在Tris-硼酸电泳分离系统中共分离到5种色素-蛋白质复合物,分别是CPI、CPa、LHC1、LHC2、LHC3。吸收光谱和荧光光谱的测定结果表明,两种电泳系统中分离的相对应条带的光谱特性基本相近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号