首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with structures of the secondary phloem of Pinus bungeana Zucc. The sieve cells lived for only one growing season. Most of them formed in spring and summer and then died in the end of winter. However, some of them formed in autumn and died eventually in the end of next spring. Two types of albuminous cells: type A and type B were seen in radial plates and rays, which possessed the following common characteristics, there were unilateral sieve area connections between these and the sieve cells. These cells had larger nuclei, denser cytoplasm with abundant mitochondria and rich RNA-protein. Their death closely followed that of the sieve cells. Type A albuminous cells differed from type B in that the former collapsed before the contents of sieve cells accompanied with it dissppeared. But, type B did not collapse until complete disappearance of the contents of sieve cells. The cytological characteristics of albuminous cells, the relationship between radial plates and rays, and possible physiological significance are also disscussed.  相似文献   

2.
A anatomical characters of secondary phloem in Glyptostrobus pensilis (Staunt.)Koch were observed by means of both light and scanning electron microscopy(SEM). The secondary phloem is composed of axial and radial systems. In the axial systems, the phloem consists of sieve cells, phloem parenchyma cells, albuminous cell and phloem fibers. In the radial systems, it consists of phloem rays. The alternate arrangement of different cells in cross section results in tangential bands. The sequence of radial arrangement follows the pattern of sieve cells, phloem parenchyma cells, sieve cells and phloem fibers, sieve cells. Many crystals of calbium oxalate are embedded in the radial walls of seive cells. The phloem fibers are of only one type. The phloem rays are homogeneous, uniseriate. According to the anatomical characters of secondary phloem of Glyptostrobus pensilis (Staunt.)Koch and comparison with the other genera of Taxodiaceae, Glyptostrobus, Metasequoia and Taxodium have close relationships.  相似文献   

3.
水松的次生韧皮部解剖及其系统位置的讨论   总被引:3,自引:0,他引:3  
在光学显微镜和扫描电子显微镜下观察,水松茎次生韧皮部的主要特征为:韧皮部由轴向系统和径向系统组成。轴向系统由筛胞、韧皮薄壁组织细胞、蛋白细胞和韧皮纤维组成,径向系统由韧皮射线组成。在横切面上,轴向系统的各组成分子以单层切向带交替有规律的排列,其排列顺序为:筛胞-韧皮薄壁组织细胞-韧皮纤维-筛胞。筛胞的径向壁上嵌埋有草酸钙结晶,韧皮纤维仅一种类型,韧皮射线同型、单列。根据水松茎次生韧皮部的解剖研究,并与杉科其它各属的有关资料进行比较,我们认为:水松属与水杉属和落羽杉属有较近的亲缘关系。  相似文献   

4.
The secondary phloem in Ephedra is atypical of the gymnosperms in general and exhibits several angiosperm-like characteristics. The ray system of the conducting phloem consists of parenchymatous, multiseriate rays. The axial system contains parenchyma cells, sieve cells, and unusual albuminous cells reminiscent of the specialized parenchyma cells found in some angiosperms. These cell types may intergrade with each other. P-protein in the developing sieve element appears early in the form of a single, ovoid slime body. Later, smaller slime bodies appear and quickly disperse. In the mature sieve element the single, ovoid slime body is lost, and P-protein is then evident in the form of a parietal cylinder, thread-like strands, amorphose globules, or a slime plug. Necrotic-appearing nuclei are commonly found in mature sieve cells.  相似文献   

5.
Summary Albuminous cells were examined in seasonal collections of secondary phloem of Pinus banksiana, P. resinosa and P. strobus. It was determined that the only reliable criterion for the identification of albuminous cells is their conspicuous connections with sieve cells. Discrete bodies, which give positive protein reactions, were encountered in young albuminous cells. These bodies, which have been interpreted as slime bodies, eventually elongate in the cytoplasm and disappear. During periods of high starch content in other parenchymatous elements, albuminous cells may also contain starch.This research has been supported by National Science Foundation grant GB-3193.  相似文献   

6.
The anatomical structures, especially the type, distribution and arrangement of the constituent elements in the secondary phloem of Euonymus bungeanus Maxim. have been studied. The results showed that the secondary phloem was thicker, consisted of sieve-tube elements, companion ceils ,phloem parenchyma cells ,secretory ceils and rays. Sieve-tube elements, phloem parenchyma cells and secretory cells were alternately arranged in tangential bands, forming a conspicuous zone-like constitution. There was no obvious boundary between the functional phloem and the non-functional phloem. Sieve-tube elements were long, slender cells with very oblique end walls and compound sieve plates. Sieve areas on lateral wall were highly differentiated. Companion cells were triangular in transection and slender in radial section. Mostly,two or three companion cells stayed along with one sieve-tube element. In the functional phloem, phloem parenchyma cells were also slender, containing a few starch grains;but in the nonfunctional phloem they enlarged and contained abundant starch grains. Secretory cells were longer than sieve-tube elements, consisting of rubber-like material. Rays were uniseriate. Finally, the authors also discussed the phylogenetic position of E. bungeanus, which may provide some references for further study of the classification of different genera of Celastraceae.  相似文献   

7.
The Phloem of Nelumbo nucifera Gaertn   总被引:1,自引:0,他引:1  
ESAU  KATHERINE 《Annals of botany》1975,39(4):901-913
In common with other aquatic angiosperms, Nelumbo nucifera Gaertn.has a relatively strongly developed phloem tissue. The vascularsystem consists of discrete collateral bundles in which no cambiumdevelops and the phloem and xylem are separated by a narrowlayer of parenchyma cells. The phloem consists of sieve elements,companion cells, and phloem parenchyma cells. The sieve elementshave transverse end walls with simple sieve plates. The cellsattain considerable width in the late phloem (metaphloem). Thecompanion cells are in vertical strands. In the early phloem(protophloem) of large bundles the sieve tubes and companioncells are eventually obliterated. The parenchyma cells alsoform vertical strands which may contain tannin cells. Some parenchymacells and companion cells are binucleate. The sieve elementsshow ultrastructural features common for these cells in dicotyledons.At maturity, they lack nuclei, ribosomes, and tonoplasts, butretain a plasmalemma, mitochondria, and plastids. The latterare poorly differentiated and form starch. The endoplasmic reticulumis in part stacked, in part it forms a network next to the plasmalemma.The P-protein occurs in two forms. One consists of tubules notassembled in any specific type of array. The other, possiblycomposed of much extended tubules, is assembled in crystallineaggregates which are retained as such in mature cells. The sieveplate pores are lined with callose and plasmalemma. The lateralwalls are relatively thin and the nacreous layer varies in degreeof distinctness.  相似文献   

8.
本文研究和比较了杨柳科2属7种植物次生韧皮部解剖结构。结果表明:(1)杨属和柳属植物在次生初皮部解剖上有某些共同特征:次生韧皮部具有明显分层现象;韧皮纤维和含晶细胞与筛管分子、伴胞和韧皮薄壁组织细胞是切向带相间排列;筛管分子均为复筛板,端壁倾斜平均含有7-8个筛域。(2)两属植物在射线和晶体类型上有明显区别:柳属植物次生韧皮部无石细胞;杨属植物不具功能韧皮部中含有石细胞。(3)两属植物均有一些较为原始的韧皮部解剖特征。  相似文献   

9.
The structure of the secondary phloem and the development of the crystaleiferous phloem fibers in the stem of Torrey grandis were observed under the ligth microscope and SEM. The secondary phloem is composed of sieve cells, phloem parenchyma cells, crystalliferous phloem fibers and stone cells in the longitudinal system, and the uniserite homogeneous phloem rays consisting of parenchyma cells only in the radial system. In the cross section, there are 3–9 sieve cells in radial rows forming discontinuous tangential layers, the crystalliferous phloem fibers often in a single discontinuous tangential layer and the stone cells dispersed in rangential layer of phloem parenchyma. The developmental process of crystalliferous phloem fibers is as follows: initial cells appeared in the end of April and were well differentiated in the first week of May. Some crystals were deposited in the primary wall, while others were free in the cell. At the end of May, the secondary wall of most crysalliferous phloem fibers started to be thickened. With the thickening of the secondary wall, all the crystals were embedded in the wall from June to August From the end of September to the early days of October, the crystalliferous phloem fibers reached their full maturation. It is shown by microchemical identification and EDAX analysis that the crystals embedded in the wail of crystalliferous phloem fibers are calcium oxalate crystals.  相似文献   

10.
Summary Autoradiographic and microautoradiographic studies of 2-year-old Picea abies plants show that in summer leaf assimilates from the second-year shoot are translocated basipetally. Leaf assimilates are first transported to the stem via leaf trace phloem, then to the base of the stem in the sieve cells of the latest increment of secondary phloem. On the way down leaf assimilates move radially from sieve cells into cells of the phloem parenchyma, the vascular cambium, the rays, the inner periderm and certain cells of pith and cortex, including the epithelial cells surrounding the resin ducts. Other cells of pith and cortex remain nearly free of label, despite the long translocation time (20 h). With the exception of the vascular cambial cells, the stem cells that gain leaf assimilates by radial distribution coincide with those that contain chlorophyll and starch.  相似文献   

11.
当归根显微结构及其根腐病真菌分布研究   总被引:1,自引:0,他引:1  
利用徒手切片、石蜡切片和超薄切片及显微摄像的方法,对当归根的显微结构及根腐病致病真菌的分布进行了研究。结果表明:当归的根由周皮和次生维管组织两部分组成,周皮由外向内依次分为木栓层、木栓形成层、栓内层;次生韧皮部占根径的比例在60%以上,主要成分包括筛胞、韧皮薄壁细胞、韧皮纤维和分泌道,薄壁细胞富含淀粉粒等营养物质;次生木质部由导管、木薄壁细胞和木射线组成,木质部呈多元形,木射线和韧皮射线明显。在根的周皮细胞和中柱中均有真菌分布,说明真菌由木栓层、木栓形成层、栓内层依次向里侵入到韧皮薄壁细胞,在薄壁细胞内定殖并形成菌丝结或团块状结构,进而扩展成一定的侵染区域;真菌不仅侵染周皮和韧皮部,而且还进一步侵染木质部并破坏导管。此外,研究还发现,淀粉粒是真菌定殖的主要场所,真菌穿透或缠绕在淀粉粒上,并利用其营养不断地生长与繁殖。  相似文献   

12.
The nuclei of active, sieve cell-associated Strasburger cells in the secondary phloem of Pinus nigra var. austriaca (Hoess) Badoux have been studied for their structure and DNA and RNA content. No difference in size compared to those of ordinary ray cells was found. The nuclear surface is often increased by an ameboid or lobed shape. The amount of highly decondensed chromatin is greatly increased. Cytophotometric measurements of DNA content of both Feulgen and gallocyanine chromalum-stained nuclei showed normal DNA levels and proved absence of endomitotic polyploidization. RNA content, however, was significantly increased as compared to nuclei of young Strasburger cells and of ordinary ray parenchyma cells.Abbreviations StC1 Strasburger cells in contact with young and immature sieve cells - StC2 Srasburger cells in contact with mature and functionally active sieve cells - StC3 dead Strasburger cells - eRPC pRPC erect and procumbent ray parenohyma cells, respectively - GCCA gallocyanine chromalum - T transmission - A absorbance Dedicated to Professor Dr. Wilhelm Halbsguth, Kiel, on the occation of his 65th birthday  相似文献   

13.
Summary Parenchyma cells of the secondary phloem in Pinus strobus have all the cellular organelles common in other plant cells. They have mitochondria, endoplasmic reticulum, ribosomes, dictyosomes, and plastids. Parenchyma cells are very conspicuous because of their organic inclusions, starch and lipids. Plasmodesmata in transverse and tangential walls of axial parenchyma cells and in end walls of ray parenchyma cells are regularly distributed and of uniform size, about 500 Å in diameter. In radial walls of axial parenchyma cells and horizontal walls of ray parenchyma cells plasmodesmata are located in primary pit-fields; there they are of variable size and often divided into several branches. The branches are confluent into a median nodule. Perforation of the transverse wall between two axial parenchyma cells and the resultant union of the cellular material of the two connected cells is reported.This research has been supported by NSF Grant GB 3193.  相似文献   

14.
Secondary phloem anatomy of several species of Cycadeoidea is described from trunks in the Wieland Collection, Peabody Museum of Natural History. The trunks were collected from the Lakota Formation, Lower Cretaceous, Black Hills of South Dakota. Secondary phloem is extensively developed and consists of alternating, tangential bands of fibers and sieve elements, with rare phloem parenchyma. Uniseriate rays, 2-22 cells high, occur between every one to three files of the axial system. Fibers are long, more than 1200 μm, approximately 26.6-34.2 μm in diameter, and have slit-like apertures on the lateral walls. Sieve elements range from 16-25 μm in diameter and are up to 500 μm long. Elliptical sieve areas appear on both end and radial walls and measure 10 μm across; minute spots, which may represent sieve pores, are present within the sieve areas. Secondary phloem of North American Cycadeoidea is similar in organization (alternating tangential bands) and cell types (sieve cells, fibers, axial parenchyma) to that known in other extant and fossil cycadophytes and some seed ferns. The unusual pattern of cell types and thickness of secondary phloem is discussed in the context of plant habit, phloem efficiency, and potential phylogenetic importance.  相似文献   

15.
Electron microscopy of sugarbeet leaves infected with the beet curly top virus confirmed earlier findings by light microscopy that the hyperplastic phloem consists mainly of sieve elements that are more or less abnormal in structure. Some parenchyma cells and occasional companion cells may be present. The hyperplastic phloem develops in the place of normal phloem and sometimes in the adjacent ground tissue and the xylem. The sieve elements vary in shape and may be haphazardly arranged. The protoplasts of the sieve elements have the usual characteristics of this type of cell. The sieve element plastids develop from chloroplasts if the hyperplasia occurs in chloroplast-containing parenchyma cells. The cell walls have sieve areas that often are less well differentiated than those of normal sieve elements. The hyperplastic growth in the phloem of curly top diseased plants is discussed with reference to plant tumors induced by certain other plant viruses.  相似文献   

16.
17.
H.-D. Behnke  A. Schulz 《Planta》1980,150(5):357-365
The wound phloem bridges which have developed six days after interrupting an internodal vascular bundle contain wound sieve-elements, companion cells, and phloem parenchyma cells. An analysis of the meristematic activity responding to the wounding clearly demonstrates that three consecutive divisions are prerequisite to the formation of phloem mother-cells. Companion cells are obligatory sister cells of wound sieve-elements, connected to the latter by specific plasmatic strands and provided with a dense protoplast. Six days after wounding most of the wound sieve-elements are still at a nucleate state of development, but already have characteristic P-protein bodies and plastids containing sieve-element starch. Their cytoplasmic differentiation corresponds to the changes recorded during maturation of ordinary sieve elements. Sieve-plate pores penetrate through preexisting parenchyma cell walls, only, and develop from primary pitfield-plasmodesmata. Wound sieve-elements do not connect to preexisting bundle sieve-elements, they open a new tier of young sieve elements produced by cambial activity.  相似文献   

18.
In Ipomoea hederifolia Linn., stems increase in thickness by forming successive rings of cambia. With the increase in stem diameter, the first ring of cambium also gives rise to thin-walled parenchymatous islands along with thick-walled xylem derivatives to its inner side. The size of these islands increases (both radially and tangentially) gradually with the increase in stem diameter. In pencil-thick stems, that is, before the differentiation of a second ring of cambium, some of the parenchyma cells within these islands differentiate into interxylary phloem. Although all successive cambia forms secondary phloem continuously, simultaneous development of interxylary phloem was observed in the innermost successive ring of xylem. In the mature stems, thick-walled parenchyma cells formed at the beginning of secondary growth underwent dedifferentiation and led to the formation of phloem derivatives. Structurally, sieve tube elements showed both simple sieve plates on transverse to slightly oblique end walls and compound sieve plates on the oblique end walls with poorly developed lateral sieve areas. Isolated or groups of two to three sieve elements were noticed in the rays of secondary phloem. They possessed simple sieve plates with distinct companion cells at their corners. The length of these elements was more or less similar to that of ray parenchyma cells but their diameter was slightly less. Similarly, in the secondary xylem, perforated ray cells were noticed in the innermost xylem ring. They were larger than the adjacent ray cells and possessed oval to circular simple perforation plates. The structures of interxylary phloem, perforated ray cells, and ray sieve elements are described in detail.  相似文献   

19.
应用植物解剖学方法对远志(Potygda tenuiflia Willd.)根的发生和发育过程,以及1 a生与2 a生根的结构进行了比较观察,还应用组织化学方法对远志根储藏物质及主要药用成分积累部位进行了研究.结果表明:远志的药用部位为其主根,发育过程包括原分生组织、初生分生组织、初生结构和次生结构4个发育阶段.原分生组织来源于胚根,由3群原始细胞组成,具有典型分生组织的细胞学特征;初生分生组织包括根冠原、表皮原、皮层原和中柱原;初生结构由表皮、皮层和维管柱组成,初生木质部为二原型;次生生长主要是依靠维管形成层和木栓形成层的活动来完成.木栓形成层由中柱鞘细胞恢复分裂能力而形成,并且产生多层栓内层薄壁细胞.2 a生远志根的基本结构与1 a生的基本相同,只是栓内层增加至10层以上.远志根的储藏物质主要是脂类物质及少量的多糖.远志皂苷积累在远志根的薄壁细胞中,而山酮类化合物主要分布在根的木栓形成层、栓内层薄壁细胞和次生韧皮部中.  相似文献   

20.
Stem anatomy and development of medullary phloem are studied in the dwarf subshrub Cressa cretica L. (Convolvulaceae). The family Convolvulaceae is dominated by vines or woody climbers, which are characterized by the presence of successive cambia, medullary- and included phloem, internal cambium and presence of fibriform vessels. The main stems of the not winding C. cretica shows presence of medullary (internal) phloem, internal cambium and fibriform vessels, whereas successive cambia and included phloem are lacking. However, presence of fibriform vessels is an unique feature which so far has been reported only in climbing members of the family. Medullary phloem develops from peri-medullary cells after the initiation of secondary growth and completely occupies the pith region in fully grown mature plants. In young stems, the cortex is wide and formed of radial files of tightly packed small and large cells without intercellular air spaces. In thick stems, cortical cells become compressed due to the pressure developed by the radial expansion of secondary xylem, a feature actually common to halophytes. The stem diameter increases by the activity of a single ring of vascular cambium. The secondary xylem is composed of vessels (both wide and fibriform), fibres, axial parenchyma cells and uni-seriate rays. The secondary phloem consists of sieve elements, companion cells, axial and ray parenchyma cells. In consequence, Cressa shares anatomical characteristics of both climbing and non-climbing members. The structure of the secondary xylem is correlated with the habit and comparable with that of other climbing members of Convolvulaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号