首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 413 毫秒
1.
When fresh potato tuber slices were incubated with [1-14C]-sodium acetate, cycloartenol was heavily labelled but no radioactivity was recovered in 24-methylene cycloartanol and free sterols. If potato slices were aged for 0–24 hr before feeding with radioactive acetate, a rapid increase of the label in the sterol precursors and the free sterols was observed. The free sterol content was 5 × higher after ageing for 24 hr. Isofucosterol synthesis was especially stimulated. The synthesis of sterols during the ageing process seems to be related to the appearance of a cycloartenol C24-methylase and may be linked to a biogenesis of membranes.Nomenclature: (1) 4,4,14α-trimethyl 9β, 19β-cyclo-5α-cholest-24-en 3β-ol; (2) 4,4,14α-trimethyl 9β, 19β-cyclo-5α-ergost-24(28)-en 3β-ol; (3) 4α,14α-dimethyl 9β,19β-cyclo 5α-ergost 24(28)-en 3β-ol; (4) 4α, 14α-dimethyl 5α-ergosta 8.24(28)-dien 3β-ol; (5) 4α-methyl 5α-ergosta 7,24(28)-dien 3β-ol; (6) ergosta 5,24(28)-dien 3β-ol; (7) stigmasta 5,Z-24(28)-dien 3β-ol; (8) (24R)-24 methyl cholest 5-en 3β-ol; (9) (24R)-24 ethyl cholest 5-en 3β-ol; (10) (24S)-24 ethyl cholesta 5,E-22(23)-dien 3β-ol; (11) cholest 5-en 3β-ol.  相似文献   

2.
Two D-homosteroids were isolated from the hydrolyzate of 5β-pregnane -3α,20α-diol disulfate (II) when it was refluxed in 3N hydrochloric acid. The structures of these steroids have been elucidated as 17α-methyl-D-homo-5β-androstane-3α, 17aβ-diol (VI) and 17α-methyl-17aγb-chloro-D-homo-5β-androstan-3α-ol (VIII) by instrumental analyses. The former was identical with a synthetic specimen derived from 5β-pregnane-3α,20β-diol di-sulfate (IV) by uranediol rearrangement. The main hydrolyzates obtained were 17α-ethyl-17β-methyl-18-nor-5β-androst-13-en-3α-ol (V) and 5β-pregnane-3α, 20α-diol (III).  相似文献   

3.
The reaction of 3β,17β-diacetoxy-4-estrene with N-bromoacetamide in a two phase ether/water solvent mixture gave 5-bromo-4β,17β-diacetoxy-5α-estran-3β-ol as the major product (75%). Four minor products were also isolated and identified. These were: 4α-bromo-3β, 17β-diacetoxy-5α-estran-5-ol (5%), 5-bromo-3g,17β-diacetoxy-5α-estran-4β-ol (6%), 5-bromo-4α,17β-diacetoxy-5αt-estran-3β-ol (3%), and 4β-bromo-3β,17β-diacetoxy-5α-estran-5-ol (4%). The 5-bromo-4β, 17β-diacetoxy-5α-estran-3β-ol was equilibrated by heating with oxalic acid in refluxing benzene for ca. 16h to give a mixture of it and 5-broino-3β,17β-diacetoxy-5α-estran-4β-ol in the ratio of 16:84 respectively. A similar equilibration mixture (14:86) was obtained under identical conditions when 5-bromo-3β,17β-diacetoxy-5α-estran-4β-ol was the starting material.  相似文献   

4.
Pyridinium chlorochromate in CH2Cl2 containing pyridine (2%) at 2—3°C has been found to effect the high yield selective oxidation of the hydroxyl function of a number of steroidal allylic alcohols. Under these conditions the oxidation of cholest-4-cn-3β-ol to the corresponding ketone was effected in 92% yield. Only the allylic hydroxyl function of 5α-cholest-8(14)-ene-3β,15α-diol, 5α-cholest-8(14)ene-3β,15β-diol and 5α-cholest-8(14)-ene-3β,7β-diol was oxidized under these conditions to give the corresponding α,β-unsaturated ketones in high yields. 5α-Cholest-8(14)-ene-3β,7α,15α-triol gave 5α-cholest-8(14)-ene-3β,7α-diol-15-one in 82% yield. Attempted oxidations of the 5α-cholestan-3β,15α-diol and 5α-cholest-7-ene-3β,15α-diol, both lacking an allylic hydroxyl function, under these conditions, were unsuccessful. Selective oxidation of the allylic alcohol function of 5α-cholest-8(14)-ene-3β,15β-diol using activated manganese dioxide gave 5α-cholest-8(14)-en-3β-ol-15-one in high yield while oxidation of the corresponding 15α-hydroxy epimer using manganese dioxide was unsuccessful.  相似文献   

5.
E Mappus  C Y Cuilleron 《Steroids》1979,33(6):693-718
The 3-(O-carboxymethyl)oximino derivative of 17β-hydroxy-5α-androstan-3-one (5α-dihydrotestosterone) was prepared. Thin-layer chromatography of the corresponding methyl ester showed the presence of two syn (60%) and anti (40%) geometrical isomers of the oxime chain to the C-4 position, which were characterized by 13C nmr. The 3β-hemisuccinami-do-5α-androstan-17β-ol was obtained after selective saponification with potassium carbonate of the 17β-hemisuccinate group of the 3,17-dihemi-succinoylated derivative of the previously described 3β-amino-5α-androstan-17β-ol. This 3β-hemisuccinamide was purified as the corresponding methyl ester-17β-acetate and was regenerated after saponification. The 3,3'-ethylenedioxy-7-oxo-5α-androstan-17β-yl acetate was obtained in quantitative yield by catalytic hydrogenation over 10% palladium-oncharcoal of the Δ5-7-oxo precursor in a dioxane-ethanol mixture containing traces of pyridine. The exclusive 5α-configuration of this hydrogenated product was established from nmr data and was confirmed by the synthesis of methyl 3,3'-ethylenedioxy-7-oxo-5β-cholan-24-oate as 5β-H-reference compound. The preceding 5α-H-7-ketone was converted into the 7-(O-carboxymethyl)oximino derivative (syn isomer to the C-6 position, exclusively) which was esterified into the corresponding methyl ester. The selective hydrolysis of the 3-ethyleneketal group was achieved by a short treatment with a formic acid-ether 1:1 (v/v) mixture at 20°C. Saponification of the latter reaction product with ethanolic potassium hydroxide gave the 7-(O-carboxymethyl)oximino-17β-hydroxy-5α-androstan-3-one derivative, which was characterized as the corresponding methyl ester. The reduction of the oxime of the 5α-H-7-ketone with sodium in ethanol or with lithium-aluminium hydride gave respectively the 7β-amine or the 7α-amine as the major product. The 7β- and 7α-configurations were established from nmr spectra of the corresponding 7-acetamido derivatives. The 7β- and 7α-hemisuccinamido derivatives were prepared from the mixture of 7β- and 7α-amines, as described above for 3-derivatives and were isolated after thin-layer chromatography of the methyl esters, followed by saponification of the corresponding 17β-acetates.  相似文献   

6.
The av integrins present on the membrane of numerous cells, mediate attachment to matrix proteins, cell proliferation, migration and survival. We studied the expression of av integrins and CD47 (a 03 chain integrin associated protein) in various forms of glomerulonephritis (GN) characterized by mesangial proliferation and/or increased mesangial matrix. In normal glomeruli, epithelial cells expressed αvβT3, αvβT5 and CD47; endothelial cells expressed α5βT1 and CD47; mesangial cells expressed αvβT5, CD47, and to a less extent αvβT3. In acute post infectious GN (APIGN), membranoproliferative GN (MPGN) and diabetic nephropathy (DN), we observed that the βT3 chain, normally expressed by mesangial cells, was not detectable in the mesangium while its expression by epithelial cells was not modified. Parallel to the disappearance of αvβT3, the CD47 expression was decreased on the mesangial cells in MPGN, APIGN and DN. The expression of αvβT5 was clearly increased on podocytes and on proliferating mesangial cells in APIGN. By contrast, the mesangial expression of αvβT5 normal or decreased in DN. The α5 chain of integrin, absent on normal mesangial cell, was expressed on proliferating mesangial cells in MPGN and APIGN.

Thus, we observed modifications of avp3 and avp5 expression during human GN. The modulations of αvβT3 and αvβT5 expression differed according to the different glomerular cell types and were not parallel in glomerular cells: avp3 was decreased (and αvβT5 unchanged) on proliferating mesangial cells and αvβT5 was increased (and αvβT3 unchanged) in podocytes. This may reflect the existence of two distinct regulatory pathways.  相似文献   

7.
The sterol composition of the cold water brown alga Agarum cribosum was determined by GC—MS. Six of the seven sterols found were identified as stigmata-5,(E)-24(28)-dien-3β-ol (fucosterol), 24-methylenecholest-5-en-3β-ol (24-methylenecholesterol), cholest-5-en-3β-ol (cholesterol), 3β-hydroxycholest-5-en-24-one (24-ketocholesterol), 24ξ-stigmasta-5,28-diene-3β,24-diol (saringosterol) and cholesta-5, 24-dien-3β-ol (desmosterol).  相似文献   

8.
Taylor SD  Harris J 《Steroids》2011,76(10-11):1098-1102
17β-Amino steroids such as 17β-amino-1,3,5(10)-estratrien-3-ol (1), 17β-amino-5α-androstan-3β-ol (2) and, 17β-amino-3β-hydroxyandrost-5-ene (3) have been widely used as a key intermediates in the synthesis of a variety of biologically active steroid derivatives though concise, high yielding syntheses of these compounds has yet to be reported. 17β-Amino-1,3,5(10)-estratrien-3-ol (1) and 17β-amino-5α-androstan-3β-ol (2) were prepared in high yield by reductive amination of estrone and epiandrosterone using benzylamine and sodium triacetoxyborohydride followed by catalytic hydrogenolysis of the resulting 17β-benzylamino derivatives. Attempts to prepare 17β-amino-3β-hydroxyandrost-5-ene (3) from dehydroepiandosterone using a similar approach resulted in partial reduction of the double bond. 17β-Amino-3β-hydroxyandrost-5-ene (3) was ultimately obtained in high yield by reductive amination of dehydroepiandosterone using allylamine and sodium triacetoxyborohydride followed by removal of the allyl group from the resulting 17β-allylamino derivative with dimethylbarbituric acid and Pd(PPh(3))(4) as catalyst.  相似文献   

9.
During adrenal steroidogenesis the competition between 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4) isomerase (3βHSD) and cytochrome P450 17α-hydroxylase/17,20 lyase (CYP17A1) for Δ(5) steroid intermediates greatly influences steroidogenic output. Cytochrome-b(5) (Cyt-b(5)), a small electron transfer hemoprotein, known to augment the lyase activity of CYP17A1, has been shown to alter the steroidogenic outcome of this competition. In this study, the influence of Cyt-b(5) on 3βHSD activity was investigated. In COS-1 cells, Cyt-b(5) was shown to significantly increase the activity of both caprine and ovine 3βHSD towards pregnenolone, 17-OH pregnenolone and dehydroepiandrosterone in a substrate and species specific manner. Furthermore, kinetic studies revealed Cyt-b(5) to have no influence on the K(m) values while significantly increasing the V(max) values of ovine 3βHSD for all its respective substrates. In addition, the activity of ovine 3βHSD in microsomal preparations was significantly influenced by the addition of either purified Cyt-b(5) or anti-Cyt-b(5) IgG. The results presented in this study indicate that Cyt-b(5) augments 3βHSD activity and represents the first documentation of such augmentation in any species.  相似文献   

10.
Homoursodeoxycholic acid and [11,12-3H]homoursodeoxycholic acid were synthesized from ursodeoxycholic acid and homocholic acid, respectively. Ursodeoxycholic acid (Ia) was converted to 3α,7β-diformoxy-5β-cholan-24-oic acid (Ib) using formic acid. Reaction of the diformoxy derivative (Ib) with thionyl chloride yielded the acid chloride (II) which was treated with diazomethane to produce 3α,7β-diformoxy-25-diazo-25-homo-5β-cholan-24-one (III). Homoursodeoxycholic acid (IV) was formed from the diazoketone (III) by means of the Wolff rearrangement of the Arndt-Eistert synthesis.N-Bromosuccinimide oxidation of homocholic acid (V), which was prepared from cholic acid by the same procedure described above, afforded 3α,12α-dihydroxy-7-oxo-25-homo-5β-cholan-25-oic acid (VI). Reduction of the 7-ketohomodeoxycholic acid (VI) with sodium in 1-propanol gave 3α,7β,12α-trihydroxy-25-homo-5β-cholan-25-oic acid (VII). The methyl ester of 7-epihomocholic acid (VII) was partially acetylated to give methyl 3α,7β-diacetoxy-12α-hydroxy-25-homo-5β-cholan-25-oate (VIII) using a mixture of acetic anhydride, pyridine and benzene. Dehydration of the diacetoxy derivative (VIII) with phosphorus oxychloride yielded methyl 3α,7β-diacetoxy-25-homo-5β-chol-11-en-25-oate (IX). Reduction of the unsaturated ester (IX) with tritium gas in the presence of platinum oxide catalyst followed by alkaline hydrolysis gave [11,12-3H]homoursodeoxycholic acid.  相似文献   

11.
17β-Nandrolone (17β-NT) is one of the most frequently misused anabolic steroids in meat producing animals. As a result of its extensive metabolism combined with the possibility of interferences with other endogenous compounds, detection of its illegal use often turns out to be a difficult issue. In recent years, proving the illegal administration of 17β-NT became even more challenging since the presence of endogenous presence of 17β-NT or some of its metabolite in different species was demonstrated. In bovines, 17α-NT can occur naturally in the urine of pregnant cows and recent findings reported that both forms can be detected in injured animals. Because efficient control must both take into account metabolic patterns and associated kinetics of elimination, the purpose of the present study was to investigate further some estranediols (5α-estrane-3β,17β-diol (abb), 5β-estrane-3α,17β-diol (bab), 5α-estrane-3β,17α-diol (aba), 5α-estrane-3α,17β-diol (aab) and 5β-estrane-3α,17α-diol (baa)) as particular metabolites of 17β-NT on a large number of injured (n=65) or pregnant (n=40) bovines. Whereas the metabolites abb, bab, aba and baa have previously been detected in urine up to several days after 17β-NT administration, the present study showed that some of the isomers abb (5α-estrane-3β,17β-diol) and bab (5β-estrane-3α,17β-diol) could not be detected in injured or pregnant animals, even at very low levels. This result may open a new way for the screening of anabolic steroid administration considering these 2 estranediols as biomarkers to indicate nandrolone abuse in cattle.  相似文献   

12.
Abstract

The pharmacokinetics and toxicology of 2′,3′-dideoxy-β-L-5-fluorocytidine (β-L-FddC) and 2′,3′-dideoxy-β-L-cytidine (β-L-ddC) in mice was investigated. In addition, 2′,3′-dideoxy-β-L-5-azacytidine (β-L-5-aza-ddC) and its α-L-anomer (α-L-5-aza-ddC) were synthesized by coupling the silylated 5-azacytosine derivative with 1-O-acetyl-5-O-(tert-butyldimethylsilyl)-2,3-dideoxy-L-ribofuranose, followed by separation of the α-and β-anomers and were evaluated in vitro against HBV and HIV. β-L-5-aza-ddC was found to show significant anti-HBV activity at approximately the same level as 2′,3′-dideoxy-β-D-cytidine (ddC), which is a known anti-HBV agent. β-L-5-aza-ddC was not cytotoxic to L1210, P388, S-180, and CCRF-CEM cells up to a concentration of 100 μ. Conversely, the α-L-anomer was not active against HBV at the same concentration.  相似文献   

13.
Pyroglutamate-modified Aβ peptides at amino acid position three (Aβ(pE3-42)) are gaining considerable attention as potential key players in the pathogenesis of Alzheimer disease (AD). Aβ(pE3-42) is abundant in AD brain and has a high aggregation propensity, stability and cellular toxicity. The aim of the present work was to study the direct effect of elevated Aβ(pE3-42) levels on ongoing AD pathology using transgenic mouse models. To this end, we generated a novel mouse model (TBA42) that produces Aβ(pE3-42). TBA42 mice showed age-dependent behavioral deficits and Aβ(pE3-42) accumulation. The Aβ profile of an established AD mouse model, 5XFAD, was characterized using immunoprecipitation followed by mass spectrometry. Brains from 5XFAD mice demonstrated a heterogeneous mixture of full-length, N-terminal truncated, and modified Aβ peptides: Aβ(1-42), Aβ(1-40), Aβ(pE3-40), Aβ(pE3-42), Aβ(3-42), Aβ(4-42), and Aβ(5-42). 5XFAD and TBA42 mice were then crossed to generate transgenic FAD42 mice. At 6 months of age, FAD42 mice showed an aggravated behavioral phenotype compared with single transgenic 5XFAD or TBA42 mice. ELISA and plaque load measurements revealed that Aβ(pE3) levels were elevated in FAD42 mice. No change in Aβ(x)(-42) or other Aβ isoforms was discovered by ELISA and mass spectrometry. These observations argue for a seeding effect of Aβ(pE-42) in FAD42 mice.  相似文献   

14.
Steroid Series     
3β-Acetoxy-B-nor-5β-cholestan-6-one (Ia) afforded only one isolatable oxime (IIa), while oximation of 3β, 17β-diacetoxy-B-nor-5β-androstan-6-one (Ib) yielded two isomeric oximes (IIb and IIIb). 7-Aza-5β-cholestan-3β-ol (VIa), 7-aza-5β-androstane-3β, 17β-diol (VIc), and 6-aza-5β-androstane-3β, 17β-diol (VIIc) were synthesized by Beckmann rearrangement of these oximes, followed by reduction with lithium aluminium hydride. The structure of the aza-steroids were established by conversion of the intermediate lactams (IVa, b) into the lactones (IXa, b), prepared from the 3β-acetoxy-B-nor-6-oxo-5β-steroids (Ia, b) by Baeyer Villiger reaction.  相似文献   

15.
Single stranded DNA binding proteins (SSBs) are vital for the survival of organisms. Studies on SSBs from the prototype, Escherichia coli (EcoSSB) and, an important human pathogen, Mycobacterium tuberculosis (MtuSSB) had shown that despite significant variations in their quaternary structures, the DNA binding and oligomerization properties of the two are similar. Here, we used the X-ray crystal structure data of the two SSBs to design a series of chimeric proteins (mβ1, mβ1'β2, mβ1-β5, mβ1-β6 and mβ4-β5) by transplanting β1, β1'β2, β1-β5, β1-β6 and β4-β5 regions, respectively of the N-terminal (DNA binding) domain of MtuSSB for the corresponding sequences in EcoSSB. In addition, mβ1'β2(ESWR) SSB was generated by mutating the MtuSSB specific 'PRIY' sequence in the β2 strand of mβ1'β2 SSB to EcoSSB specific 'ESWR' sequence. Biochemical characterization revealed that except for mβ1 SSB, all chimeras and a control construct lacking the C-terminal domain (ΔC SSB) bound DNA in modes corresponding to limited and unlimited modes of binding. However, the DNA on MtuSSB may follow a different path than the EcoSSB. Structural probing by protease digestion revealed that unlike other SSBs used, mβ1 SSB was also hypersensitive to chymotrypsin treatment. Further, to check for their biological activities, we developed a sensitive assay, and observed that mβ1-β6, MtuSSB, mβ1'β2 and mβ1-β5 SSBs complemented E. coli Δssb in a dose dependent manner. Complementation by the mβ1-β5 SSB was poor. In contrast, mβ1'β2(ESWR) SSB complemented E. coli as well as EcoSSB. The inefficiently functioning SSBs resulted in an elongated cell/filamentation phenotype of E. coli. Taken together, our observations suggest that specific interactions within the DNA binding domain of the homotetrameric SSBs are crucial for their biological function.  相似文献   

16.
Numerous studies have shown that the estrogen receptor beta (ERβ) and interleukin 6 receptor (IL-6R) had interaction in many tumors, including lung cancer. Previous studies found that ERβ5 exhibits a different biological function compared with the other subtypes of ERβ. Therefore, this study mainly explores the interaction between ERβ5 and IL-6R in the progression of lung cancer. We found that the expression of ERβ5, IL-6 and glycoprotein 130 (GP130) were significantly increased (P < 0.001) and the 5-year survival rate with the co-expression of ERβ5 and GP130 is significantly lower (P = 0.0315) in non-small cell lung cancer (NSCLC) patients. The cell proliferation, invasion, and cell cycle were markedly increased, and the cell apoptotic was markedly inhibited with the concurrent action of ERβ5 and IL-6 in A549 cells (P < 0.05). In addition, the expression of ERβ5, GP130, p-AKT, and p-44/42 MAPK was also significantly increased in A549 cells (P < 0.05). These results indicate that ERβ5 and GP130 can synergistically promote the progression of NSCLC and maybe combined as an independent prognostic factor in patients. In addition, these results also provide a theoretical basis for the combined targeting therapy of ERβ5 and GP130 in NSCLC.  相似文献   

17.
This study reports the synthesis of several new steroidal lactones: 5α,6β-dibromo-17a-oxa-D-homoandrostane-3β-yl-3'-oxapentanoate (11), 5α,6β-dibromo-17a-oxa-D-homoandrostane-3β-yl-propanoate (12), 5α,6β-dibromo-17a-oxa-D-homoandrostane-3β-yl-butanoate (13), 5α,6β-dibromo-17a-oxa-D-homoandrostane-3β-yl-pentanoate (14), 5α,6β-dibromo-17a-oxa-D-homoandrostane-3β-yl-hexanoate (15), 17a-oxa-D-homoandrost-5-en-17-one-3β-yl-3'-oxapentanoate (16), 17a-oxa-D-homoandrost-5-en-17-one-3β-yl-propanoate (17), 17a-oxa-D-homoandrost-5-en-17-one-3β-yl-butanoate (18), 17a-oxa-D-homoandrost-5-en-17-one-3β-yl-pentanoate (19) and 17a-oxa-D-homoandrost-5-en-17-one-3β-yl-hexanoate (20) with a therapeutic potential as antiandrogens. The biological effect of these steroids was demonstrated in in vivo as well as in vitro experiments. In the in vivo experiments, we measured the activity of ten new steroidal derivatives on the weight of the prostate and seminal vesicle glands of gonadectomized hamsters treated with testosterone. For the in vitro studies, we determined the IC(50) values by measuring the concentration of the steroidal derivatives that inhibits 50% of the activity of the 5α-reductase enzyme present in human prostate and also its binding capacity to the androgen receptors (AR) obtained from rat's prostate cytosol. The results from these experiments indicated that compounds 11-20, significantly decreased the weight of the prostate and seminal vesicles as compared to testosterone treated animals; this reduction of the weight of these glands was comparable to that produced by Finasteride. On the other hand, compounds 11-20 inhibited the enzyme 5α-reductase, with compounds 14-19 (IC(50) values of 4.2 ± 0.95, 0.025 ± 0.003, 1.2 ± 0.45, 1.2 ± 0.1, 0.028 ± 0.003, and 0.069 ± 0.005 nM, respectively) showing the highest inhibitory activity. The results from the in vitro experiments indicated that only 15-17 bind to the AR.  相似文献   

18.
Steroidal allenes, stigmasta-5,24(28),28-trien-3β-ol (allene-I) and cholesta-5,23,24-trien-3β-ol (allene-II), were tested for their inhibitory effects on growth, development, and steroid metabolism in the silkworm, Bombyx mori. The allenic analogue (I) of stigmasta-5,24(28)-dien-3β-ol (2) was found to be a specific inhibitor for the conversion of stigmast-5-en-3β-ol (1) to stigmasta-5, 24(28)-dien-3β-ol (2) and/or stigmasta-5,24(28)-dien-3β-ol (2) to 24,28-epoxy-stigmast-5-en-3β-ol (3) This inhibitor held the larvae in the second instar for more than 20 days without developing to the third instar, when administered alone or with the dietary sterols of stigmast-5-en-3β-ol (1) or stigmasta-5,24(28)-dien-3β-ol (2). The second allene (II) with a similar structure to cholesta-5,24-dien-3β-ol (4) was also found to be an inhibitor for insect growth and development, but it appeared not to be acting via inhibition of sterol dealkylation.  相似文献   

19.
The syntheses of 15β-carboxyethylmercapto-5α-dihydrotestosterone, 15β-carboxy-ethylmercapto-5α-androstane-3β, 17β-diol and 15β-carboxyethylmercapto-5α-androstane-3α, 17β-diol and the preparation of their bovine serum albumin (BSA) conjugates are described. These conjugates were employed for the generation of specific antisera suitable for radioimmunoassay (RIA) of 5α-dihydrotestosterone (5α-DHT), 5α-androstane-3β, 17β-diol (3β3-diol) and 5α-androstane-3α, 17β-diol (3α-diol).  相似文献   

20.
6(I),6(IV)-Di-O-[α-l-fucopyranosyl-(1→6)-2-acetamido-2-deoxy-β-d-glucopyranosyl]-cyclomaltoheptaose (βCD) {6(I),6(IV)-di-O-[α-l-Fuc-(1→6)-β-d-GlcNAc]-βCD (5)} and 6-O-[α-l-fucopyranosyl-(1→6)-2-acetamido-2-deoxy-β-d-glucopyranosyl]-βCD {6-O-[α-l-Fuc-(1→6)-β-d-GlcNAc]-βCD (6)} were chemically synthesized using the corresponding authentic compounds, bis(2,3-di-O-acetyl)-pentakis(2,3,6-tri-O-acetyl)-βCD as the glycosyl acceptor and 2,3,4-tri-O-benzyl-α-l-fucopyranosyl-(1→6)-3,4-di-O-acetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-d-glucopyranosyl trichloroacetimidate as the fuco-glucosaminyl donor. NMR confirmed that α-l-Fuc-(1→6)-d-GlcNAc was bonded by β-linking to the βCD ring. To evaluate biological efficiency, the biological activities of the new branched βCDs were examined. The cell detachment activity of 5 was lower than that of 6 in real-time cell sensing (RT-CES) assay, indicating that 5 has lower toxicity. In SPR analysis, 5 had a higher special binding with AAL, a fucose-recognizing lectin. These results suggest that 5 could be an efficient drug carrier directed at cells expressing fucose-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号