首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ultrastructures of sieve elements of secondary phloem of 1–2 year old branchlet of tropical deciduous tree Dalbegia odorifera T. Chen growing on Hainan Island were studied under transmission electron microscope and a comparation was made between the sieve elements in leaf-bearing and leaf-absent period. During the leaf-bearing period, there was a tailed spindleshaped P-protein body in each mature sieve element. The main part of the P-protein body con sisted of a disordered fine fiber mass with two crystalline tails. The sieve elements had horizontal end walls with simple sieve plate. The inner layers of the wall near the sieve plate appeared intumescent, protruding into the sieve element lumen. During the leaf-absent period, a functional phloem remained about the same thickness as that during the leaf-bearing period. The sieve elements in the leaf-absent period contained normal protoplasts and the P-protein and the sieve plate pores had the same structures as those during the leaf-bearing period. More starch grains and vesicles were found in sieve elements in the leaf-absent period.  相似文献   

2.
the majority of fusiform initials are multinucleate, a few having as many as eight nuclei. Their length increases down the stem from the apex, attaining a maximum in the old trunk and declining slightly near the base. The width of the initials exhibits similar variation. In the main trunk, fusiform initials, relatively short at the time of cambial reactivation (April), elongate steadily until July. There is a sharp decline in August/September, the cell length recovering during the winter. Seasonal variation in cell width is inconsistent. Ray cell initials, on the other hand, do not vary much in size. They divide more frequently in the older stem, adding to the size of rays. In young shoots, short and uni- to biseriate rays are most abundant, whereas tall and multiseriate rays dominate the cambial surface in the trunk region throughout the year, with their minimum population in the early phase of cambial activity and the maximum during peak activity. The overall proportion of fusiform initials in the cambial cylinder initially increases with age, from young shoots towards the base, and later becomes more or less constant in the trunk region. Here it remains noticeably high during the active growth period and relatively low for the rest of the year.  相似文献   

3.
the majority of fusiform initials are multinucleate, a few having as many as eight nuclei. Their length increases down the stem from the apex, attaining a maximum in the old trunk and declining slightly near the base. The width of the initials exhibits similar variation. In the main trunk, fusiform initials, relatively short at the time of cambial reactivation (April), elongate steadily until July. There is a sharp decline in August/September, the cell length recovering during the winter. Seasonal variation in cell width is inconsistent. Ray cell initials, on the other hand, do not vary much in size. They divide more frequently in the older stem, adding to the size of rays. In young shoots, short and uni- to biseriate rays are most abundant, whereas tall and multiseriate rays dominate the cambial surface in the trunk region throughout the year, with their minimum population in the early phase of cambial activity and the maximum during peak activity. The overall proportion of fusiform initials in the cambial cylinder initially increases with age, from young shoots towards the base, and later becomes more or less constant in the trunk region. Here it remains noticeably high during the active growth period and relatively low for the rest of the year.  相似文献   

4.
海南岛若干落叶树木有功能韧皮部的季节变化   总被引:2,自引:1,他引:1  
  相似文献   

5.
To study the involvement of potassium in wood formation, poplar plants ( Populus tremula L. x Populus tremuloides Michx.) were grown over a period of one growing season, under different potassium regimes. Seasonal changes in cambial potassium content, osmotic potential, and cambial activity correlated strongly throughout the season, increasing from spring to summer and decreasing from summer to autumn. Moreover, changing the potassium supply during the growing season affected the seasonal changes of these parameters in a similar way. Low potassium supply markedly reduced cambial activity, the number of expanding cambial cell derivatives, the seasonal rate of radial wood increment, and the vessel frequency. The possible effect of hormones on potassium-dependent cambial growth was investigated and revealed that abscisic acid (ABA) strongly decreased the potassium content within the cambial zone and reduced cambial activity, as well as the number of expanding cambial cell derivatives. In summary, our results indicate a key role for potassium in the regulation of cambial growth and wood formation due to its strong impact on osmoregulation in expanding cambial cells. They also demonstrate involvement of ABA in regulation of potassium-dependent cambial growth.  相似文献   

6.
We investigate cambial growth periodicity in Brachystegia spiciformis, a dominant tree species in the seasonally dry miombo woodland of southern Africa. To better understand how the brevi-deciduous (experiencing a short, drought-induced leaf fall period) leaf phenology of this species can be linked to a distinct period of cambial activity, we applied a bi-weekly pinning to six trees in western Zambia over the course of one year. Our results show that the onset and end of cambial growth was synchronous between trees, but was not concurrent with the onset and end of the rainy season. The relatively short (three to four months maximum) cambial growth season corresponded to the core of the rainy season, when 75% of the annual precipitation fell, and to the period when the trees were at full photosynthetic capacity. Tree-ring studies of this species have found a significant relationship between annual tree growth and precipitation, but we did not observe such a correlation at intra-annual resolution in this study. Furthermore, a substantial rainfall event occurring after the end of the cambial growth season did not induce xylem initiation or false ring formation. Low sample replication should be taken into account when interpreting the results of this study, but our findings can be used to refine the carbon allocation component of process-based terrestrial ecosystem models and can thus contribute to a more detailed estimation of the role of the miombo woodland in the terrestrial carbon cycle. Furthermore, we provide a physiological foundation for the use of Brachystegia spiciformis tree-ring records in paleoclimate research.  相似文献   

7.
There is general agreement that in many regions additional precipitation with climate change will not be able to balance the increased evaporation rate induced by higher air temperatures, causing periods of intense drought. Although seedlings of Abies balsamea growing in the boreal forest are known for their resistance to harsh environmental conditions, the impact of water stress on their growth still remains largely unexamined. The aim of this study was to investigate growth responses of this species during and after a dry period by monitoring cambial and apical meristem activity at short time scale. Meristem growth was studied from May to October 2005 on seedlings of A. balsamea submitted to a 20-day-long dry period in June–July. Lower rates of shoot lengthening were observed in non-irrigated seedlings only in the first part of the growing season. Irrigated and non-irrigated trees showed the same trend of xylem formation and timings of cell differentiation. Cell production during cambial activity was estimated at about one xylem cell per day thus achieving in 100 days 108 tracheids in the tree ring and a width of 2 mm, with thinner tree rings observed in non-irrigated plants. A reduction of up to 50% in lumen area and cell diameter was observed for the cells produced during the dry period. Response of A. balsamea seedlings to a 20-day-long dry period consisted of good resistance of the cambial meristems during and after water stress, high sensitivity and rapid recovery of cell sizes during water depletion and slow but effective recovery of shoot growth after treatment.  相似文献   

8.
Sundberg B  Little CH  Cui K 《Plant physiology》1990,93(4):1295-1302
Free and conjugated indole-3-acetic acid (IAA) were measured by quantitative gas chromatography-selected ion monitoringmass spectrometry in the extraxylary region of the stem of large Pinus sylvestris (L.) trees during the annual cycle of cambial activity and dormancy. The extraxylary region at the stem top and bottom was divided into 3 and 4 fractions, respectively, for the free IAA measurements, while the entire extraxylary region was extracted when the IAA-conjugates were analyzed. The effect on the distribution pattern of expressing IAA level as a concentration (per gram fresh weight or dry weight) and as total amount (per square centimeter) was examined. The IAA level was much higher in the cambial region than in the fractions that contained the nonfunctional phloem and the periderm. The largest IAA concentration occurred in the fraction that included the cambium, whereas the total amount of IAA was greatest in the phloemcontaining fraction. The significance of the nonuniform radial distribution of IAA for estimating the IAA concentration in the cambial region is discussed in relation to how the cambial region is sampled. A slight Iongitudinal gradient in IAA concentration, decreasing from the top to the bottom of the stem, was observed in the cambial region when the cambium was in the grand period of activity, but not at the end of the cambial growing period. In all fractions, the total amount of IAA was highest when the cambium was active. However, the IAA concentration in the cambial region did not follow the same pattern, actually being lowest during the tracheid production period at the stem bottom. IAA conjugates were detected on all sampling dates except June 23, but their concentrations were always less than 14% of that of free IAA, and their occurrence did not obviously vary during the year. In general, there was a higher concentration of ester conjugates than of amide conjugates, and the ester conjugates were more abundant at the top of the stem than at the bottom.  相似文献   

9.
The regulation of cell-division activity in the vascular cambium and of secondary xylem and phloem development is reviewed for temperate-zone tree species in relation to auxins, gibberellins, abscisic acid, cytokinins, and ethylene. Representatives of the first four of these PGR classes (IAA, GA1, GA4, GA7, GA9, GA20, ABA, Z, ZR, DCA) have been identified conclusively by mass spectrometry in the cambial region in some Pinaceae, but not in any hardwood species. Endogenous ethylene has yet to be definitively characterized in this region in any species. Evidence concerning the source and metabolism of cambial PGRs is scanty and inconclusive for both conifers and hardwoods.Most cambial PGR research has focused on IAA. Much evidence indicates that this PGR is transported primarily in the cambial region at a rate of about 1 cm h–1, and that the transport is basipetally polar. GC-MS measurements have established that endogenous IAA levels in the cambial region of Pinaceae are highest during earlywood development, and that cambial IAA levels may be considerably lower in hardwoods than in conifers. IAA appears to be involved in the control of cambial growth in conifers and hardwoods in at least three specific ways, viz. maintenance of the elongated form of fusiform cambial cells, promotion of radial expansion in primary walls of cambial derivatives, and regulation of reaction wood formation. In addition, it is well established that exogenous IAA promotes vessel development in hardwoods. In both conifers and hardwoods, exogenous IAA stimulates cambial growth in 1-year-old shoots treated late in the dormant period or after the start of the cambial growing period. However, exogenous IAA has little effect on cambia that are older or are in what is hypothesized to be the resting stage of dormancy. Thus it is uncertain whether IAA is directly involved in the control of cambial growth, or acts indirectly through a process such as hormone-directed transport.It is not yet clear if gibberellins play a role in the control of cambial growth in conifers. However, in hardwoods, there is evidence that they inhibit vessel development and act synergistically with IAA in promoting cambial activity and fiber elongation. In both conifers and hardwoods, foliar sprays of gibberellins increase the accumulation of biomass above-ground, particularly in the main axis, while decreasing it in the roots.There are as yet no definite conclusions to be drawn concerning the involvement of ABA, cytokinins, and ethylene in the regulation of cambial growth in conifers or hardwoods. In conifers, ABA may antagonize the promotory effect of IAA on cambial cell division and tracheid radial expansion under conditions of water stress, but high endogenous ABA levels do not appear to be associated with the formation of latewood or the onset of cambial dormancy. Some evidence suggests that exogenous cytokinins enhance the promotory effect of IAA on cambial growth, particularly ray formation, in both hardwoods and conifers. However, exogenous cytokinins, by themselves, appear to be ineffective. In hardwoods, ethylene-generating compounds satisfy the chilling requirement of the dormant cambium and promote the formation of wood having an apparently greater content of lignin and extractives. Ethylene-generators also affect wood development in conifers and accelerate cambial growth at the application site in both hardwoods and conifers.  相似文献   

10.
Summary

The vegetative growth of the olive tree in Messina is described. The growth period begins at the end of March and prosecutes without interruption as late as November. The secondary wood tissue producted during summer time (from Yuly to August) is abnormal being of a parenchimatoide type. During winter there is a well defined rest period.

The cambium produces secondary wood and bark with an alternate rythm, so that in spring the wood production prevails on the liber and in autumn the opposite condition is realized.

Each phase of production of secondary conducting tissues (wood as well as bark) is followed by a phase of starch storing.

In the stem several false wood rings are produced during one year, while in the young branches each wood ring corresponds to one year.

The longitudinal growth and cork formation on the branches of the year are particularly pronounced during spring (March-May).

Cambium cells swell in a characteristic way before they start dividing and collapse during the resting periods, thickening evidently their walls, so that in winter it is difficult to distinguish a cambial cell from a parenchimatic one.

The behaviour of the vegetative growth of the olive tree in Messina is discussed on the base of the climatic characters of the region.  相似文献   

11.
Secondary phloem production in four deciduous (Albizzia lebbeck,Dalbergia sissoo, Tectona grandis and Terminalia crenulata)and three evergreen plants (Calophyllum inophyllum, Mangiferaindica and Morinda tinctoria) is briefly described. The totalduration of phloem production for each year was worked out forall these plants. In three of the four deciduous trees therewere two instalments of phloem production in correspondencewith the presence of two flushes of cambial activity while inTectona grandis and in all the three evergreen trees there wasonly one instalment. The time of initiation and cessation ofphloem tissue production was found to be variable in the differentplants studied. Periodicity in the production of different componentsof phloem tissue as well as the difference in the dimensionsof the different phloic elements produced during each flushof cambial activity resulted in detectable growth increments(or ‘rings’) within the phloem. There was a distinctshortening of the different phloem elements during the approachof dormancy/least activity. Conspicuous changes were found inthe ergastic contents of phloem parenchyma and ray cells adjacentto the cambial zone during the initiation of cambial activityand during the approach of dormancy/least activity. Seasonal growth, secondary phloem, deciduous and evergreen trees, cambial activity  相似文献   

12.
木材(次生木质部)是树木形成层细胞分化的产物,形成层的活动方式不仅影响木材的产量,而且影响木材的结构和性质.利用透射电子显微镜观察了生长在北京地区的毛白杨(Populus tomentosa Carr.)枝条形成层带细胞一个完整活动周期的超微结构变化.在木质部母细胞完全恢复活动之前,形成层纺锤状原始细胞的分裂和韧皮部细胞的分化已经开始.枝条上芽的展开和幼叶的生长可能决定了形成层带细胞的这种活动方式.透射电镜观察更清楚地揭示了树木形成层细胞在活动初期的分化特点.活动期形成层细胞中的大液泡在进入休眠期后逐渐分成许多小液泡分散在细胞质中.随着液泡融合逐渐消失的深色蛋白类物质又重新充满了大部分液泡.油滴和淀粉颗粒的年变化情况同液泡中的蛋白类物质基本相似.无论在活动期还是休眠期,形成层纺锤形细胞的质膜上都发现有许多可能与物质运输有关的小泡状内折.由核膜、内质网和高尔基体及其分泌小泡组成的细胞内膜系统,在形成层活动周期的不同阶段,其形态和分布明显不同,尤其在形成层细胞的恢复活动及其衍生木质部细胞次生壁的沉积过程中发挥着重要作用.整个活动周期中,形成层纺锤形细胞的径向壁都比弦向壁厚,处在休眠期的形成层带细胞,其径向壁与弦向壁的差别则更明显.形成层恢复活动时,径向壁上特别是与弦向壁相连的角隅处出现部分自溶现象.细胞壁特别是径向壁的变薄是形成层细胞恢复活动的重要特征.  相似文献   

13.
Summary

The evolution of cambial activity during one year in Viburnum Tinus L. in Bari has been studied. The research seems to be particularly difficult in this evergreen shrub. The wood is of the porous diffused type with scarse evidence of wood rings. The vessel diameter varies rather irregularly in the wood ring; on the other side the fibers show wide variations and may be assumed as a good index of the wood ring evolution. Both in the branch and in the stem only one wood ring each year is formed.

Cambial activity prosecutes during the whole year, with an irregular step. During the period July-beginning of September the cambium devides very slowly, or possibly stops deviding.

The early wood is produced earlier in the branch than in the stem; namely in February-end of May in the branch and in March-beginning of June in the stem. The stimulating growth stuffs evidently proceeds downwards from the top to the base of the plant. The relations between ring evolution and climatic factors are discussed. The peculiar cambial poussée during the month of June seems to be correlated with the exceptionally aboundant rainfall of May in Puglia in 1947.

The late wood is formed during the other months discontinuosly. The alternation between the two phases of cambium division and wood lignification has been focussed. The wood ring in Viburnym Tinus is annual and the early wood differentiates in spring.  相似文献   

14.
Cytochemical and ultrastructural studies indicated that compound spherical bodies observed near the sieve plate in the sieve tube members during the period of cambial dormancy in the shoots of Eucommia ulmoides Oliv. were polysaccharide bodies different from the polysaccharide grains in other parenchyma cells in shoots, and were similar to cell walls in their staining properties. The compound spherical bodies occurred in the sieve elements during the period of cambial rest and disappeared in the sieve elements during the period of cambial quiescence and activity.  相似文献   

15.
I Iliev  R Savidge 《Phytochemistry》1999,50(6):953-960
Proteolytic activity in the cambial zone and developing xylem of Pinus banksiana Lamb. was investigated over an annual cycle of growth and dormancy. Highest proteolytic activity was associated with the most active period of primary-wall radial expansion of cambial derivatives, in early spring, before protoplasmic autolysis was initiated in developing earlywood. Three pH maxima of proteolytic activity, near pH 3.0, 6.5 and 9.5, were observed at that time. In general, activities measured at pH values below 7.0 were greater than those determined above pH 7.0 at all stages in the annual cycle, in both cambial zone and developing xylem, although elevated activity at alkaline pH was also observed during springtime growth. Polyvinylpolypyrollidone (PVP) treatment markedly enhanced pH 7.5 but not pH 4.0 proteolytic activity in the cambial zone, but not in developing xylem, indicating the presence of PVP-binding proteinase regulators in the cambium. By fractionation and effector studies total proteolysis was determined to comprise interactions between serine, cystine, aspartate and metallo-proteases having MWs, by gel chromatography, between 10 and 100 kDa. The observations point to a complex regulatory mechanism controlling the presence and catalytic rates of the distinct types of proteases in the cambial region throughout an annual cycle of growth and dormancy.  相似文献   

16.
杜仲休眠枝条中多糖颗粒变化的超微结构研究   总被引:3,自引:0,他引:3  
在对杜仲(Eucommia ulmoides Oliv.)形成层休眠期枝条的超微结构研究中发现,在筛管分子的筛板附近有一种复合球形体。细胞化学研究证明,这是一种多糖颗粒,但不同于枝条其他薄壁细胞中的多糖颗粒,而与细胞壁中的多糖相似。这种复合球形体只出现于形成层生理休眠期的筛分子中,而在被动休眠期和活动的筛分子中则看不到。  相似文献   

17.
Effect of Regeneration After Girdling on Tree Growth in Eucommia ulmoides   总被引:1,自引:0,他引:1  
Cytochemical and ultrastructural studies indicated that compound spherical bodies observed near the sieve plate in the sieve tube members during the period of cambial dormancy in the shoots of Eucommia ulmoides Oliv. were polysaccharide bodies different from the polysaccharide grains in other parenchyma cells in shoots, and were similar to cell walls in their staining properties. The compound spherical bodies occurred in the sieve elements during the period of cambial rest and disappeared in the sieve elements during the period of cambial quiescence and activity.  相似文献   

18.
Microdialysis probes were used to sample the cambial region of Picea abies stems during the cambial reactivation period. The concentrations of ethylene and zeatinriboside in each sample were measured by gas chromatography and enzyme-linked immuno-sorbent assay, respectively. The ethylene level increased throughout the experimental period, except for a temporary decrease that occurred about the time of budburst on the lower branches. The zeatin-riboside level changed relatively little during the same period. The results indicate that increased activity in the cambial region was associated with an increase in the level of ethylene but not of zeatinriboside.  相似文献   

19.
Age-dependent xylogenesis in timberline conifers   总被引:3,自引:0,他引:3  
Neither anatomical change nor physiological abnormalities have been observed in the cambia of older trees. However, different sensitivity and period of significant responses to climate suggest the existence of some age-related change in the patterns of cambial activity and/or wood cell formation. Here, weekly cambial activity and timing and duration of xylem cell enlargement and wall thickening were compared in adult (50-80 yr) and old (200-350 yr) trees of Larix decidua, Pinus cembra and Picea abies at the Alpine timberline during 2004 and 2005. Timings and durations of xylogenesis differed between adult and old trees, with 2-3 wk shorter cambial activity found in the latter. The delayed onset of cambium division and lower cell production in old trees, with respect to adult trees, led to reductions of 15-20% in the overall duration of xylem differentiation. These results demonstrate that cambial dynamics change during the tree lifespan and that the time window of tree-ring production shortens with age. Variations in the period of xylem growth may be the cause of age-dependent responses to climate. The observed shorter xylogenesis in older plants at the Alpine timberline could be related to a size effect and not just to age per se.  相似文献   

20.
Tree-ring (TR) observations provide important data on long-term forest dynamics and their underlying ecophysiological mechanisms. To elucidate the seasonal link between photosynthetic carbon acquisition and TR growth, we analyzed the correlation between observed TR data (carbon sink) and model-estimated net primary production (NPP; carbon source). Temporal trends of the TR–NPP correlation over the last century were also analyzed to identify influences of past climate changes. We used TR data from Picea glehnii at seven sites on Hokkaido Island, Japan, which were obtained from the International Tree-Ring Data Bank. At each site, NPP was estimated using the Vegetation Integrative Simulator for Trace gases model, which was driven by long-term (1900–2010) meteorological data. Site-mean tree-ring width index (TRWI) chronologies were analyzed to reveal any relationship with the current or previous year’s annual or monthly NPP. We found moderate to strong correlations between TRWIs and model-estimated monthly NPP from April to June, especially in June of the current year, but no clear spatial trend was observed. During the twentieth century, the TRWI–NPP correlation increased for February, March, April, and July NPP of the current year and for October NPP of the previous year. Ecophysiologically, the period from April to June corresponds to the season when tree cambial cells are formed in the study area. Our findings suggest that photosynthate produced during this cambial growth season is allocated to stem growth and that this source allocation season has become longer due to past environmental changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号