首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从菠菜叶中提取 PSII 颗粒和叶绿体、经亚硫酸处理后发现:由 PSII 颗粒催化的 DCIP光还原速率依 SO_3~(2-)浓度增高而降低、伤害部位发生于 PSII 的氧化侧,接近水的部位。在黑暗条件下 H_2O→DCIP 和 DPC→DCIP 的电子传递均不受影响。在特定 SO_3~(2-)浓度下,PSII 颗粒的伤害随处理时间的延长而加重,其伤害机理与33kD 多肽的解离和 Mn 的流失有关。SO_3~(2-)对新鲜叶绿体并不伤害;对老化的叶绿体则伤害明显,DCIP 光还原速率依老化时间的延长而降低。Mn 含量的减少与 DCIP 光还原速率的降低呈正相关,试样中添加 EGTA后电子传递速率受害更为严重。  相似文献   

2.
PSⅡ1)颗粒的荧光产值依SO32-浓度和处理时间的增加而减少,pH7.3以上受害严重;SO32-对新鲜叶绿体的光化学活性不产生伤害,对老化叶绿体伤害严重,其叶绿素的分解速度低于DCIP2)光还原的降低速度。Ca2+能减轻或消除SO32-对叶绿体的伤害;对于PSⅡ颗粒则有加剧SO32-伤害的作用,其规律可用Logistic方程表示。  相似文献   

3.
Cadmium ions, as an environmental pollution factor, significantly inhibited the photosynthesis especially, photosystem Ⅱ activity in isolated spinach chloroplasts. The presence of 5 mmol/l Cd2+ inhibited the O2-evolution to 53%. Cd2+ reduced the activity of photoreduction of DCIP and the variable fluorescence of chloroplasts and PSⅡ preparation. The inhibited DCIP photoreduction activity could only be restored slightly by the addition of an artificial electron donor of PSII, DPC, and the inhibited variable fluorescence could not be obviously recovered by the addition of NH2OH, another artificial electron donor of PSⅡ. It is considered that, besides the oxidizing side of PSI1, Cd2+ could also inhibit directly the PSⅡ reaction center. The inhibitory effect of Cd2+ on the whole chain electron transport (H2O→MV) was more serious than on O2-evolution (H2O→DCMU). It is suggested that the oxidizing side of PSⅡ is not the only site for Cd2+ action. There may be another site inhibited by Cd2+ in the electron transport chain between PSⅠ and PSⅡ.  相似文献   

4.
Chilling (1 ℃ or 5℃, 16 h) treatment inhibited PSⅡ but not PSⅠ of photosynthesis in cucumber, a chilling sensitive plant. Oxygen evolution, variable fluorescence, and DCIP photoreduction were inhibited significantly, and the latter two could be recovered to the control level by adding artificial electron donors. These results suggest that chilling temperature damages PSⅡ of cucumber only on the oxidizing side and does not affect its reaction center.  相似文献   

5.
本文以大麦叶片为实验材料,研究了盐酸胍修饰对类囊体膜能量分配及电子传递的影响。结果表明:盐酸胍处理类囊体膜,室温下F685荧光强度,随着盐酸胍浓度的增加而逐渐下降。盐酸胍处理导致类囊体膜在低温(77K)下F685/F786比值下降,并随着盐酸胍浓度的增加而加剧。盐酸胍处理抑制类囊体膜以H2O为电子供体的DCIP光还原速度和Chla诱导荧光产率,这种抑制作用可分别为加入PSII的人工电子供体DPC和  相似文献   

6.
7.
The effects of osmotic dehydration in wheat leaves ( Triticum aestivum L. cv. Longchun No. 10) on the photochemical function and protein metabolism of PSII were studied with isolated thylakoid and PSII membranes. The results indicated that PSII was rather resistant to water stress as mild water deficit in leaves did nut significantly affect its activity. However, extreme stress conditions such as 40% decrease in relative water content (RWC) or 1.8 MPa in water potential (Ψ) caused ca 50% reduction in O2 evolution and ca 25% inhibition of DCIP (2.6-dichlorophenol indophenol) photoreduction of PSII. In addition, it was found that the inhibited DCIP photoreduction of PSII could not be reversed by DPC (2.2-diphenylcarbazide), a typical electron donor to PSII, suggesting that water stress did not affect electron donation to PSII. Urea-SDS-PAGE and western blot analysis showed that the steady slate levels of major PSII proteins, including the D1 and D2 proteins in the PSII reaction center, declined on a chlorophyll basis with increasing water stress, possibly as a result of increased degradation. In vitro translation experiments and quantitative analysis of chloroplast RNAs indicated that the potential synthesis of chloroplast proteins from their mRNAs was impaired by water stress. From the results it is concluded that the effects of water stress on PSII protein metabolism, especially on the reaction center proteins, may account for the damage to PSII photochemistry.  相似文献   

8.
Singh  Abhay K.  Singhal  G.S. 《Photosynthetica》1999,36(1-2):213-223
Irradiation of thylakoid membranes at 40 °C resulted in complete inhibition of photosystem (PS) 2 activity measured as 2,6-dichlorophenol indophenol (DCIP) photoreduction either in the absence or presence of 1,5-diphenylcarbazide (DPC). Concomitant with the inactivation of PS2 activity, several thylakoid proteins were lost and high molecular mass cross-linking products appeared that cross-reacted with antibodies against proteins of PS2 but not with antibodies against proteins of other three complexes PS1, ATP synthase, and cytochrome b6f. Irradiation of thylakoid membranes suspended in buffer of basic pH or high concentration of Tris at 25 °C resulted in the formation of cross-linking products similar to those in thylakoid membranes irradiated at 40 °C. Presence of radical scavengers and DPC during the high temperature treatment prevented the formation of cross-linking products. These results suggest the involvement of oxygen evolving co mplex (OEC) in the formation of cross-linking between PS2 proteins in thylakoid membrane irradiated at high temperature. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

9.
(1) Similar results were obtained after controlled digestion of spinach chloroplasts with trypsin and chymotrypsin, but the specificity of digestion of chymotrypsin differed from that of trypsin. Trypsin weakly uncoupled photosynthetic electron transport but chymotrypsin did not. (2) Both changes of DCIP and Fecy reduction activity and the recovery of CCCP inhibition by electron donors of PSⅡ during proteolytic enzyme digestion showed that trypsin not only affected oxidizing side and reducing side of PSⅡ, but also partially inactivated the reaction center of PSⅡ. (3) The effects of CCCP on photosynthetic electron transport in chloroplasts digested with trypsin and chymotrypsin indicated the probable presence of "channel" in PSⅡ. These results support the interpretation that there is a fine structure in PSⅡ membrane. Modification of the protein components of PSⅡ in the membrane might alter their function.  相似文献   

10.
Thylakoid membranes were isolated and purified from diploid filamentous sporophytes of Porphyra yezoensis Ueda using sucrose density gradient ultracentrifugation (SDGUC). After thylakoid membranes were solubilized with SDS, the phtosystem II (PSII) particles with high 2, 6-dichloroindophenol (DCIP) photoreduction activity were isolated by SDGUC. The absorption and fluorescence spectra, DCIP photoreduction activity and oxygen evolution activity of the thylakoid membranes and PSII particles were determined. The polypeptide composition of purified PSII particles was distinguished by SDS-PAGE. Results showed that PSII particles of sporophytes differed from the gametophytes in spectral properties and polypeptide composition. Apart from 55 kDa D1-D2 heterodimer, CP47, CP43, 33 kDa protein, D1, D2, cyt b559 and 12 kDa protein were identified from PSII particles from sporophytes; a new 102 kDa protein was also detected. However, cyt c-550, 20 kDa, 14 kDa and 16 kDa proteins found in PSII particles from gametophytes were not detected in the sporophytes.  相似文献   

11.
The photochemical activity of chloroplasts and subchloroplastparticles isolated from primary bean leaves between the 4thand 24th hour of illumination of etiolated seedlings is thesubject of this paper. The photosystem I activity (oxygen uptakein the presence of MV, DCIP, ascorbate and DCMU), expressedon a unit chlorophyll basis, decreased approximately 10-foldbetween 4 and 8 h of greening. At the same time the photosystemII activity (DCIP photoreduction in the presence of DPC) wasreduced to a half. The photosystem I activity also decreasedin all hitherto investigated fractions which were isolated fromthe digitonin-treated chloroplasts. However, at the initialphase of greening this decrease was the most significant inthe fraction containing heavy particles. After 24 h of greening DCMU, at concentrations higher than 10–10M, limited the rate of ferricyanide photoreduction by isolatedchloroplasts, whereas after 6 h of greening this effect wasobservable even in the presence of 10–12 M DCMU. The resultsobtained demonstrated that under those conditions both photosystemswere active after 4 h of greening and PS I activity developedmore rapidly than that of PS II. It also follows from the presenteddata that the water splitting reactions were delayed in developmentas compared to the other reactions investigated, and that PSII units may limit the electron flow in chloroplasts at earlierstages of leaf greening.  相似文献   

12.
Chloroplasts were isolated from Spinacia olerecea L. and Doblichos lablab L. Chloroplasts suspension was stored in refrigerator at 5–8 ℃. Photochemical activities and chlorophyll content of chloroplasts at different times of storage were deter- mined. The results can be summarized as follows: 1. In the course of chloroplasts ageing, the lost of K3Fe(CN)6 photo reduction activity was more than that of DCPIP photoreduction activity. 2. The activity of K3Fe(CN)6 photoreduction during storage began to decrease markedly after 12 hours, but activity of DCPIP photoreduction began to decrease markedly after 24 hours. 3. The DCPIP photoreduction activity of aged chloroplasts was stimulated by the addition of 1.5-diphenylcarbazide. 4. Destruction of oxidized side of PSⅡ was earlier and higher than that of the other side (from the active center of PSⅡ to the reduced side of PSⅠ). 5. During chloroplasts ageing, the decrease of chlorophyll content was less than the rate of decrease of photochemical activities.  相似文献   

13.
Sulfite Inhibition of Photosystem II in Illuminated Spinach Leaves   总被引:1,自引:0,他引:1  
PS II activity (dichlorophenolindophenol photoreduction) inchloroplasts isolated from sulfite-treated spinach leaves inlight was inhibited but not in darkness. Sulfite treatment decreasedthe variable part of fluorescence induction and the fluorescenceintensities of emissions at 685 and 694 nm at 77K, but it hadno effect when sulfite was administered together with DCMU.These results indicate that sulfite inactivates the PS II reactioncenter when electron transport takes place. (Received August 5, 1983; Accepted November 25, 1983)  相似文献   

14.
1. The relationship between temperature and Hill reaction activity has been investigated in chloroplasts isolated from barley (Hordeum vulgare L. cv. Abyssinian). 2. An Arrhenius plot of the photoreduction of 2,6-dichlorophenolindophenol (DCIP) showed no change in slope over the temperature range 2--38degreesC. The apparent Arrhenius activation energy (Ea) for the reaction was 48.1 kJ/mol. 3. In the presence of an uncoupler of photophosphorylation, methylamine, the Ea for DCIP photoreduction went through a series of changes as the temperature was increased. Changes were found at 9, 20, 29 and 36degreesC. The Ea was highest below 9degreesC at 63.7 kJ/mol. Between 9 and 20degreesC the Ea decreased to 40.4 kJ/mol and again to 20.2 kJ/mol between 20 and 29degreesC. Between 29 and 36degreesC there was no further increase in activity with increasing temperature. The temperature-induced changes at 9, 20 and 29degreesC were reversible. At temperatures above 36degreesC (2 min) a thermal and largely irreversible inactivation of the Hill reaction occurred. 4. Temperature-induced changes in Ea were also found when ferricyanide was substituted for DCIP or gramicidin D for methylamine. The addition of an uncoupler of photophosphorylation was not required to demonstrate temperature-induced changes in DCIP photoreduction following the exposure of the chloroplasts to a low concentration of cations. 5. The photoreduction of the lipophilic acceptor, oxidized 2, 3, 5, 6-tetramethyl-p-phenylenediamine, also showed changes in Ea in the absence of an uncoupler. 6. The temperature-induced changes in Hill activity at 9 and 29degreesC coincided with temperature-induced changes in the fluidity of chloroplast thylakoid membranes as detected by measurements of electron spin resonance spectra. It is suggested that the temperature-induced changes in the properties and activity of chloroplast membranes are part of a control mechanism for regulation of chloroplast development and photosynthesis by temperature.  相似文献   

15.
1. Bovine serum albumin stimulates the DCIP photoreduction activity of lettuce chloroplasts which has been treated with trypsin. When these chloroplast preparations were washed by tricine buffer such "reversible action" can still be obtained. It is possible that bovine serum albumin may be incorporated into trypsin destroyed site of the membrane. 2. Trypsin-induced CCCP inhibitory effect on DCIP photoreduction activity is reversed by bovine serum albumin. 3. Bovine serum albumin partially reverses the trypsin-induced unstacking of lettuce chloroplast membranes. 4. After trypsin digestion, there are absorbance decreases around 500–640 nm. Bovine serum albumin has no effect on these absorbance decreases. It is concluded that the membrane-bound proteins responsible for different functions of chloroplast are heterogeneous. The results also show that there are gate and channel near the position of PSⅡ on chloroplast membrane.  相似文献   

16.
Mesophyll protoplasts were isolated from unhardened and cold-acclimated leaves of Valerianella locusta L. and subjected to freeze-thaw treatment. To evaluate the extent and course of freezing injury, photosynthetic reactions of whole protoplasts and of free thylakoid membranes, liberated from protoplasts by osmotic lysis, were measured. In addition, the integrity of the protoplasts was determined by microscopy. The results reveal an increased frost tolerance of protoplasts isolated from acclimated leaves with respect to all parameters measured. CO2-dependent O2 evolution (representing net photosynthetic CO2 fixation of protoplasts) was the most freezing-sensitive reaction; its inhibition due to freeze-thaw treatment of protoplasts was neither correlated with disintegration of the plasma membrane, nor was it initiated by inactivation of the thylakoid membranes. The frost-induced decline of protoplast integrity was not closely correlated to thylakoid damage either. Freezing injury of the thylakoid membranes was manifested by inhibition of photosynthetic electron transport and photophosphorylation. Both photosystems were affected by freezing and thawing with strongest inhibition occurring in the water-oxidation system or at the oxidizing site of photosystem II. Photophosphorylation responded more sensitively to freezing stress than electron transport, although uncoupling (increased permeability of the thylakoid membranes to protons) was not a conspicuous effect. The data are discussed in relation to freezing injury in leaves and seem to indicate that frost damage in vivo is initiated at multiple sites.Abbreviations Chl chlorphyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCIP 2,6-dichlorophenolindophenol - DPC 1,5-diphenylcarbazide - Hepes 2-[4-(2-hydroxyethyl)-1-piperazinyl]-ethanesulfonic acid - MES 2-(N-morpholino)-ethanesulfonic acid - PS I photosystem I - PS II photosystem II  相似文献   

17.
After exposing etiolated wheat seedlings to intermittent light (cycle of 2 min. light, 118 min. dark) for 24 hr., we obtained an incompletely developed chloroplast membrane. It was then compared with a completely developed chloroplast membrane obtaining from wheat seedlings grown under normal light-dark regime. We investgated the effect of various cations and their concentrations on the absorption spectrum and the photosystem Ⅱ function of the above two types of chloroplast membranes. A similar effect of potassium and magnesium ions on the absorption spectra of completely developed chloroplast membrane was observed. They decreased the absorption peak values at both the red and blue regions of the chloroplast membrane in the same manner. The degree of decrease in the peak value is proportional to ion concentration. But in the incompletely developed chloroplast membranes similar phenomenon was not observed. In the presence of K+ and Mg2+ of various concentrations, the absorptionn peaks at the red region overlapped almost completely, and these at the blue region only changed slightly with ion concentrations. DCIP photoreduction rate of the two types of chloroplast membranes was stimulated by the addition of K+ and Mg2+ in various concentrations. But the degree of stimulation in the two types of membranes was quite different. In the presence of l00 mM KCl or 5.0 mM MgCl2, DCIP photoreduction rate of completely developed chloroplast membranes was enhanced by 76.8% and 68.9% respectively, whereas in incompletely developed chloroplast membranes it was only increased by 56.3% and 36.4% respectively. The causes of the effects of cations on the absorption spectrum and the photosystem Ⅱ function of two types of chloroplast membranes were discussed.  相似文献   

18.
采用卵磷脂(PC)构建脂质体,然后将毕氏海蓬子类囊体膜蛋白复合物重组到脂质体中.分析不同温度(25℃、35℃、45℃和55℃)处理后蛋白脂质体的电子传递活性、吸收光谱和荧光光谱的变化,以探讨膜脂与膜蛋白在高温胁迫下的交互作用.结果显示:蛋白脂质体光系统Ⅱ(PSⅡ)的放氧活性和光系统Ⅰ(PSⅠ)的耗氧活性随着PC比例的提高而增加,在PC与类囊体膜比例为4∶1(Lipid∶Chl,w/w)时达到最高,同时蛋白脂质体的吸收光谱和荧光光谱也呈上升趋势;在PC与类囊体膜重组比例为4∶1条件下,高温处理后的蛋白脂质体的PSⅡ放氧活性和PSⅠ耗氧活性显著大于未经重组的,其吸收光谱和荧光光谱峰值下降幅度低于未经重组的,且峰位基本没有变化.研究表明,PC可能通过增加结合天线的大小来促进蛋白脂质体对光能的吸收和能量从外周天线到PSⅡ和PSⅠ核心复合物的传递;在脂质体中,PC与类囊体膜的交互作用提高了PSⅡ和PSⅠ在高温胁迫下的光化学效率,增强了PSⅡ和PSⅠ的耐热性.  相似文献   

19.
Salil Bose  P. Ramanujam 《BBA》1984,764(1):40-45
The rate of electron transfer through Photosystem I (reduced 2,6-dichlorophenol indophenol (DCIPH2 → methylviologen) in a low-salt thylakoid suspension is inhibited by Mg2+ both under light-limited and the light-saturated conditions, the magnitude of inhibition being the same. The 2,6-dichlorophenol indophenol (DCIP) concentration dependence of the light-saturated rate in the presence and in the absence of Mg2+ shows that the overall rate constant of the photoreaction is not altered by Mg2+. With N,N,N′,N′-tetramethyl-p-phenylenediamine or 2,3,5,6-tetramethylphenylenediamine as electron donor only the light-limited rate, not the light-saturated rate, is inhibited by Mg2+ and the magnitude of inhibition is the same as with DCIP as donor. The results are interpreted in terms of heterogeneous Photosystem I, consisting of two types, PS I-A and PS I-B, where PS I-A is involved in cation-regulation of excitation energy distribution and becomes unavailable for DCIPH2 → methyl viologen photoelectron transfer in the presence of Mg2+.  相似文献   

20.
The interrelations between thylakoid polypeptide components and Mg2+-induced Chl a fluorescence and thylakoid surface charge changes were investigated in Zostera marina chloroplasts treated with Ca2+ and trypsin. It was observed that: 1. The increase of Mg2+- induced PS Ⅱ fluorescence intensity was closely related to the decrease of Mg2+-induced surface charge density of the thylakoid membrane in the normal chloroplast; 2. Removal of the 32~34 kD polypeptides of the thylakoid surface by Ca2+ extraction of the chloroplast did not affect the Mg2+-induced phenomena; 3. If the Ca2+-treated chloroplast was further digested by trypsin to remove the 26 kD polypeptide of the membrane surface, the Mg2+-induced phenomena disappeared completely. These results clearly indicated that the 26 kD polypeptide of thylakoid surface is the specific acting site of the cation that induced these two correlated phenomena in the chloroplast from Zostera marina. The mechanism on the regulating effect of the cation on excitation energy distribution between PS Ⅱ and PS Ⅰ was discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号