首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human skeletal muscle yeast two-hybrid cDNA library was screened with the carboxyl-terminal region (the last 200 amino acids) of dystrophin. Two interacting clones were identified corresponding to alpha-actinin-2 and actin. Interactions between alpha-actinin, actin, and dystrophin were confirmed by the ligand-blotting technique, by colocalization of dystrophin and alpha-actinin-2 to the isolated skeletal muscle sarcolemmal vesicles and to the plasma membranes isolated from C2C12 myoblasts, and by indirect immunolocalization of dystrophin and alpha-actinin-2 in skeletal muscle cells. This is the first identification of a direct interaction between alpha-actinin, actin, and the carboxyl-terminal region of dystrophin. We propose that dystrophin forms lateral, multicontact association with actin and that binding of alpha-actinin-2 to the carboxyl-terminus of dystrophin is the communication link between the integrins and the dystrophin/dystrophin-glycoprotein complex.  相似文献   

2.
R Nave  D O Fürst  K Weber 《FEBS letters》1990,269(1):163-166
Nebulin is a high molecular weight polypeptide (mass 0.6-0.8 million) which accounts for 3% of the myofibrillar mass in skeletal muscle. Due to its resistance to extraction under native conditions, relatively little is known about the biochemistry of the molecule. Here we report in vitro binding of alpha-actinin (a major Z-line protein) to nebulin. After solubilization with sodium dodecylsulfate myofibrillar polypeptides separated by gel electrophoresis were blotted on nitrocellulose and probed with 125I-labelled alpha-actinin. Nebulin is the only polypeptide decorated by alpha-actinin. This result gives biochemical support for the hypothesis, based on recent immunoelectron micrographs, that nebulin could form in skeletal muscle a fourth filament system, possibly extending to the Z-line.  相似文献   

3.
We use a highly specific and sensitive antibody to further characterize the distribution of dystrophin in skeletal, cardiac, and smooth muscle. No evidence for localization other than at the cell surface is apparent in skeletal muscle and no 427-kD dystrophin labeling was detected in sciatic nerve. An elevated concentration of dystrophin appears at the myotendinous junction and the neuromuscular junction, labeling in the latter being more intense specifically in the troughs of the synaptic folds. In cardiac muscle the distribution of dystrophin is limited to the surface plasma membrane but is notably absent from the membrane that overlays adherens junctions of the intercalated disks. In smooth muscle, the plasma membrane labeling is considerably less abundant than in cardiac or skeletal muscle and is found in areas of membrane underlain by membranous vesicles. As in cardiac muscle, smooth muscle dystrophin seems to be excluded from membrane above densities that mark adherens junctions. Dystrophin appears as a doublet on Western blots of skeletal and cardiac muscle, and as a single band of lower abundance in smooth muscle that corresponds most closely in molecular weight to the upper band of the striated muscle doublet. The lower band of the doublet in striated muscle appears to lack a portion of the carboxyl terminus and may represent a dystrophin isoform. Isoform differences and the presence of dystrophin on different specialized membrane surfaces imply multiple functional roles for the dystrophin protein.  相似文献   

4.
The isoforms of skeletal muscle alpha-actinin present during chick embryogenesis were analyzed by two-dimensional electrophoresis in combination with the immunoblot technique. Chicken embryonic muscles at 8-15 days contain an embryo-specific isoform of alpha-actinin. The embryonic alpha-actinin isoform has a molecular mass of 112 kDa and an isoelectric point of 5.8, whereas the values for the adult isoform of alpha-actinin were 100 kDa and 5.85, respectively. To characterize the two classes of alpha-actinin polypeptides we have compared the two proteins by 125I-labeled two-dimensional peptide mapping. The embryonic isoform is highly similar to, but exhibited extensive peptide differences to, the adult isoform of alpha-actinin. The developmental sequence of the expression of the alpha-actinins was also studied. In extracts of skeletal muscle from 8-10-day-old embryos, only the embryonic isoform was detected. In extracts from 15-day-old embryos, both the embryonic and the adult isoforms coexisted. However by 21 days, the embryonic isoform had disappeared and only the adult isoform was detected. These data suggested that the embryonic and the adult isoform of alpha-actinins are distinct proteins and that during skeletal myogenesis in ovo one class of alpha-actinin is replaced by a new class of alpha-actinin polypeptides, and that the latter is maintained into adulthood.  相似文献   

5.
Chronic heart failure is characterized by changes in skeletal muscle that contribute to physical disability. Most studies to date have investigated defects in skeletal muscle oxidative capacity. In contrast, less is known about how heart failure affects myofibrillar protein metabolism. Thus we examined the effect of heart failure on skeletal muscle myofibrillar protein metabolism, with a specific emphasis on changes in myosin heavy chain (MHC) protein content, synthesis, and isoform distribution in 10 patients with heart failure (63 +/- 3 yr) and 11 controls (70 +/- 3 yr). In addition, we examined the relationship of MHC protein metabolism to inflammatory markers and physical function. Although MHC and actin protein content did not differ between groups, MHC protein content decreased with increasing disease severity in heart failure patients (r = -0.748, P < 0.02), whereas actin protein content was not related to disease severity. No difference in MHC protein synthesis was found between groups, and MHC protein synthesis rates were not related to disease severity. There were, however, relationships between C-reactive protein and both MHC protein synthesis (r = -0.442, P = 0.05) and the ratio of MHC to mixed muscle protein synthesis (r = -0.493, P < 0.03). Heart failure patients showed reduced relative amounts of MHC I (P < 0.05) and a trend toward increased MHC IIx (P = 0.06). In regression analyses, decreased MHC protein content was related to decreased exercise capacity and muscle strength in heart failure patients. Our results demonstrate that heart failure affects both the quantity and isoform distribution of skeletal muscle MHC protein. The fact that MHC protein content was related to both exercise capacity and muscle strength further suggests that quantitative alterations in MHC protein may have functional significance.  相似文献   

6.
We have isolated a Drosophila melanogaster alpha-actinin gene and partially characterized several mutant alleles. The Drosophila protein sequence is very similar (68% identity) to those of chicken alpha-actinin isoforms, but less closely related (30% identity) to Dictyostelium alpha-actinin. The gene is within subdivision 2C of the X chromosome, coincident with 15 lethal (1)2Cb mutations. At least four alleles, l(1)2Cb1, l(1)2Cb2, l(1)2Cb4, and l(1)2Cb5 are interrupted by rearrangement breakpoints and must be null. In all four cases, hemizygous mutants complete embryogenesis and do not die until the second day of larval growth, signifying that either the role of alpha-actinin in nonmuscle cells is redundant or that a distinct and only distantly related gene encodes the non-muscle isoform. Allelic but less severely affected fliA mutants are apparently due to point mutations, and develop into adults having thoracic muscle abnormalities. EM of mutant muscles reveals that Z discs and myofibrillar attachments are disrupted, whereas epithelial "tendon" cells are less affected. We discuss these phenotypes in the light of presumed in vivo alpha-actinin functions.  相似文献   

7.
T Schmitt  D Pette 《FEBS letters》1988,234(1):83-85
Type I protein, a myofibrillar protein thought to be specific to slow-twitch skeletal muscle fibers, was purified. Two-dimensional electrophoresis indicated its identity with the purified slow troponin-T1s isoform. Immunochemical analyses using antibodies raised against type I protein and slow Tn-T1s, further substantiated the identity of the two proteins.  相似文献   

8.
Purification of dystrophin from skeletal muscle   总被引:16,自引:0,他引:16  
Dystrophin was purified from rabbit skeletal muscle by alkaline dissociation of dystrophin-glycoprotein complex which was first prepared by derivatized lectin chromatography. Dystrophin-glycoprotein complex was isolated from digitonin-solubilized rabbit skeletal muscle membranes by a novel two-step method involving succinylated wheat germ agglutinin (sWGA) chromatography and DEAE-cellulose ion exchange chromatography. Proteins co-purifying with dystrophin were a protein triplet of Mr 59,000 and four glycoproteins of Mr 156,000, 50,000, 43,000, and 35,000, all previously identified as components of the dystrophin-glycoprotein complex. Alkaline treatment of sWGA/DEAE-purified dystrophin-glycoprotein complex resulted in complete dissociation of the dystrophin-glycoprotein complex. In order to separate dystrophin from its associated proteins, alkaline-dissociated dystrophin-glycoprotein complex was sedimented by sucrose gradient centrifugation. The residual glycoproteins which contaminated peak dystrophin-containing gradient fractions were then removed by WGA-Sepharose adsorption. The resulting protein appeared as a single band with an apparent Mr of 400,000 on overloaded Coomassie Blue-stained gels. The absence of WGA-peroxidase staining on nitrocellulose transfers of the pure protein indicated that the pure protein was devoid of contaminating glycoproteins. Antisera raised against the carboxyl terminus of human skeletal muscle dystrophin (which does not cross-react with the carboxyl terminus of the chromosome 6-encoded dystrophin-related protein) recognized the pure protein as did antisera specific for the amino terminus of human dystrophin. These data indicate that the protein isolated is indeed the intact, predominant skeletal muscle isoform product of the Duchenne muscular dystrophy gene.  相似文献   

9.
10.
11.
12.
Dystrophin, the protein product of the Duchenne muscular dystrophy (DMD) gene locus, is expressed on the muscle fiber surface. One key to further understanding of the cellular function of dystrophin would be extended knowledge about its subcellular organization. We have shown that dystrophin molecules are not uniformly distributed over the humen, rat, and mouse skeletal muscle fiber surface using three independent methods. Incubation of single-teased muscle fibers with antibodies to dystrophin revealed a network of denser transversal rings (costameres) and finer longitudinal interconnections. Double staining of longitudinal semithin cryosections for dystrophin and alpha-actinin showed spatial juxtaposition of the costameres to the Z bands. Where peripheral myonuclei precluded direct contact of dystrophin to the Z bands the organization of dystrophin was altered into lacunae harboring the myonucleus. These lacunae were surrounded by a dystrophin ring and covered by a more uniform dystrophin veil. Mechanical skinning of single-teased fibers revealed tighter mechanical connection of dystrophin to the plasma membrane than to the underlying internal domain of the muscle fiber. The entire dystrophin network remained preserved in its structure on isolated muscle sarcolemma and identical in appearance to the pattern observed on teased fibers. Therefore, connection of defined areas of plasma membrane or its constituents such as ion channels to single sarcomeres might be a potential function exerted by dystrophin alone or in conjunction with other submembrane cytoskeletal proteins.  相似文献   

13.
N-RAP alternative splicing and protein localization were studied in developing skeletal muscle tissue from pre- and postnatal mice and in fusing primary myotubes in culture. Messages encoding N-RAP-s and N-RAP-c, the predominant isoforms of N-RAP detected in adult skeletal muscle and heart, respectively, were present in a 5:1 ratio in skeletal muscle isolated from E16.5 embryos. N-RAP-s mRNA levels increased three-fold over the first 3 weeks of postnatal development, while N-RAP-c mRNA levels remained low. N-RAP alternative splicing during myotube differentiation in culture was similar to the pattern observed in embryonic and neonatal muscle, with N-RAP-s expression increasing and N-RAP-c mRNA levels remaining low. In both developing skeletal muscle and cultured myotubes, N-RAP protein was primarily associated with developing myofibrillar structures containing alpha-actinin, but was not present in mature myofibrils. The results establish that N-RAP-s is the predominant spliced form of N-RAP present throughout skeletal muscle development.  相似文献   

14.
alpha-Actinins from striated muscle, smooth muscle, and nonmuscle cells are distinctive in their primary structure and Ca2+ sensitivity for the binding to F-actin. We isolated alpha-actinin cDNA clones from a cDNA library constructed from poly(A)+ RNA of embryonic chicken skeletal muscle. The amino acid sequence deduced from the nucleotide sequence of these cDNAs was identical to that of adult chicken skeletal muscle alpha-actinin. To examine whether the differences in the structure and Ca2+ sensitivity of alpha-actinin molecules from various tissues are responsible for their tissue-specific localization, the cDNA cloned into a mammarian expression vector was transfected into cell lines of mouse fibroblasts and skeletal muscle myoblasts. Immunofluorescence microscopy located the exogenous alpha-actinin by use of an antibody specific for skeletal muscle alpha-actinin. When the protein was expressed at moderate levels, it coexisted with endogenous alpha-actinin in microfilament bundles in the fibroblasts or myoblasts and in Z-bands of sarcomeres in the myotubes. These results indicate that Ca2+ sensitivity or insensitivity of the molecules does not determine the tissue-specific localization. In the cells expressing high levels of the exogenous protein, however, the protein was diffusely present and few microfilament bundles were found. Transfection with cDNAs deleted in their 3' portions showed that the expressed truncated proteins, which contained the actin-binding domain but lacked the domain responsible for dimerization, were able to localize, though less efficiently in microfilament bundles. Thus, dimer formation is not essential for alpha-actinin molecules to bind to microfilaments.  相似文献   

15.
The absence of dystrophin complex leads to disorganization of the force-transmitting costameric cytoskeleton and disruption of sarcolemmal membrane integrity in skeletal muscle. However, it has not been determined whether the dystrophin complex can form a mechanically strong bond with any costameric protein. We performed confocal immunofluorescence analysis of isolated sarcolemma that were mechanically peeled from skeletal fibers of mouse hindlimb muscle. A population of gamma-actin filaments was stably associated with sarcolemma isolated from normal muscle and displayed a costameric pattern that precisely overlapped with dystrophin. However, costameric actin was absent from all sarcolemma isolated from dystrophin-deficient mdx mouse muscle even though it was localized to costameres in situ. Vinculin, alpha-actinin, beta-dystroglycan and utrophin were all retained on mdx sarcolemma, indicating that the loss of costameric actin was not due to generalized membrane instability. Our data demonstrate that the dystrophin complex forms a mechanically strong link between the sarcolemma and the costameric cytoskeleton through interaction with gamma-actin filaments. Destabilization of costameric actin filaments may also be an important precursor to the costamere disarray observed in dystrophin-deficient muscle. Finally, these methods will be broadly useful in assessing the mechanical integrity of the membrane cytoskeleton in dystrophic animal models lacking other costameric proteins.  相似文献   

16.
17.
Expression of a muscle-type alpha-actinin cDNA clone in non-muscle cells   总被引:4,自引:0,他引:4  
We have previously isolated a chick smooth muscle-type alpha-actinin cDNA clone (C17) from a chick embryo fibroblast cDNA library. As part of an investigation into a possible role for a muscle isoform of alpha-actinin in non-muscle cells, we have cloned C17 into a eucaryotic expression vector, pKCR3, and examined the distribution of the expressed protein in non-muscle, monkey COS cells. We report here that the muscle isoform of chick alpha-actinin encoded by C17, was found in focal contacts and periodically distributed along actin filaments.  相似文献   

18.
19.
20.
We introduce two new, rapid procedures. One is specifically designed for isolating alpha-actinin from skeletal and the other for isolating alpha-actinin from smooth muscle. Approximately 20 mg of greater than 95% pure alpha-actinin can be obtained/100 g of ground chicken pectoral muscle in just 4 days. The smooth muscle protocol yields 2.7 mg of greater than 99% pure alpha-actinin/100 g of ground gizzard after just 5 days. Differences in protein contaminants and in the extractability of alpha-actinin necessitated the development of separate isolation procedures for the two muscle types. Antibody prepared against the purified gizzard alpha-actinin reacted with alpha-actinin from skeletal, cardiac, and smooth muscle in immunodiffusion. Anti-alpha-actinin reacted only with alpha-actinin from crude extracts of skeletal and smooth muscle on Staph A gels. Anti-alpha-actinin stained Z-bands from skeletal muscle in indirect immunofluorescence microscopy and stress fibers from baby hamster kidney fibroblasts and mouse mammary epithelial cells in the characteristic punctate pattern observed by other workers (Lazarides, E., and Burridge, K. (1975) Cell 6, 289-298). These two methods for purifying alpha-actinin from skeletal and smooth muscle represent a significant improvement over that published previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号