首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lake Taihu is a large, shallow, and eutrophic lake in China. It has provided local communities with valuable fisheries for centuries, but little is known of the trophodynamics, or of its faunal communities. Carbon and nitrogen isotopic composition was used to assess its trophic pathways and the food web structure [food sources and trophic levels (TL)]. Basal food sources were distinguishable based on their δ13C values, ranging from −27.2 to −15.2‰. Consumers were also well separated in δ13C (−26.9 to −17.9‰ for invertebrates and −25.7 to −18.1‰ for fishes), which allowed for an effective discrimination of carbon sources between these fauna. An average trophic enrichment factor of 3.4‰ was used to calculate the TLs based on δ15N of zooplankton, with results indicating a food web having four TLs. Although δ15N values overlap and cover a large range within trophic compartments, the isotopic signatures of the species assessed revealed a general trend of 15N enrichment with increasing TL. Stable isotope signatures were also used to establish a general food web scheme in which five main trophic pathways were analyzed.  相似文献   

2.
Summary New petrographic and isotopic data from inoceramid bivalve shells and belemnite rostra from the lower Campanian and belemnite rostra from the mid-upper Maastrichtian of the Marambio Group, James Ross Basin, Antarctica are presented. Most of the inoceramid data were processed from shell fragments of the large formAntarcticeramus rabotensis (Crame and Luther) at the stratigraphic level marking the extinction of the inoceramids in the James Ross Basin (uppermost early Campanian-basal late Campanian). Standard transmitted light microscopy and cathodoluminescence (CL) studies in thin sections ofA. rabotensis show clear evidence of environmental stress, which is reflected as marked growth breaks in the shell banding of this large inoceramid bivalve. At Redonda Point, CL and the mean oxygen isotopic value (δ18O=-3.11‰ 3 (PDB); n=11; t°=25.4°C) indicate a varied degree of diagenetic modification, but without any evidence of neomorphism along the prismatic microstructures. Early Campanian belemnite rostra are much less diagenetically modified (at the Brandy Bay section; and the Santa Marta section; δ18O=-0.50‰ (PDB); n=5; t°=14.0°C and 3 δ18O=-0.94‰ (PDB); n=21; t°=15.8°C) and are non luminescent 3 except for localized, organic-rich bands. The mean oxygen isotopic value for mid-late Maastrichtian belemnite rostra (at the Seymour Island section; δ18O=-0.11‰ 3 (PDB); n=5; t°=12.5°C) indicates a substantial drop in the sea-water paleotemperature, suggesting a causal relationship between the early extinction of the inoceramid bivalves in high latitudes of the Southern Hemisphere and the falling sea-water temperature.  相似文献   

3.
The genus Ramaria is composed of several subgenera that often correspond to specific trophic strategies. Because carbon and nitrogen isotopes can be used to assess fungal trophic status and nitrogen sources, we accordingly carried out an extensive survey of isotopic patterns in archived specimens of Ramaria from Germany and other locations. Isotopic patterns in species generally corresponded to subgeneric affiliations and to the range of different potential substrates, with fungi fruiting on wood and litter (subgenera Asteroramaria and Lentoramaria) much lower in δ15N (≈−3‰) than ectomycorrhizal taxa (≈12‰) (subgenus Ramaria) or taxa fruiting on soil (≈13‰) (subgenus Echinoramaria). Conversely, fungi fruiting on wood and litter were higher in δ13C (−23‰) than those fruiting on soil (≈−27‰), with ectomycorrhizal fungi intermediate (≈−24.5‰). Fungi colonizing mineral soil horizons were about 3‰ enriched in 15N relative to those colonizing both mineral and organic horizons. The high δ15N and low δ13C signatures of taxa fruiting on soil remains unexplained. The high degree of fidelity of isotopic signatures with subgeneric classifications and life history traits suggests that sporocarps are good integrators of patterns of carbon and nitrogen cycling for specific taxa. Archived specimens represent a useful trove of life history information that could be mined without requiring extensive supporting isotopic data from other ecosystem pools.  相似文献   

4.
Rivers link oceans with the land, creating global hot spots of carbon processing in coastal seas. Coastlines around the world are dominated by sandy beaches, but beaches are unusual in that they are thought to rely almost exclusively on marine imports for food. No significant connections to terrestrial production having been demonstrated. By contrast, we isotopically traced carbon and nitrogen pathways leading to clams (Donax deltoides) on beaches. Clams from areas influenced by river plumes had significantly different isotope signatures (δ13C: −18.5 to −20.2‰; δ15N: 8.3–10.0‰) compared with clams remote from plumes (δ13C: −17.5 to −19.5‰; δ15N: 7.6–8.7‰), showing that terrestrial carbon and sewage, both delivered in river plumes, penetrate beach food webs. This is a novel mechanism of trophic subsidy in marine intertidal systems, linking the world’s largest shore ecosystem to continental watersheds. The same clams also carry pollution signatures of sewage discharged into rivers, demonstrating that coastal rivers connect ecosystems in unexpected ways and transfer contaminants across the land–ocean boundary. The links we demonstrate between terrigenous matter and the largest of all marine intertidal ecosystems are significant given the immense social, cultural, and economic values of beaches to humans and the predicted consequences of altered river discharge to coastal seas caused by global climate change.  相似文献   

5.
Long-term management plans for restoration of natural flow conditions through the Everglades increase the importance of understanding potential nutrient impacts of increased freshwater delivery on Florida Bay biogeochemistry. Planktonic communities respond quickly to changes in water quality, thus spatial variability in community composition and relationships to nutrient parameters must be understood in order to evaluate future downstream impacts of modifications to Everglades hydrology. Here we present initial results combining flow cytometry analyses of phytoplankton and bacterial populations (0.1–50 μm size fraction) with measurements of δ13C and δ15N composition and dissolved inorganic nutrient concentrations to explore proxies for planktonic species assemblage compositions and nutrient cycling. Particulate organic material in the 0.1–50 μm size fraction was collected from five stations in Northeastern and Western Florida Bay to characterize spatial variability in species assemblage and stable isotopic composition. A dense bloom of the picocyanobacterium, Synechococcus elongatus, was observed at Western Florida Bay sites. Smaller Synechococcus sp. were present at Northeast sites in much lower abundance. Bacteria and detrital particles were also more abundant at Western Florida Bay stations than in the northeast region. The highest abundance of detritus occurred at Trout Creek, which receives freshwater discharge from the Everglades through Taylor Slough. In terms of nutrient availability and stable isotopic values, the S. elongatus population in the Western bay corresponded to low DIN (0.5 μM NH 4 + ; 0.2 μM NO 3 ) concentrations and depleted δ15N signatures ranging from +0.3 to +0.8‰, suggesting that the bloom supported high productivity levels through N2-fixation. δ15N values from the Northeast bay were more enriched (+2.0 to +3.0‰), characteristic of N-recycling. δ13C values were similar for all marine Florida Bay stations, ranging from −17.6 to −14.4‰, however were more depleted at the mangrove ecotone station (−25.5 to −22.3‰). The difference in the isotopic values reflects differences in carbon sources. These findings imply that variations in resource availability and nutrient sources exert significant control over planktonic community composition, which is reflected by stable isotopic signatures.  相似文献   

6.
Summary Oxygen and carbon stable isotope profiles of the Dakhla sequence at the Eastern Desert, Egypt, reveal that the negative isotopic excursion commonly observed at the K/T boundary in sections showing continuous deposition around the world (e.g. El Kef section at Tunisia,Perch-Nielsen et al.; 1982 and at Zumaya, Spain;Mount et al., 1986) is missing in this Egyptian study area. However, several negative isotopic excursions are observed both under and over the boundary separating the Upper Cretaceous and Paleocene rocks. These excursions correspond to short-term sea level falls and coincide with both lithologic and faunal changes. They occur during periods with a decreasing influence of the equator-dominated ocean circulation system and the set up of a polar-dominated ocean circulation system. The Dakhla sequence consists of cyclic alternations of thick hemipelagic marls and shales and thin benthic limestone beds. The origin of the cyclic alternation is related to short-term sea level changes. A thin reefal worm bed is observed within the lower part of the sequence. The formation of this worm buildup occurred during a stillstand prior to sea level fall. The oxygen isotopic composition of the unaltered worm tubes (−1.0 to −2.7 ‰ PDB) is in accord with their formation in equilibrium with unmodified seawater. Meanwhile, their relatively depleted carbon isotopic values (−4.9 to −6.1 ‰ PDB) are primarily related to vital effect. Some intraskeletal voids within the worm bed are filled by a late meteoric calcite cement. The meteoric origin of the cement mosaics is indicated from their relatively depleted oxygen isotope values (−3.3 to −5.9 ‰ PDB), their equant morphology and their mottled dull luminescence.  相似文献   

7.
Diurnal variations of needle water isotopic ratios in two pine species   总被引:1,自引:0,他引:1  
Diurnal fluctuations of leaf water isotope ratios (δ18O and δD) were measured for Jeffrey (Pinus jeffreyi Balf.) and lodgepole (Pinus contorta Douglas ex Louden) pine. Two trees per species were sampled every few hours on 15–16 October 2005 and 19–20 June 2006. Diurnal gas exchange was measured during the summer sampling. In fall 2005, leaf water δ18O ranged from 0.7 to 9.0‰, and leaf water δD ranged from −70 to −50‰. In summer 2006, leaf water δ18O ranged from 7.7 to 20.7‰, and leaf water δD ranged from −61 to −24‰. Diurnal variation of leaf water isotope values typically reached a maximum in early afternoon, began decreasing around midnight, and reached a minimum in mid-morning. Both periods showed a high degree of enrichment relative to source water, with leaf water–source water enrichments ranging up to 37.8‰ for δ18O, and up to 95‰ for δD. Leaf water enrichment varied by season with summer enrichment being greater than fall enrichment. A steady-state model (i.e., modified Craig–Gordon modeling) for leaf water isotope compositions did not provide a good fit to measured values of leaf water. In summer, a non-steady state model provided a better fit to the measured data than the steady-state model. Our findings demonstrate substantial leaf water enrichment above source water and diurnal variations in the isotopic composition of leaf water, which has application to understanding short-term variability of atmospheric gases (water vapor, CO2, O2), climate studies based on the isotopic composition of tree rings, and ecosystem water fluxes.  相似文献   

8.
A feeding trial was performed in the laboratory with the catfish species Pterygoplichthys disjunctivus to determine stable carbon (13C) and nitrogen (15 N) turnover rates and discrimination factors in non-lethally sampled tissues (red blood cells, plasma solutes, and fin). A second feeding trial was conducted to determine what P. disjunctivus could assimilate from low-quality wood-detritusrefractory polysaccharides (e.g., cellulose), or soluble wood-degradation products inherent in wood-detritus. This was performed by feeding the fish an artificial wood-detritus diet with fibrous (δ13C = −26.36‰; δ15N = 2.13‰) and soluble portions (δ13C = −11.82‰; δ15N = 3.39‰) that had different isotopic signatures and monitoring the dynamics of isotopic incorporation in the different tissues over time. Plasma solutes turned over more quickly than red blood cells for 13C and 15 N. However, in contrast to previous studies of juvenile fishes, C and N incorporation was primarily driven by catabolic tissue turnover as opposed to growth rate. Tissue-diet discrimination factors for 15 N varied from 4.08 to 5.17‰, whereas they were <2‰ for 13C (and less than 0.3‰ for plasma and red blood cells). The results of trial two suggested that P. disjunctivus could not assimilate refractory polysaccharides. Moreover, the δ13C and δ15 N signatures of wild-caught P. disjunctivus from Florida confirmed their detrital trophic standing in Floridian aquatic ecosystems.  相似文献   

9.
The sources of water used by woody vegetation growing on karst soils in seasonally dry tropical regions are little known. In northern Yucatan (Mexico), trees withstand 4–6 months of annual drought in spite of the small water storage capacity of the shallow karst soil. We hypothesized that adult evergreen trees in Yucatan tap the aquifer for a reliable supply of water during the prolonged dry season. The naturally occurring concentration gradients in oxygen and hydrogen stable isotopes in soil, bedrock, groundwater and plant stem water were used to determine the sources of water used by native evergreen and drought-deciduous tree species. While the trees studied grew over a permanent water table (9–20 m depth), pit excavation showed that roots were largely restricted to the upper 2 m of the soil/bedrock profile. At the peak of the dry season, the δ18O signatures of potential water sources for the vegetation ranged from 4.1 ± 1.1‰ in topsoil to −4.3 ± 0.1‰ in groundwater. The δ18O values of tree stem water ranged from −2.8 ± 0.3‰ in Talisia olivaeformis to 0.8 ± 1‰ in Ficus cotinifolia, demonstrating vertical partitioning of soil/bedrock water among tree species. Stem water δ18O values were significantly different from that of groundwater for all the tree species investigated. Stem water samples plotted to the right of the meteoric water line, indicating utilization of water sources subject to evaporative isotopic enrichment. Foliar δ13C in adult trees varied widely among species, ranging from −25.3 ± 0.3‰ in Enterolobium cyclocarpum to −28.7 ± 0.4‰ in T. olivaeformis. Contrary to initial expectations, data indicate that native trees growing on shallow karst soils in northern Yucatan use little or no groundwater and depend mostly on water stored within the upper 2–3 m of the soil/bedrock profile. Water storage in subsurface soil-filled cavities and in the porous limestone bedrock is apparently sufficient to sustain adult evergreen trees throughout the pronounced dry season.  相似文献   

10.
Considerable research has recently been devoted to understanding biogeochemical processes under winter snow cover, leading to enhanced appreciation of the importance of many winter ecological processes. In this study, a comprehensive investigation of the stable carbon isotope composition (δ13C) of CO2 within a high-elevation subalpine forest snowpack was conducted. Our goals were to study the δ13C of biological soil respiration under snow in winter, and to assess the relative importance of diffusion and advection (ventilation by wind) for gas transport within snow. In agreement with other studies, we found evidence of an active microbial community under a roughly 1-m deep snowpack during winter and into spring as it melted. Under-snow CO2 mole fractions were observed up to 3,500 μmol mol−1, and δ13C of CO2 varied from ~−22 to ~−8‰. The δ13C of soil respiration calculated from mixing relationships was −26 to −24‰, and although it varied in time, it was generally close to that of the bulk organic horizon (−26.0‰). Subnivean CO2 and δ13C were quite dynamic in response to changes in soil temperature, liquid water availability, and wind events. No clear biologically-induced isotopic changes were observed during periods when microbial activity and root/rhizosphere activity were expected to vary, although such changes cannot be eliminated. There was clear evidence of isotopic enrichment associated with diffusive transport as predicted by theory, but simple diffusive enrichment (4.4‰) was not observed. Instead, ventilation of the snowpack by sustained wind events in the forest canopy led to changes in the diffusively-enriched gas profile. The isotopic influence of diffusion on gases in the snowpack and litter was greatest at greater depths, due to the decreased relative contribution of advection at depth. There were highly significant correlations between the apparent isotopic content of respiration from the soil with wind speed and pressure. In summary, physical factors influencing gas transport substantially modified and potentially obscured biological factors in their effects on δ13C of CO2 within this subalpine forest snowpack.  相似文献   

11.
δ13C of nematode communities in 27 sites was analyzed, spanning a large depth range (from 130 to 2,021 m) in five Antarctic regions, and compared to isotopic signatures of sediment organic matter. Sediment organic matter δ13C ranged from −24.4 to −21.9‰ without significant differences between regions, substrate types or depths. Nematode δ13C showed a larger range, from −34.6 to −19.3‰, and was more depleted than sediment organic matter typically by 1‰ and by up to 3‰ in silty substrata. These, and the isotopically heavy meiofauna at some stations, suggest substantial selectivity of some meiofauna for specific components of the sedimenting plankton. However, 13C-depletion in lipids and a potential contribution of chemoautotrophic carbon in the diet of the abundant genus Sabatieria may confound this interpretation. Carbon sources for Antarctic nematodes were also explored by means of an experiment in which the fate of a fresh pulse of labile carbon to the benthos was followed. This organic carbon was remineralized at a rate (11–20 mg C m−2 day−1) comparable to mineralization rates in continental slope sediments. There was no lag between sedimentation and mineralization; uptake by nematodes, however, did show such a lag. Nematodes contributed negligibly to benthic carbon mineralization.  相似文献   

12.
We studied the nutritional modes of the orchid Serapias strictiflora and its mycorrhizal fungus Epulorhiza sp. using the differences in carbon isotopic composition (δ13C) of C3 orchid and C4 maize tissues. We found that if cultivated in substrate lacking any organic compounds, the mycorrhizal extraradical mycelia (δ13C = −26.3 ± 0.2 ‰) developed well, despite being fully dependent on nutrition from orchid roots (δ13C = −28.6 ± 0.1 ‰). If the mycorrhizal fungus had additional access to and colonized decaying maize roots (δ13C = −14.6 ± 0.1 ‰), its isotopic composition (δ13C = −21.6 ± 0.4 ‰) reflected a mixture of biotrophy and saprotrophy. No statistically significant differences in δ13C of new storage tubers were found between Epulorhiza-associated orchids with (δ13C = -28.2 ± 0.1 ‰) and without access to maize roots (δ13C = −28.6 ± 0.2 ‰). We conclude that autotrophy is the predominant nutritional mode of mature S. strictiflora plants and that they supply their mycorrhizal fungus with substantial amount of carbon (69 ± 3 % of the fungus demand), even if the fungus feeds saprotrophically.  相似文献   

13.
We used the dual isotope method to study differences in nitrate export in two subwatersheds in Vermont, USA. Precipitation, soil water and streamwater samples were collected from two watersheds in Camels Hump State Forest, located within the Green Mountains of Vermont. These samples were analyzed for the δ15N and δ18O of NO3. The range of δ15N–NO3 values overlapped, with precipitation −4.5‰ to +2.0‰ (n = 14), soil solution −10.3‰ to +6.2‰ (n = 12) and streamwater +0.3‰ to +3.1‰ (n = 69). The δ18O of precipitation NO3 (mean 46.8 ± 11.5‰) was significantly different (P < 0.001) from that of the stream (mean 13.2 ± 4.3‰) and soil waters (mean 14.5 ± 4.2‰) even during snowmelt periods. Extracted soil solution and streamwater δ18O of NO3 were similar and within the established range of microbially produced NO3, demonstrating that NO3 was formed by microbial processes. The δ15N and δ18O of NO3 suggests that although the two tributaries have different seasonal NO3 concentrations, they have a similar NO3 source.  相似文献   

14.
Foliar δ15N, %N and %P in the dominant woody and herbaceous species across nutrient gradients in New Zealand restiad (family Restionaceae) raised bogs revealed marked differences in plant δ15N correlations with P. The two heath shrubs, Leptospermum scoparium (Myrtaceae) and Dracophyllum scoparium (Epacridaceae), showed considerable isotopic variation (−2.03 to −15.55‰, and −0.39 to −12.06‰, respectively) across the bogs, with foliar δ15N strongly and positively correlated with P concentrations in foliage and peat, and negatively correlated with foliar N:P ratios. For L. scoparium, the isotopic gradient was not linked to ectomycorrhizal (ECM) fractionation as ECMs occurred only on higher nutrient marginal peats where 15N depletion was least. In strong contrast, restiad species (Empodisma minus Sporadanthus ferrugineus, S. traversii) showed little isotopic variation across the same nutrient gradients. Empodisma minus and S. traversii had δ15N levels consistently around 0‰ (means of −0.12‰ and +0.15‰ respectively), and S. ferrugineus, which co-habited with E. minus, was more depleted (mean −4.97‰). The isotopic differences between heath shrubs and restiads were similar in floristically dissimilar bogs and may be linked to contrasting nutrient demands, acquisition mechanisms, and root morphology. Leptospermum scoparium shrubs on low nutrient peats were stunted, with low tissue P concentrations, and high N:P ratios, suggesting they were P-limited, which was probably exacerbated by markedly reduced mycorrhizal colonisations. The coupling of δ15N depletion and %P in heath shrubs suggests that N fractionation is promoted by P limitation. In contrast, the constancy in δ15N of the restiad species through the N and P gradients suggests that these are not suffering from P limitation.  相似文献   

15.
We report abundance of 13C and 15N contents in terrestrial plants (mosses, lichens, liverworts, algae and grasses) from the area of Barton Peninsula (King George Island, maritime Antarctic). The investigated plants show a wide range of δ13C and δ15N values between −29.0 and −20.0‰ and between −15.3 and 22.8‰, respectively. The King George Island terrestrial plants show species specificity of both carbon and nitrogen isotope compositions, probably due to differences in plant physiology and biochemistry, related to their sources and in part to water availability. Carbon isotope compositions of Antarctic terrestrial plants are typical of the C3 photosynthetic pathway. Lichens are characterized by the widest carbon isotope range, from −29.0 to −20.0‰. However, the average δ13C value of lichens is the highest (−23.6 ± 2.8‰) among King George Island plants, followed by grasses (−25.6 ± 1.7‰), mosses (−25.9 ± 1.6‰), liverworts (−26.3 ± 0.5‰) and algae (−26.3 ± 1.2‰), partly related to habitats controlled by water availability. The δ15N values of moss samples range widest (−9.0 to 22.8‰, with an average of 4.6 ± 6.6‰). Lichens are on the average most depleted in 15N (mean = −7.4 ± 6.4‰), whereas algae are most enriched in 15N (10.0 ± 3.3‰). The broad range of nitrogen isotope compositions suggest that the N source for these Antarctic terrestrial plants is spatially much variable, with the local presence of seabird colonies being particularly significant.  相似文献   

16.
The Late Eocene ‘Whiskey Creek’ deposit (Pysht Formation, Olympic Penisula, Washington State) formed at a methane-seep. Early diagenetic micrites and aragonite cement have δ13C values as low as −36‰ indicating that the seepage fluids contained methane. With respect to micrite samples, low δ13C values correlate with relatively high δ13O values andvice versa. Ongoing micrite formation after the cessation of the seepage during increased burial might have altered the isotopic composition of the microcrystalline carbonates toward lower δ13O values and higher δ13C values. Alternatively, the trend in isotope values may reflect a change in the composition of seepage fluids. The principal difference between these scenarios is the duration of seepage with respect to micrite formation. Two petrographically similar varieties of blocky calcite spar are related to different carbonate sources. The δ13C values range from −32 to −29‰ for one type of blocky spar and are either the result of methane oxidation or indicate thermal decarboxylation of organic matter. Low δ18O values are in favour of the latter. For the other type of spar, δ13C values as high as +6‰ indicate carbonate formation within the zone of methanogensis. The ‘Whiskey Creek’ limestone exhibits a chaotic fabric produced by a variety of processes, including bioturbation, concretionary carbonate formation, earlyin situ brecciation, carbonate corrosion, and late fracturing of the rock. Two varieties of micrite aggregates are responsible for the nodular fabric of the limestone. Smoothly-shaped pyritiferous micrite nodules are of diagenetic origin and formed in a manner similar to that which produces carbonate concretions. Apart from being induced by anaerobic oxidation of methane, their formation is proposed to be linked to iron reduction and sulphide formation. The second, dominant variety is represented by irregularly-shaped, nodular to angular micrite aggregates surrounded by massive rims of pyrite, resulting from carbonate corrosion. A pure, fluorescent seam-micrite, constructive in origin, lines cavities or surrounds micritic aggregates.  相似文献   

17.
Several lichens and the terrestrial alga Trentepohlia were found to have extremely depleted 15N signatures at two sites near the Rotorua geothermal area, New Zealand. Values, typically −20‰, with several extreme cases of −24‰, are more isotopically depleted than any previously quoted δ15N signature for vegetation growing in natural environments. For Trentepohlia, distance from a geothermal source did not affect isotopic signature. A 100-km transect showed that the phenomenon is widespread and the discrimination is not related to substrate N, or to elevation. Rainfall NHx and atmospheric gaseous NH3 (NH3(g)) were shown to be isotopically depleted in the range −1‰ to −8‰ and could not, of themselves, be responsible for the plant values obtained. A simulation of Trentepohlia thallus was created using an acidified fiberglass mat and was allowed to absorb NH3(g) from the atmosphere. Mats exposed at the geothermal sites and on farmland showed a significant further depletion of 15N to −17‰. We hypothesize that the extreme isotopic depletion is due to dual fractionation: firstly by the volatilization of NH3(g) from aqueous sources into the atmosphere; secondly by the diffusive assimilation of that NH3(g) into vegetation. We further hypothesize that lithophytes, epiphytes, and higher plants, growing on strongly N-limited substrates, will show this phenomenon more or less, depending on the proportion of diffusively assimilated NH3(g) utilized as a N source. Many of the isotopically depleted δ15N signatures in vegetation, previously reported in the literature, especially epiphytes, may be due to this form of uptake depending on the concentration of atmospheric NH3(g), and the degree of reliance on that form of N.  相似文献   

18.
The composition, abundance, diet and trophic status of zooplankton, bottom invertebrates, fish and nekton were analyzed based on the data collected by the staff of the TINRO-Center during complex bottom trawl catches on the Bering Sea shelf in the fall of 2004. The stomach contents of mass fish species were analyzed and the nitrogen and carbon isotopic composition of 36 mass species of plankton, benthos, nekton and nektobenthos, which together make up the basis of pelagic and bottom communities, was determined. It was found that zooplankton noticeably differ from benthic invertebrates in carbon isotopic composition: δ13C values in zooplankton varied from −20.3‰ to −17.9‰; in benthos—from −17.5‰to −13.0‰; and in fish—from −19.2‰ (juvenile walleye pollock) to −15.3‰ (saffron cod). The levels of 13C isotope in the tissues of fish depended mostly on the share of pelagic or benthic animals in their diet. δ15N values in the studied species ranged from 8.6‰ (in sea urchins) to 17.2‰ (in large Pacific cods), which corresponds to a trophic level of 2.8. Obviously the δ15N values reflect the degree of predation and generally show the ratio of primary, secondary and tertiary consumers in a fish’s diet. Trophic interactions manifest a high degree of interdependence between benthic and pelagic communities (even without taking into account such lower components of the food web as phytoplankton, bacteria, and protozoa) occurring in most nektonic species that depend on both bottom and pelagic food.  相似文献   

19.
Variations in crop grain and soil N isotope composition (δ15N) in relation to liquid hog manure (δ15N of total N was +5.1‰), solid cattle manure (+7.9‰) and chemical fertilizer (+0.7‰ for urea and −1.9‰ for ammonium phosphate) applications, and control (no fertilizer application) were examined through a 4-year crop rotation under field conditions. Canola (Brassica napus), hull-less barley (Hordeum vulgare), wheat (Triticum aestivum), and canola were grown sequentially from 2000 (year 1) to 2003 (year 4). From year 2, hog manure or chemical fertilizers, but not cattle manure, treatments increased grain N concentrations over the control. Grain δ15N (+0.3 to +2.5‰) of crops applied with chemical fertilizers was lower than those in the other treatments, reflecting the effects of the N source with a lower δ15N, while the manure treatments tended to increase grain δ15N. The higher grain δ15N of crops applied with hog manure (+5.6 to +8.4‰) than those applied with cattle manure (+2.2 to +4.1‰) reflected the higher N availability of liquid hog manure (up to 70% as NH 4 + ) than solid cattle manure (99% organic N) and higher potentials for ammonia volatilization loss in hog manure rather than differences in manure δ15N signatures. Soil total- and extractable-N concentrations and δ15N tended to vary with the application of N sources with different N isotope composition and availability. Our study expanded the application of the δ15N technique for detecting N source (organic vs chemical) effects on N isotopic composition to field conditions and across a 4-year rotation, and revealed that N availability played a greater role than the δ15N signature of N sources in determining crop δ15N under the studied conditions. Section Editor: H. Lambers  相似文献   

20.
The isotopic composition of tree ring cellulose was obtained over a 2-year period from small-diameter riparian-zone trees at field sites that differed in source water isotopic composition and humidity. The sites were located in Utah (cool and low humidity), Oregon (cool and high humidity), and Arizona (warm and low humidity) with source water isotope ratio values of –125/–15‰ (δD/δ18O), –48/–6‰, and –67/–7‰, respectively. Monthly environmental measurements included temperature and humidity along with measurements of the isotope ratios in atmospheric water vapor, stream, stem, and leaf water. Small riparian trees used only stream water (both δD and δ18O of stem and stream water did not differ), but δ values of both atmospheric water vapor and leaf water varied substantially between months. Differences in ambient temperature and humidity conditions between sites contributed to substantial differences in leaf water evaporative enrichment. These leaf water differences resulted in differences in the δD and δ18O values of tree ring cellulose, indicating that humidity information was recorded in the annual rings of trees. These environmental and isotopic measurements were used to test a mechanistic model of the factors contributing to δD and δ18O values in tree ring cellulose. The model was tested in two parts: (a) a leaf water model using environmental information to predict leaf water evaporative enrichment and (b) a model describing biochemical fractionation events and isotopic exchange with medium water. The models adequately accounted for field observations of both leaf water and tree ring cellulose, indicating that the model parameterization from controlled experiments was robust even under uncontrolled and variable field conditions. Received: 7 April 1999 / Accepted: 8 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号