首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The carotid body consists of chemoreceptive glomus cells, sustentacular cells and nerve endings. The murine carotid body, located at the carotid bifurcation, is always joined to the superior cervical ganglion of the sympathetic trunk. Glomus cells and sympathetic neurons are immunoreactive for the TuJ1, PGP9.5, tyrosine hydroxylase (TH) and neuropeptide Y (NPY) markers. Glomus cells are also immunoreactive for serotonin (5-HT). A targeted mutation of Mash1, a mouse homolog of the Drosophila achaete-scute complex, results in the elimination of sympathetic ganglia. In Mash1 null mutant mice, the carotid body primordium forms normally in the wall of the third arch artery at embryonic day (E) 13.0 and continues to develop, although the superior cervical ganglion is completely absent. However, no cells in the mutant carotid body display the TuJ1, PGP 9.5, TH, NPY and 5-HT markers throughout development. The absence of glomus cells was also confirmed by electron microscopy. The carotid body of newborn null mutants is composed of mesenchymal-like cells and nerve fibers. Many cells immunoreactive for the S-100 protein, a sustentacular cell marker, appear in the mutant carotid body during fetal development. The Mash1 gene is thus required for the genesis of glomus cells but not for sustentacular cells.  相似文献   

2.
3.
4.
5.
The salivary epithelium initiates as a solid mass of epithelial cells that are organized into a primary bud that undergoes morphogenesis and differentiation to yield bilayered acini consisting of interior secretory acinar cells that are surrounded by contractile myoepithelial cells in mature salivary glands. How the primary bud transitions into acini has not been previously documented. We document here that the outer epithelial cells subsequently undergo a vertical compression as they express smooth muscle α-actin and differentiate into myoepithelial cells. The outermost layer of polarized epithelial cells assemble and organize the basal deposition of basement membrane, which requires basal positioning of the polarity protein, Par-1b. Whether Par-1b is required for the vertical compression and differentiation of the myoepithelial cells is unknown. Following manipulation of Par-1b in salivary gland organ explants, Par-1b-inhibited explants showed both a reduced vertical compression of differentiating myoepithelial cells and reduced levels of smooth muscle α-actin. Rac1 knockdown and inhibition of Rac GTPase function also inhibited branching morphogenesis. Since Rac regulates cellular morphology, we investigated a contribution for Rac in myoepithelial cell differentiation. Inhibition of Rac GTPase activity showed a similar reduction in vertical compression and smooth muscle α-actin levels while decreasing the levels of Par-1b protein and altering its basal localization in the outer cells. Inhibition of ROCK, which is required for basal positioning of Par-1b, resulted in mislocalization of Par-1b and loss of vertical cellular compression, but did not significantly alter levels of smooth muscle α-actin in these cells. Overexpression of Par-1b in the presence of Rac inhibition restored basement membrane protein levels and localization. Our results indicate that the basal localization of Par-1b in the outer epithelial cells is required for myoepithelial cell compression, and Par-1b is required for myoepithelial differentiation, regardless of its localization.  相似文献   

6.
7.
Culture of embryonic stem (ES) cells at high density inhibits both beta-catenin signaling and neural differentiation. ES cell density does not influence beta-catenin expression, but a greater proportion of beta-catenin is targeted for degradation in high-density cultures. Moreover, in high-density cultures, beta-catenin is preferentially localized to the membrane further reducing beta-catenin signaling. Increasing beta-catenin signaling by treatment with Wnt3a-conditioned medium, by overexpression of beta-catenin, or by overexpression of a dominant-negative form of E-cadherin promotes neurogenesis. Furthermore, beta-catenin signaling is sufficient to induce neurogenesis in high-density cultures even in the absence of retinoic acid (RA), although RA potentiates the effects of beta-catenin. By contrast, RA does not induce neurogenesis in high-density cultures in the absence of beta-catenin signaling. Truncation of the armadillo domain of beta-catenin, but not the C terminus or the N terminus, eliminates its proneural effects. The proneural effects of beta-catenin reflect enhanced lineage commitment rather than proliferation of neural progenitor cells. Neurons induced by beta-catenin overexpression either alone or in association with RA express the caudal neuronal marker Hoxc4. However, RA treatment inhibits the beta-catenin-mediated generation of tyrosine hydroxylase-positive neurons, suggesting that not all of the effects of RA are dependent upon beta-catenin signaling. These observations suggest that beta-catenin signaling promotes neural lineage commitment by ES cells, and that beta-catenin signaling may be a necessary co-factor for RA-mediated neuronal differentiation. Further, enhancement of beta-catenin signaling with RA treatment significantly increases the numbers of neurons generated from ES cells, thus suggesting a method for obtaining large numbers of neural species for possible use in for ES cell transplantation.  相似文献   

8.
BACKGROUND: Drosophila oocyte determination involves a complex process by which a single cell within an interconnected cyst of 16 germline cells differentiates into an oocyte. This process requires the asymmetric accumulation of both specific messenger RNAs and proteins within the future oocyte as well as the proper organization of the microtubule cytoskeleton, which together with the fusome provides polarity within the developing germline cyst. RESULTS: In addition to its previously described late oogenic role in the establishment of anterior-posterior polarity and subsequent embryonic axis formation, the Drosophila par-1 gene is required very early in the germline for establishing cyst polarity and for oocyte specification. Germline clonal analyses, for which we used a protein null mutation, reveal that Drosophila par-1 (par-1) is required for the asymmetric accumulation of oocyte-specific factors as well as the proper organization of the microtubule cytoskeleton. Similarly, somatic clonal analyses indicate that par-1 is required for microtubule stabilization in follicle cells. The PAR-1 protein is localized to the fusome and ring canals within the developing germline cyst in direct contact with microtubules. Likewise, in the follicular epithelium, PAR-1 colocalizes with microtubules along the basolateral membrane. However, in either case PAR-1 localization is independent of microtubules. CONCLUSIONS: The Drosophila par-1 gene plays at least two essential roles during oogenesis; it is required early in the germline for organization of the microtubule cytoskeleton and subsequent oocyte determination, and it has a second, previously described role late in oogenesis in axis formation. In both cases, par-1 appears to exert its effects through the regulation of microtubule dynamics and/or stability, and this finding is consistent with the defined role of the mammalian PAR-1 homologs.  相似文献   

9.
Phospholipase C-gamma1 is the most abundant member of the phospholipase C family in keratinocytes and is induced by calcium. Phospholipase C-gamma1, therefore, may be involved in the signal transduction system leading to calcium regulation of keratinocyte differentiation. To test this hypothesis, expression of phospholipase C-gamma1 in human keratinocytes was blocked by transfecting cells with the antisense human phospholipase C-gamma1 cDNA construct. These cells demonstrated a dramatic reduction in phospholipase C-gamma1 protein level compared with the empty vector-transfected cells and a marked reduction in the mRNA and protein levels of the differentiation markers involucrin and transglutaminase following administration of calcium. Similarly, cotransfection of antisense phospholipase C-gamma1 constructs with a luciferase reporter vector containing involucrin or transglutaminase promoters led to a substantial reduction in calcium-stimulated involucrin and transglutaminase promoter activities. Similar results were seen following treatment with a specific phospholipase C inhibitor U73122. To determine whether phospholipase C-gamma1 regulated differentiation by controlling intracellular calcium, we examined the ability of antisense phospholipase C-gamma1 to block the calcium-induced rise in intracellular calcium and found that it could. These findings indicate that phospholipase C-gamma1 is a critical component of the signaling pathway mediating calcium regulation of keratinocyte differentiation via its mobilization of intracellular calcium.  相似文献   

10.
Critical steps in coronary vascular formation include the epithelial-mesenchyme transition (EMT) that epicardial cells undergo to become sub-epicardial; the invasion of the myocardium; and the differentiation of coronary lineages. However, the factors controlling these processes are not completely understood. Epicardial and coronary vascular precursors migrate to the avascular heart tube during embryogenesis via the proepicardium (PE). Here, we show that in the quail embryo fibroblast growth factor receptor (FGFR)-1 is expressed in a spatially and temporally restricted manner in the PE and epicardium-derived cells, including vascular endothelial precursors, and is up-regulated in epicardial cells after EMT. We used replication-defective retroviral vectors to over-express or knock-down FGFR-1 in the PE. FGFR-1 over-expression resulted in increased epicardial EMT. Knock-down of FGFR-1, however, did not inhibit epicardial EMT but greatly compromised the ability of PE progeny to invade the myocardium. The latter could, however, contribute to endothelia and smooth muscle of sub-epicardial vessels. Correct FGFR-1 levels were also important for correct coronary lineage differentiation with, at E12, an increase in the proportion of endothelial cells amongst FGFR-1 over-expressing PE progeny and a decrease in the proportion of smooth muscle cells in antisense FGFR-1 virus-infected PE progeny. Finally, in a heart explant system, constitutive activation of FGFR-1 signaling in epicardial cells resulted in increased delamination from the epicardium, invasion of the sub-epicardium, and invasion of the myocardium. These data reveal novel roles for FGFR-1 signaling in epicardial biology and coronary vascular lineage differentiation, and point to potential new therapeutic avenues.  相似文献   

11.
12.
13.
14.
Mouse embryonic stem cells can differentiate in vitro into cells of the nervous system, neurons and glia. This differentiation mimics stages observed in vivo, including the generation of primitive ectoderm and neurectoderm in embryoid body culture. We demonstrate here that embryonic stem cell lines mutant for components of the Hedgehog signaling cascade are deficient at generating neurectoderm-containing embryoid bodies. The embryoid bodies derived from mutant cells are also unable to respond to retinoic acid treatment by producing nestin-positive neural stem cells, a response observed in cultures of heterozygous cells, and contain cores apparently arrested at the primitive ectoderm stage. The mutant cultures are also deficient in their capacity to differentiate into mature neurons and glia. These data are consistent with a role for Hedgehog signaling in generating neurectoderm capable of producing the appropriate neuronal and glial progenitors in ES cell culture.  相似文献   

15.
Genetic studies show that TGFbeta signaling is essential for vascular development, although the mechanism through which this pathway operates is incompletely understood. Here we demonstrate that the TGFbeta auxiliary coreceptor endoglin (eng, CD105) is expressed in a subset of neural crest stem cells (NCSCs) in vivo and is required for their myogenic differentiation. Overexpression of endoglin in the neural crest caused pericardial hemorrhaging, correlating with altered vascular smooth muscle cell investment in the walls of major vessels and upregulation of smooth muscle alpha-actin protein levels. Clonogenic differentiation assay of NCSCs derived from neural tube explants demonstrated that only NCSC expressing high levels of endoglin (NCSC(CD105+)) had myogenic differentiation potential. Furthermore, myogenic potential was deficient in NCSCs obtained from endoglin null embryos. Expression of endoglin in NCSCs declined with age, coinciding with a reduction in both smooth muscle differentiation potential and TGFbeta1 responsiveness. These findings demonstrate a cell autonomous role for endoglin in smooth muscle cell specification contributing to vascular integrity.  相似文献   

16.
17.
18.
19.
Jeong HW  Kim JH  Kim JY  Ha SJ  Kong YY 《PloS one》2012,7(4):e36359
In dendritic cell (DC)-CD4(+) T cell interaction, Notch signaling has been implicated in the CD4(+) T cell activation, proliferation, and subset differentiation. However, there has been a lot of debate on the exact role of Notch signaling. Here, we observed that expression of Mind bomb-1 (Mib1), a critical regulator of Notch ligands for the activation of Notch signaling, increases gradually as precursor cells differentiate into DCs in mice. To clarify the role of Mib1 in DC-CD4(+) T cell interactions, we generated Mib1-null bone marrow-derived DCs. These cells readily expressed Notch ligands but failed to initiate Notch activation in the adjacent cells. Nevertheless, Mib1-null DCs were able to prime the activation and proliferation of CD4(+) T cells, suggesting that Notch activation in CD4(+) T cells is not required for these processes. Intriguingly, stimulation of CD4(+) T cells with Mib1-null DCs resulted in dramatically diminished Th2 cell populations, while preserving Th1 cell populations, both in vitro and in vivo. Our results demonstrate that Mib1 in DCs is critical for the activation of Notch signaling in CD4(+) T cells, and Notch signaling reinforces Th2 differentiation, but is not required for the activation or proliferation of the CD4(+) T cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号