首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myxobolus cerebralis is the myxozoan parasite responsible for causing whirling disease in salmonid fish. Although the parasite was first described nearly 100 yr ago, it received relatively little attention until the discovery of its 2-host life cycle in the mid 1980s. This was the first, complete, myxozoan life cycle to be described, and it was greeted with some skepticism because it united 2 stages of M. cerebralis that were previously classified in 2 separate taxa. In the last decade, there has been a renewed interest in this parasite because whirling disease has been implicated in the decline of wild trout populations in several western states in the United States. Subsequent research efforts have dramatically increased the understanding of the biology of M. cerebralis and the numerous factors that affect the severity of whirling disease in salmonid hosts. These efforts also have provided a great deal of new information concerning interactions between M. cerebralis and its aquatic oligochaete host Tubifex tubifex. This review examines the current state of M. cerebralis in relation to 3 categories: the life cycle, the salmonid hosts, and the oligochaete host.  相似文献   

2.
ABSTRACT. The alternating myxosporean and actinosporean stages of the myxozoan parasitc Myxobolus cerebralis (Hofer 1903) from its salmonid fish and aquatic oligochaete hosts, respectively, were compared for sequence homology of the small subunit (18S) ribosomal RNA genes. A 99.8% similarity between the sequences of these two stages was substantially greater than that of M. cerebralis compared to two other Myxobolus sp. from salmonid fish. Our results are the first molecular evidence confirming the alternating stages initially described by Wolf and Markiw [25] for the life cycle of M. cerebralis but found in two different taxonomic classes (Myxosporea and Actinosporea) are indeed forms of the same organism. Sequencing of rRNA genes of the actinosporean stage followed by development of specific primers for DNA amplification of the myxosporean stage, as in our study, should be applied to solve other myxozoan life cycles. Additionally, these approaches will in the future provide useful diagnostic reagents for the detection and study of this important group of fish pathogens.  相似文献   

3.
Myxozoans, belonging to the recently described Class Malacosporea, parasitise freshwater bryozoans during at least part of their life cycle, but no complete malacosporean life cycle is known to date. One of the 2 described malacosporeans is Tetracapsuloides bryosalmonae, the causative agent of salmonid proliferative kidney disease. The other is Buddenbrockia plumatellae, so far only found in freshwater bryozoans. Our investigations evaluated malacosporean life cycles, focusing on transmission from fish to bryozoan and from bryozoan to bryozoan. We exposed bryozoans to possible infection from: stages of T. bryosalmonae in fish kidney and released in fish urine; spores of T. bryosalmonae that had developed in bryozoan hosts; and spores and sac stages of B. plumatellae that had developed in bryozoans. Infections were never observed by microscopic examination of post-exposure, cultured bryozoans and none were detected by PCR after culture. Our consistent negative results are compelling: trials incorporated a broad range of parasite stages and potential hosts, and failure of transmission across trials cannot be ascribed to low spore concentrations or immature infective stages. The absence of evidence for bryozoan to bryozoan transmissions for both malacosporeans strongly indicates that such transmission is precluded in malacosporean life cycles. Overall, our results imply that there may be another malacosporean host which remains unidentified, although transmission from fish to bryozoans requires further investigation. However, the highly clonal life history of freshwater bryozoans is likely to allow both long-term persistence and spread of infection within bryozoan populations, precluding the requirement for regular transmission from an alternate host.  相似文献   

4.
Studies of the life cycle of Myxosoma cerebralis showed that development of infectivity did not occur endogenously but that the spore “aging” process required participation of an aquatic tubificid oligochaete. Data suggestive of such involvement were derived from trials in which spores were “aged” in an array of inert, sterilized, pasteurized, or natural aquatic substrates and from examination of aquatic soils from trout hatcheries in which whirling disease was epizootic. The role of the aquatic oligochaete was confirmed two ways. First, signs of whirling disease developed, and M. cerebralis spores were produced in young rainbow trout (Salmo gairdneri) that had been fed oligochaetes harvested from pond soil taken from two hatcheries where whirling disease was epizootic. Second, when containers of pasteurized soil were populated with four genera of oligochaetes–Aeolosoma, Dero, Stylaria, or Tubifex– from a biological supply house, or with tubificid worms from trout hatcheries free of whirling disease, and then seeded with M. cerebralis spores and “aged” for 4 months, whirling disease occurred only in trout held with Tubifex and with hatchery tubificids.  相似文献   

5.
The phylum Myxozoa contains over 1350 species almost all of which are considered to be obligate parasites of aquatic animals. The phylum is composed of two classes, the Myxosporea and the Malacosporea, species of which are important pathogens responsible for severe economic losses in cultured fisheries. The life cycles of freshwater Myxozoa are believed to involve horizontal, indirect transmission, involving an invertebrate (oligochaetes or bryozoans) and a vertebrate host (fish or amphibians). Here, we describe myxozoan propagation through the fragmentation of invertebrate hosts to form new infected individuals. The two hosts examined are an oligochaete Lumbriculus variegatus infected with an unidentified myxosporean (Triactinomyxon sp.) and the bryozoan Fredericella sultana infected with the malacosporean Tetracapsuloides bryosalmonae which causes proliferative kidney disease, a major constraint of the European rainbow trout industry. Such intra-clonal propagation is a novel form of vertical transmission that is likely to be widespread within the Myxozoa and could form an important method by which some of these parasites maintain and proliferate within the aquatic environment.  相似文献   

6.
The phylum Myxozoa is composed of endoparasitic species that have predominately been recorded within aquatic vertebrates. The simple body form of a trophic cell containing other cells within it, as observed within these hosts, has provided few clues to relationships with other organisms. In addition, the placement of the group using molecular phylogenies has proved very difficult, although the majority of analyses now suggest that they are cnidarians. There have been relatively few studies of myxozoan stages within invertebrate hosts, even though these exhibit multicellular and sexual stages that may provide clues to myxozoan evolution. Therefore an ultrastructural examination of a myxozoan infection of a freshwater oligochaete was conducted, to reassess and formulate a model for myxozoan development in these hosts. This deemed that meiosis occurs within the oligochaete, but that fertilisation is not immediate. Rather, the resultant haploid germ cell (oocyte) is engulfed by a diploid sporogonic cell (nurse cell) to form a sporoplasm. It is this sporoplasm that infects the fish, resulting in the multicellular stages observed. Fertilisation occurs after the parasites leave the fish and enter the oligochaete host. The nurse cell/oocyte model explains previously conflicting evidence in the literature regarding myxosporean biology, and aligns phenomena considered distinctive to the Myxozoa, such as endogenous budding and cell within cell development, with processes recorded in cnidarians. Finally, the evolutionary origin of the Myxozoa as cnidarian parasites of ova is hypothesised.  相似文献   

7.
Small subunit rDNA sequences were obtained from field-collected Amblyospora connections (Microsporida: Amblyosporidae) spores isolated from the mosquito, Aedes cantator (Diptera: Culicidae), and from field collected spores isolated from the putative intermediate host, Acanthocyclops vernalis (Copepoda: Cyclopidae). The ribosomal DNA sequences of the spores isolated from the two hosts were identical. These findings corroborate previous laboratory transmission studies and validate the intermediary role of A. vernalis in the life cycle of this microsporidium. These data represent the first comparative sequence analysis of a microsporidium isolated from its definitive and intermediate hosts. The results demonstrate the effectiveness of using rDNA sequence data for screening potential intermediate hosts. Unlike laboratory transmission tests, which can take months or years to complete, this technique can be completed in days and can be performed on a single infected organism.  相似文献   

8.
The present study aimed to understand how a parasite with a complex life cycle selects a given host succession when several potential hosts are present. Ligula intestinalis (Cestoda, Pseudophyllidea) was considered, which presents a life cycle with three hosts: copepod, fish, and piscivorous bird. Encounter probability between each pair of hosts was calculated for Lavernose-Lacasse gravel pit (France) using a sum of the product of the host abundances over time. Among four potential copepod hosts, two potential fish hosts, and six potential bird hosts, the results demonstrate that the copepod Eudiaptomus gracilis , the roach ( Rutilus rutilus ), and the great crested grebe ( Podiceps cristatus ) had a maximal encounter probability due to their abundance, but also due to the similarities of the temporal dynamics of their life cycles. These results agree with previous experiments and field work identifying a high specificity of L. intestinalis to E. gracilis , R. rutilus , and P. cristatus in the study site. This suggests that the abundance of potential hosts and the temporal dynamics of their life cycles act together to determine encounter rates between hosts and parasites, and thus could constitute a crucial determinant in local host selection by parasites with a complex life cycle.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 99–106.  相似文献   

9.
10.
The spores of Phytophthora: weapons of the plant destroyer   总被引:3,自引:0,他引:3  
Members of the genus Phytophthora are among the most serious threats to agriculture and food production, causing devastating diseases in hundreds of plant hosts. These fungus-like eukaryotes, which are taxonomically classified as oomycetes, generate asexual and sexual spores with characteristics that greatly contribute to their pathogenic success. The spores include survival and dispersal structures, and potent infectious propagules capable of actively locating hosts. Genetic tools and genomic resources developed over the past decade are now allowing detailed analysis of these important stages in the Phytophthora life cycle.  相似文献   

11.
The phylogenetic relationships of chemoautotrophic endosymbionts in the gutless marine oligochaete Inanidrilus leukodermatus to chemoautotrophic ecto- and endosymbionts from other host phyla and to free-living bacteria were determined by comparative 16S rRNA sequence analysis. Fluorescent in situ hybridization confirmed that the 16S rRNA sequence obtained from these worms originated from the symbionts. The symbiont sequence is unique to I. leukodermatus. In phylogenetic trees inferred by both distance and parsimony methods, the oligochaete symbiont is peripherally associated with one of two clusters of chemoautotrophic symbionts that belong to the gamma subdivision of the Proteobacteria. The endosymbionts of this oligochaete form a monophyletic group with chemoautotrophic ectosymbionts of a marine nematode. The oligochaete and nematode symbionts are very closely related, although their hosts belong to separate, unrelated animal phyla. Thus, cospeciation between the nematode and oligochaete hosts and their symbionts could not have occurred. Instead, the similar geographic locations and habitats of the hosts may have influenced the establishment of these symbioses.  相似文献   

12.
Numerous parasite species have evolved complex life cycles with multiple, subsequent hosts. In trematodes, each transmission event in multi-host life cycles selects for various adaptations, one of which is facultative life cycle abbreviation. This typically occurs through progenesis, i.e., precocious maturity and reproduction via self-fertilization within the second intermediate host. Progenesis eliminates the need for the definitive host and facilitates life cycle completion. Adopting a progenetic cycle may be a conditional strategy in response to environmental cues related to low probability of transmission to the definitive host. Here, the effects of environmental factors on the reproductive strategy of the progenetic trematode Stegodexamene anguillae were investigated using comparisons among populations. In the 3-host life cycle, S. anguillae sexually reproduces within eel definitive hosts, whereas in the progenetic life cycle, S. anguillae reproduces by selfing within the metacercaria cyst in tissues of small fish intermediate hosts. Geographic variation was found in the frequency of progenesis, independent of eel abundance. Progenesis was affected by abundance and length of the second intermediate fish host as well as encystment site within the host. The present study is the first to compare life cycle strategies among parasite populations, providing insight into the often unrecognized plasticity in parasite developmental strategies and transmission.  相似文献   

13.
Whirling disease, caused by the parasite Myxobolus cerebralis, has infected rainbow trout (Oncorhynchus mykiss) and other salmonid fish in the western United States, often with devastating results to native populations but without a discernible spatial pattern. The parasite develops in a complex 2-host system in which the aquatic oligochaete Tubifex tubifex is an obligate host. Because substantial differences in whirling disease severity in different areas of North America did not seem explainable by environmental factors or features of the parasite or its fish host, we sought to determine whether ecological or genetic variation within oligochaete host populations may be responsible. We found large differences in compatibility between the parasite and various laboratory strains of T. tubifex that were established from geographic regions with different whirling disease histories. Moreover, 2 closely related species of tubificids, Limnodrilus hoffmeisteri and Ilyodrilus templetoni, which occur naturally in mixed species assemblages with T. tubifex, were incompatible with M. cerebralis. Virulence of the parasite was directly correlated with the numbers of triactinomyxon spores that developed within each strain of T. tubifex. Thus, the level of virulence was directly related to the compatibility between the host strain and the parasite. Genetic analyses revealed relationships that were in agreement with the level of parasite production. Differences in compatibilities between oligochaetes and M. cerebralis may contribute to the spatial variance in the severity of the disease among salmonid populations.  相似文献   

14.
ABSTRACT. We describe a new microsporidian species Binucleata daphniae, n. g., n. sp., that infects the integument cells lining the hemocoele cavity of the carapace and the postabdomen of the cladoceran Daphnia magna Straus. Infected cells filled with spores accumulate as large clusters in the carapace cavity and heavily infected hosts are detected by their opaque appearance. Despite the parasite's presence, infected Daphnia grow and molt, but have a reduced fecundity. During the parasite's life cycle, chain‐like meronts with isolated nuclei are formed, giving rise to binucleate presporonts, the most frequently observed, characteristic developmental stage. In sporogony, the nuclei of the presporont separate, divide, and eight spores enclosed in a thin‐walled sporophorous vesicle are formed. Spores are 4.9 × 2.5 μm in size (fresh) and have an anisofilar polar filament with eight coils. DNA sequence analysis places B. daphniae in a clade of microsporidians that parasitize crustaceans and mosquitoes and have assumed complex life cycles. Binucleata daphniae, however, has a simple and direct life cycle and can be transferred to naïve hosts and maintained as persistent infections in populations of its host D. magna. We propose that B. daphniae has simplified its life cycle by losing its secondary host, rendering it unique in this clade.  相似文献   

15.
Various processes can generate associations between the larvae of different helminth species in their fish intermediate or paratenic host. We investigated the pairwise associations among larval helminth species in eight different fish populations, using two different coefficients of associations, in order to determine in what situations they are strongest. All helminth species included use the fish studied as either their second intermediate host or their paratenic host, and are acquired by the fish when it ingests an infected first intermediate host. The intensity of infection correlated positively with fish length for most helminth species. Pairs of species which both exhibited positive correlations with fish length tended to be more strongly associated with one another, although this tendency was not pronounced. Similarity in life cycle had a more important influence on pairwise associations. Among the 62 pairwise associations that could be computed, pairs of helminth species that shared both first intermediate hosts and definitive hosts were the most strongly associated, followed by pairs that shared only one other host, and finally by pairs that did not share other hosts. The results suggest that assemblages of larval helminth parasites in fish are not random collections of locally available species, but rather structured packets of larval parasites that travel together along common transmission routes.  相似文献   

16.
Thelohanellus hovorkai (Myxosporea: Myxozoa) was transmitted to common carp Cyprinus carpio by exposing fish to Aurantiactinomyxon spores collected from the oligochaete Branchiura sowerbyi. The morphological characteristics of the actinosporean stage are described in detail. B. sowerbyi were exposed to T. hovorkai spores isolated from the experimentally infected carp, and after 3 and 4 months the worms exhibited prevalences of the actinosporean stage at 19.47% (7/36) and 14.6% (6/41), respectively. Control, unexposed worms were negative for the actinosporean infection. This is the first report of an Aurantiactinomyxon transforming into a myxosporean belonging to the suborder Platysporina.  相似文献   

17.
18.
Diplozoids (Diplozoidae, Monogenea) are fish ectoparasites with a direct life cycle without intermediate hosts. Their free swimming larva, the oncomiracidium, hatches from eggs, invades a fish host and metamorphoses into a post-oncomiracidial larval stage, the diporpa. Later, two diporpae fuse and live as a pair in cross-copulation during their adult life. An experimental study was designed to investigate the life cycle of Paradiplozoon homoion (Monogenea, Diplozoidae) parasitizing their common fish hosts, gudgeon (Gobio gobio). A total of 35 gudgeon parasitized by diplozoids were collected from their natural environment of the Vlára River, Czech Republic, and kept together in tanks with 41 non-parasitized gudgeons reared in a laboratory environment. In total, 100 adult specimens of P. homoion were collected from the Vlára River gudgeon and a new parasite generation was expected to be observed on fish reared in the laboratory environment. Eight days after the first diplozoid eggs appeared on fish gills, the presence of diporpae with one or two pairs of clamps was noted. The appearance of the first juveniles was recorded at the same time as diporpae. Development of P. homoion from egg to sexually mature adult stage took 33 days at a constant temperature of 20 degrees C. The development of eggs in adults of the second generation was observed 2 days after the first observation of these adults. The behavior of oncomiracidia was also studied and this free swimming stage of diplozoids survived for 22 h in the absence of a host. When host fish were experimentally infected by oncomiracidia, diporpae were found attached to the fish gill apparatus within 2 h of infection.  相似文献   

19.
Proliferative kidney disease (PKD) of salmonid fishes is caused by the extrasporogonic stage of an enigmatic myxozoan, referred to as PKX. Sporogenesis occurs in the renal tubules, resulting in monosporous pseudoplasmodia. The spores are ovoid with indistinguishable valves and measure 12 microm in length and 7 microm in width. Two spherical polar capsules (2 microm diameter) with 4 coils occur at the anterior end of the spore. Prominent capsulogenic cell nuclei posterior to the polar capsules are evident in histological sections stained with hematoxylin and eosin. Regardless of the true nature of the valves (indistinguishable or absent), this myxozoan is morphologically distinct from all other described members of the phylum Myxozoa. Comparisons of small subunit rDNA sequences of PKX with other myxozoans demonstrated that it branches from all other members of the myxosporeans from fish examined thus far, including representatives of the phenotypically most closely related genera, Sphaerospora and Parvicapsula. Recent reports, based on rDNA comparisons, indicate that the alternate stage of PKX occurs in bryozoans, and that PKX clusters in a clade with Tetracapsula bryozoides. Our analyses and those of others, along with phenotypic observations, indicate that salmonids are the primary myxosporean hosts for PKX, that the cryptic spores of PKX in salmonids are the fully formed myxospores as they occur in the fish host, and that PKX represents distinct species that we previously place in the genus Tetracapsula in the family Saccosporidae. The latter 2 taxa were described based on stages from bryozoans, and the myxosporean stage in fish of the type species, T. bryozoides, has not been identified (if it exists). Thus, more complete resolution of the life cycle of both PKX and T. bryozoides, as well as more genetic data, are required to determine the precise relationship of these organisms.  相似文献   

20.
The community of myxosporeans and actinosporeans inhabiting a typical Scottish highland stream and the outflow area of an adjacent salmon hatchery was analysed on the basis of their 18S rDNA sequences. Nine myxosporeans belonging to the genera Sphaerospora, Chloromyxum, Zschokkella, Myxidium, Hoferellus and Myxobilatus were identified from mature spores in different organs of the fish species present. Twelve actinosporean types belonging to the collective groups of neoactinomyxum, aurantiactinomyxon, raabeia, echinactinomyxon and synactinomyxon were found to be released from oligochaete worms collected from sediments. Twenty of the 21 sequences obtained from these myxozoans are new entries to the myxozoan database, and the genera Chloromyxum, Hoferellus and Myxobilatus were entered for the first time. Study of the molecular relationships between the different taxa and with other myxozoan sequences available showed that the myxosporeans inhabiting the urinary system clearly cluster together, independently of host species or spore morphology. However, the sequences of the two Sphaerospora species encountered show considerable differences from other members of this group and all other freshwater myxosporeans, and they were found to occupy an ancestral marine position. Three actinosporeans, i.e. Neoactinomyxum eiseniellae, Aurantiactinomyxon pavinsis and Raabeia 'type 3' were found to represent alternate life cycle stages of Chloromyxum sp., Chloromyxum truttae and Myxidium truttae, respectively (approximately 1400 identical base pairs each). Three other actinosporeans encountered (two echinactinomyxon and one raabeia type) showed over 92% sequence identity with myxosporeans from GenBank, whereas all other actinosporeans formed a closely related group devoid of any known myxosporeans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号