首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human peripheral blood samples collected from three healthy human volunteers were exposed in vitro to pulsed-wave 2450 MHz radiofrequency (RF) radiation for 2 h. The RF radiation was generated with a net forward power of 21 W and transmitted from a standard gain rectangular antenna horn in a vertically downward direction. The average power density at the position of the cells in the flask was 5 mW/cm(2). The mean specific absorption rate, calculated by finite difference time domain analysis, was 2.135 (+/-0.005 SE) W/kg. Aliquots of whole blood that were sham-exposed or exposed in vitro to 50 cGy of ionizing radiation from a (137)Cs gamma-ray source were used as controls. The lymphocytes were examined to determine the extent of primary DNA damage (single-strand breaks and alkali-labile lesions) using the alkaline comet assay with three different slide-processing schedules. The assay was performed on the cells immediately after the exposures and at 4 h after incubation of the exposed blood at 37 +/- 1 degrees C to allow time for rejoining of any strand breaks present immediately after exposure, i.e. to assess the capacity of the lymphocytes to repair this type of DNA damage. At either time, the data indicated no significant differences between RF-radiation- and sham-exposed lymphocytes with respect to the comet tail length, fluorescence intensity of the migrated DNA in the tail, and tail moment. The conclusions were similar for each of the three different comet assay slide-processing schedules examined. In contrast, the response of lymphocytes exposed to ionizing radiation was significantly different from RF-radiation- and sham-exposed cells. Thus, under the experimental conditions tested, there is no evidence for induction of DNA single-strand breaks and alkali-labile lesions in human blood lymphocytes exposed in vitro to pulsed-wave 2450 MHz radiofrequency radiation, either immediately or at 4 h after exposure.  相似文献   

2.
Many studies suggest that exogenous antioxidants may protect cells against DNA damage caused with ionizing radiation. One of the most powerful antioxidants is lycopene (LYC), a carotenoid derived from tomatoes. The aim of this study was to investigate, using the comet assay, whether LYC can act as protectors/modifiers and prevent DNA damage induced in human blood lymphocytes, as well as to mitigate the effects of radiation exposure. In this project, LYC, dissolved in DMSO at a concentration of 10, 20 or 40 μM/ml of cell suspension, was added to the isolated lymphocytes from human blood at appropriate intervals before or after the X-irradiation at doses of 0.5, 1 and 2 Gy. Cell viability in all groups was maintained at above 70%. The results showed the decrease of DNA damage in cells treated with various concentrations of LYC directly and 1 h before exposure to X-rays compared to the control group exposed to irradiation alone. Contrary results were observed in cells exposed to LYC immediately after exposure to ionizing radiation. The studies confirmed the protective effect of LYC against DNA damage induced by ionizing radiation, but after irradiation the carotenoid did not stimulate of DNA repair and cannot act as modifier. However, supplementation with LYC, especially at lower doses, may be useful in protection from radiation-induced oxidative damage.  相似文献   

3.
4.
Ultraviolet Al (UVA1) radiation generates reactive oxygen species and the oxidative stress is known as a mediator of DNA damage and of apoptosis. We exposed cultured human cutaneous fibroblasts to UVA1 radiation (wavelengths in the 340–450-nm range with emission peak at 365 nm) and, using the alkaline unwinding method, we showed an immediate significant increase of DNA strand breaks in exposed cells. Apoptosis was determined by detecting cytoplasmic nucleosomes (enzyme-linked immunosorbent assay method) at different time points in fibroblasts exposed to different irradiation doses. In our conditions, UVA1 radiation induced an early (8 h) and a delayed (18 h) apoptosis. Delayed apoptosis increased in a UVA dosedependent manner. Zinc is an important metal for DNA protection and has been shown to have inhibitory effects on apoptosis. The addition of zinc (6.5 mg/L) as zinc chloride to the culture medium significantly decreased immediate DNA strand breaks in human skin fibroblasts. Moreover, zinc chloride significantly decreased UVA1-induced early and delayed apoptosis. Thus, these data show for the first time in normal cutaneous cultured cells that UVA1 radiation induces apoptosis. This apoptosis is biphasic and appears higher 18 h after the stress. Zinc supplementation can prevent both immediate DNA strand breakage and early and delayed apoptosis, suggesting that this metal could be of interest for skin cell protection against UVA1 irradiation.  相似文献   

5.
Ultraviolet radiation (UVR) phototherapy is a promising new treatment for inflammatory airway diseases. However, the potential carcinogenic risks associated with this treatment are not well understood. UV-specific DNA photoproducts were used as biomarkers to address this issue. Radioimmunoassay was used to quantify cyclobutane pyrimidine dimers (CPDs) and (6–4) photoproducts in DNA purified from two milieus: nasal mucosa samples from subjects exposed to intranasal phototherapy and human airway (EpiAirway™) and human skin (EpiDerm™) tissue models. Immunohistochemistry was used to detect CPD formation and persistence in human nasal biopsies and human tissue models. In subjects exposed to broadband ultraviolet radiation, DNA damage frequencies were determined prior to as well as immediately after treatment and at increasing times post-treatment. We observed significant levels of DNA damage immediately after treatment and efficient removal of the damage within a few days. No residual damage was observed in human subjects exposed to multiple UVB treatments several weeks after the last treatment. To better understand the molecular response of the nasal epithelium to DNA damage, parallel experiments were conducted in EpiAirway and EpiDerm model systems. Repair rates in these two tissues were very similar and comparable to that observed in human skin. The data suggest that the UV-induced DNA damage response of respiratory epithelia is very similar to that of the human epidermis and that nasal mucosa is able to efficiently repair UVB induced DNA damage.  相似文献   

6.
The effect of long-term exposure to low-dose external radiation on the rat thyroid status was studied. The experiments were carried out on Wistar female rats. The single doses absorbed were 0.1; 0.25; 0.5 Gy. The rats were irradiated 20 times (5 days x 4 weeks). The animals were decapitated after 1, 30 and 180 days following the last irradiation. Blood serum was assayed for content of thyroxin (T4) and triiodothyronine (T3) radioimmunologically. The liver was spectrophotometrically assayed for thyroid-induced NADP-malatedehydrogenase (NADP-MDH). It was shown that the long-term 0.5-Gy irradiation of the animals induced a decrease in blood T4 and T3 concentrations 1.34-1.71-fold and 1.24-1.43-fold after 1, 30 and 180 days, respectively. The T3 level was diminished most pronouncedly after 1 day, whereas that of T4--after 30 days following the exposure. With the doses of 0.1 and 0.25 Gy absorbed, the T4 and T3 concentration remained unchanged throughout all the periods studied. The activity of NADP-MDH was decreased 1.55-2.46-fold in all the experimental animals, and it was held decreased after 180 days (1.43-1.50-fold) in 0.25- and 0.5-Gy-irradiated groups, which indicates a disturbance in thyroid hormone metabolism in rats exposed chronically to low-dose radiation. After 180 days, the experimental animals experienced an elevation of thyroid gland weight on 15-20%. The thyroid status disturbance seemed to be due to both inhibited T4 and T3 biosynthesis in thyroid and disturbed hormone peripheral metabolism under radiation exposure.  相似文献   

7.
Mutations in a 443-bp amplicon of the hypervariable region HVR1 of the D-loop of mitochondrial DNA (mtDNA) were quantified in DNA extracted from peripheral blood samples of 10 retired radiation workers who had accumulated external radiation doses of >0.9 Sv over the course of their working life and were compared to the levels of mutations in 10 control individuals matched for age and smoking status. The mutation rate in the 10 exposed individuals was 9.92 x 10(-5) mutations/ nucleotide, and for the controls it was 8.65 x 10(-5) mutations/ nucleotide, with a procedural error rate of 2.65 x 10(-5) mutations/nucleotide. No increase in mtDNA mutations due to radiation exposure was detectable (P = 0.640). In contrast, chromosomal translocation frequencies, a validated radiobiological technique for retrospective dosimetric purposes, were significantly elevated in the exposed individuals. This suggests that mutations identified through sequencing of mtDNA in peripheral blood lymphocytes do not represent a promising genetic marker of DNA damage after low-dose or low-dose-rate exposures to ionizing radiation. There was an increase in singleton mutations above that attributable to procedural error in both exposed and control groups that is likely to reflect age-related somatic mutation.  相似文献   

8.
Although the etiology of radiation sickness is still unknown, disturbance of the autonomic nervous system is suggested to be a factor. This study was designed to compare the radiosensitivity of spontaneously hypertensive rats possessing sympathetic hyperfunction and control Wistar-Kyoto rats, and to analyze the effects of radiation on the autonomic nervous system in both strains. After a 7.5-Gy dose of whole-body X irradiation, the blood pressure decreased significantly at 8 h and 2 days in the spontaneously hypertensive rats, but not in the Wistar-Kyoto rats. Epinephrine levels in the adrenal gland of spontaneously hypertensive rats decreased at 4, 8 and 24 h, unlike the Wistar-Kyoto rats. Radiation evoked a stronger increase in norepinephrine in the jejunum and colon of spontaneously hypertensive rats than in Wistar-Kyoto rats. Acetylcholine levels in the jejunum of spontaneously hypertensive rats decreased, in contrast to the increase in Wistar-Kyoto rats within 24 h after irradiation. The survival rate of spontaneously hypertensive rats was lower than that of Wistar-Kyoto rats and weight loss, appetite loss and morphological changes in the jejunum were greater in spontaneously hypertensive rats than in Wistar-Kyoto rats after irradiation. These results indicated that X irradiation caused greater activities in autonomic nervous function and severe radiation injury in spontaneously hypertensive rats. Sympathetic hyperfunction may be associated with a higher sensitivity to radiation, including radiation injury and radiation sickness.  相似文献   

9.
Bistranded oxidative clustered DNA lesions are closely spaced lesions (1-10 bp) that challenge the DNA repair mechanisms and are associated with genomic instability. The endogenous levels of oxidative clustered DNA lesions in cells of human cancer cell lines or in animal tissues remain unknown, and these lesions may persist for a long time after irradiation. We measured the different types of DNA clusters in cells of two human cell lines, MCF-7 and MCF-10A, and in skin obtained from mice exposed to either 12.5 Gy or sham X radiation. For the detection and measurement of oxidative clustered DNA lesions, we used adaptations of number average length analysis, constant-field agarose gel electrophoresis, putrescine, and the repair enzymes APE1, OGG1 (human) and Nth1 (E. coli). Increased levels of all cluster types were detected in skin tissue from animals exposed to radiation at 20 weeks postirradiation. The level of endogenous (no radiation treatment) oxidative clustered DNA lesions was higher in MCF-7 cells compared to nonmalignant MCF-10A cells. To the best of our knowledge, this is the first study to demonstrate persistence of oxidative clustered DNA lesions for up to 20 weeks in animal tissues exposed to radiation and to detect these clusters in human breast cancer cells. This may underscore the biological significance of clustered DNA lesions.  相似文献   

10.
We investigated the possible combined genotoxic effects of radiofrequency (RF) electromagnetic fields (900 MHz, amplitude modulated at 217 Hz, mobile phone signal) with the drinking water mutagen and carcinogen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX). Female rats were exposed to RF fields for a period of 2 years for 2 h per day, 5 days per week at average whole-body specific absorption rates of 0.3 or 0.9 W/kg. MX was given in the drinking water at a concentration of 19 microg/ml. Blood samples were taken at 3, 6 and 24 months of exposure and brain and liver samples were taken at the end of the study (24 months). DNA damage was assessed in all samples using the alkaline comet assay, and micronuclei were determined in erythrocytes. We did not find significant genotoxic activity of MX in blood and liver cells. However, MX induced DNA damage in rat brain. Co-exposures to MX and RF radiation did not significantly increase the response of blood, liver and brain cells compared to MX exposure only. In conclusion, this 2-year animal study involving long-term exposures to RF radiation and MX did not provide any evidence for enhanced genotoxicity in rats exposed to RF radiation.  相似文献   

11.
We studied the rat thyroid status depending on the dose of external radiation and the time passed after the exposure. The experiments were carried out on female albino Wistar rats. The doses absorbed amounted to 0.25; 0.5; 1.0; 2.0 and 5.0 Gy. The animals were decapitated after 3, 6, 24 hours and 7, 30, 180 and 365 days following the radiation. The blood serum was assayed for the contents of thyroxin (T4) and triiodothyronine (T3) using a radioimmunological technique. The liver tissue was assayed spectrophotometrically for the activity of thyroid-induced NADP malate dehydrogenase (NADP-MDH). No changes were found in the blood thyroid hormone contents within short periods after the radiation effect. After 6 hours the T4 levels was 1.2-1.3-fold decreased in the blood of rats receiving the radiation doses of 1.0; 2.0; and 5.0 Gy. After a day the T4 concentration was diminished by 1.21-193-fold in all the experimental animals independently of the radiation dose and that of T3--in 2.0 Gy--and 5.0 Gy--irradiated group. After 7 days following the radiation the T4 and T3 contents remained to be decreased by 1.37-1.75 fold and those of NADP-MDH--by 1.3-1.8-fold in all the animal groups. In a month, the low dose-treated animals (0.25, 0.5, 1.0 Gy) showed the level of thyroid hormones reduced to the control values, whereas the 2.0 and 5.0 Gy--treated rats demonstrated this reduction only by 6 months. The decreased concentration of blood thyroid hormones was due not to the activation of their peripheral metabolism, but, probably, to inhibition of their biosynthesis in thyroid cells under conditions of radiation-induced activation of oxidative stress.  相似文献   

12.
谷氨酰胺对低剂量电离辐射损害的保护作用   总被引:2,自引:0,他引:2  
观察小剂量电离辐射条件下大鼠补充谷氨酰胺(Gln)对体内谷胱甘肽(GSH)代谢的影响。SD雄性大鼠受照射后经饲料补充2%Gln。照射源为60Co;剂量率6×10-2Gy/h,1h/d,5d/周,累积剂量1.5Gy。与对照组相比,受照射大鼠睾丸重量降低,精子畸变率增高,肝脏GSH含量降低,外周血白细胞计数降低,血清Gln及Glu+Gln含量降低,差异具有显著性,补充Gln则与对照组无明显差异。表明小剂量电离辐射导致大鼠出现可逆性损害,机体的Gln需求有所增加,补充Gln对大鼠的GSH代谢有一定益处。  相似文献   

13.
The increasing use of cellular phones in our society has brought focus on the potential detrimental effects to human health by microwave radiation. The aim of our study was to evaluate the intensity of oxidative stress and the level of neurotransmitters in the brains of fetal rats chronically exposed to cellular phones. The experiment was performed on pregnant rats exposed to different intensities of microwave radiation from cellular phones. Thirty-two pregnant rats were randomly divided into four groups: CG, GL, GM, and GH. CG accepted no microwave radiation, GL group radiated 10 min each time, GM group radiated 30 min, and GH group radiated 60 min. The 3 experimental groups were radiated 3 times a day from the first pregnant day for consecutively 20 days, and on the 21st day, the fetal rats were taken and then the contents of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), noradrenaline (NE), dopamine (DA), and 5-hydroxyindole acetic acid (5-HT) in the brain were assayed. Compared with CG, there were significant differences (P<0.05) found in the contents of SOD, GSH-Px, and MDA in GM and GH; the contents of SOD and GSH-Px decreased and the content of MDA increased. The significant content differences of NE and DA were found in fetal rat brains in GL and GH groups, with the GL group increased and the GH group decreased. Through this study, we concluded that receiving a certain period of microwave radiation from cellular phones during pregnancy has certain harm on fetal rat brains.  相似文献   

14.
The ability of the alkaline single-cell gel (SCG) electrophoresis technique to detect single-strand breaks and alkali-labile DNA damage in human cells induced by low doses of radiation was evaluated. Peripheral blood lymphocytes were irradiated with gamma-rays from a 137Cs source at doses from 0.01 to 1 Gy and exposed to alkali (pH greater than 13) for 20, 40 or 60 min and then electrophoresed at 25 V and 300 mA for either 20 or 40 min. The extent of DNA damage that was expressed and detected as DNA migration depended directly on the dose of radiation, the duration of exposure to alkali and the length of electrophoresis. At all experimental conditions tested, it was possible to detect a significant increase in DNA damage induced by a radiation dose as low as 0.05 Gy. Based on an analysis of the ratio of the range to the standard deviation for each radiation dose and experimental condition, the distribution of damage among cells for all doses was neither excessively homogeneous nor heterogeneous. Furthermore, the distribution was independent of radiation treatment. The SCG technique is rapid and sensitive, and useful for investigations concerned with effects of low doses of radiation.  相似文献   

15.
We conducted a large-scale in vitro study focused on the effects of low level radiofrequency (RF) fields from mobile radio base stations employing the International Mobile Telecommunication 2000 (IMT-2000) cellular system in order to test the hypothesis that modulated RF fields may act as a DNA damaging agent. First, we evaluated the responses of human cells to microwave exposure at a specific absorption rate (SAR) of 80 mW/kg, which corresponds to the limit of the average whole body SAR for general public exposure defined as a basic restriction in the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines. Second, we investigated whether continuous wave (CW) and Wideband Code Division Multiple Access (W-CDMA) modulated signal RF fields at 2.1425 GHz induced different levels of DNA damage. Human glioblastoma A172 cells and normal human IMR-90 fibroblasts from fetal lungs were exposed to mobile communication frequency radiation to investigate whether such exposure produced DNA strand breaks in cell culture. A172 cells were exposed to W-CDMA radiation at SARs of 80, 250, and 800 mW/kg and CW radiation at 80 mW/kg for 2 and 24 h, while IMR-90 cells were exposed to both W-CDMA and CW radiations at a SAR of 80 mW/kg for the same time periods. Under the same RF field exposure conditions, no significant differences in the DNA strand breaks were observed between the test groups exposed to W-CDMA or CW radiation and the sham exposed negative controls, as evaluated immediately after the exposure periods by alkaline comet assays. Our results confirm that low level exposures do not act as a genotoxicant up to a SAR of 800 mW/kg.  相似文献   

16.
The ability of vitamin C to affect genetic damage was reviewed in human studies that used molecular epidemiology methods, including analysis of DNA adducts, DNA strand breakage (using the Comet assay), oxidative damage measured as levels of 8-oxo-7,8-dihydroxy-2'-deoxyguanosine (8-oxodG), cytogenetic analysis of chromosomal aberrations and micronuclei, and the induction of DNA repair proteins. The protective effect of vitamin C was observed at plasma levels>50μmol/l. Vitamin C supplementation decreased the frequency of chromosomal aberrations in groups with insufficient dietary intake who were occupationally exposed to mutagens, and also decreased the sensitivity to mutagens as assessed using the bleomycin assay. High vitamin C levels in plasma decreased the frequency of genomic translocations in groups exposed to ionizing radiation or c-PAHs in polluted air. The frequency of micronuclei was decreased by vitamin C supplementation in smokers challenged with γ-irradiation, and higher vitamin C levels in plasma counteracted the damage induced by air pollution. The prevalence of DNA adducts inversely correlated with vitamin C levels in groups environmentally exposed to high concentrations of c-PAHs. Increased vitamin C levels decreased DNA strand breakage induced by air pollution. Oxidative damage (8-oxodG levels) was decreased by vitamin C supplementation in groups with plasma levels>50μmol/l exposed to PM2.5 and c-PAHs. Modulation of DNA repair by vitamin C supplementation was observed both in poorly nourished subjects and in groups with vitamin C plasma levels>50μmol/l exposed to higher concentrations of c-PAHs. It is possible that the impact of vitamin C on DNA damage depends both on background values of vitamin C in the individual as well as on the level of exposure to xenobiotics or oxidative stress.  相似文献   

17.
Experimental rabbits were exposed to ultraviolet radiation once for 45 minutes, and blood samples were obtained from the carotid artery in these animals 45 min and 3, 6 and 24 hours after the end of this exposure. In the group of control rabbits blood samples were obtained in the same way without previous exposure to radiation. The hairs on the back were cut closely at the skin and this skin area was exposed to ultraviolet rays from a Hanau Q 400 burner at 405--289 nm wavelengths and at an intensity of 134 000 erg/sec/cm2, using an UG 2 T Schott filtre and an absorber of long-wave radiation. Blood samples were taken under thiopental anaesthesia. In the samples the level of free kinins was determined in the blood, and the level of kininogen and the activity of kallikreins and kininases were determined in the plasma. In the irradiated animals a rise of the kinin level was observed, with a fall in the kininogen level most pronounced after 3 hours, while the activity of kallikreins was raised and that of kininases was decreased particularly after 6 hours.  相似文献   

18.
The gastrointestinal (GI) syndrome component of acute radiation syndrome (ARS) results from depletion of immature parenchymal stem cells after high dose irradiation and contributes significantly to early mortality. It is associated with severe, irreparable damage in the GI tract and extremely low survival. There is a need for the development of viable mitigators of whole body irradiation (WBI) due to the possibility of unexpected high level radiation exposure from nuclear accidents or attacks. We therefore examined the effect of recombinant human milk fat globule-EGF factor 8 (rhMFG-E8) in mitigating damage after WBI. Male Sprague-Dawley rats were exposed to 10 Gy WBI using Cesium-137 as the radiation source. The animals in the treatment group received rhMFG-E8 (166 µg/kg BW) subcutaneously once a day with the first dose given 6 h after WBI. Blood and tissue samples from the ileum were collected after 3 days of treatment. A separate cohort of animals was treated for 7 days and the 21 day mortality rate was determined. Treatment with rhMFG-E8 significantly improved the survival from 31% to 75% over 21 days. Furthermore, rhMFG-E8 treatment resulted in a 36% reduction in the radiation injury intestinal mucosal damage score, corresponding to visible histological changes. MFG-E8 gene expression was significantly decreased in WBI-induced animals as compared to sham controls. Treatment with rhMFG-E8 increased p53 and p21 expression by 207% and 84% compared to untreated controls. This was accompanied by an 80% increase in the expression of anti-apoptotic cell regulator Bcl-2. p53 and p21 levels correlate with improved survival after radiation injury. These cell regulators arrest the cell after DNA damage and enable DNA repair as well as optimize cell survival. Taken together, these results indicate that rhMFG-E8 ameliorates the GI syndrome and improves survival after WBI by minimizing intestinal cell damage and optimizing recovery.  相似文献   

19.
The radioprotective effect of hawthorn (Crataegus microphylla) fruit extract was investigated in cultured blood lymphocytes from human volunteers. Peripheral blood samples were collected from five human volunteers 10 min before and 1, 2 and 3 h after a single oral ingestion of 500 mg hawthorn powder extract. At each time point, the whole blood was exposed in vitro to 150 cGy of cobalt-60 gamma irradiation, and then the lymphocytes were cultured with mitogenic stimulation to determine the micronuclei in cytokinesis-blocked binucleated cell. The lymphocytes in the blood samples collected after extract ingestion exhibited a significant decrease in the incidence of binucleated cells containing micronuclei as compared to similarly irradiated lymphocytes collected prior to extract ingestion. The maximum decrease in the frequency of micronuclei-containing cells was observed at 1 h after ingestion of Hawthorn extract (on average a 44% decrease). These data suggest that it may be possible to use Hawthorn extracts in personnel exposed to radiation in order to protect lymphocytes from radiation effects.  相似文献   

20.
The aim of the present study was to investigate whether weekly exposure to gamma rays causes a persistent increase in the number of radioresistant leukocytes in mice in vivo. Using the comet assay, 1 Gy radiation exposure decreased the percentage of leukocytes with less than 5% DNA in the tail (<5% DNAT), and we propose that radioresistance induction might increase the number of cells with <5% DNAT after radiation exposure. We exposed mice to 1 Gy gamma rays weekly for four weeks or 2 Gy per week for nine weeks. We observed a significant increase in cells with <5% DNAT after the third week and up to nine weeks of exposure. We exposed animals to gradually increasing radiation doses and finally challenged the lymphocytes with 1 Gy radiation both in vivo and in vitro. We observed increased radioresistance in vitro, providing evidence that a cellular process is involved. However, more radioresistance was observed in vivo than in vitro, suggesting a physiological effect. Cells challenged in vitro were maintained on ice during and after exposure, which likely caused a reduction in DNA repair. Radioresistance induction likely arose from mutation selection in stem cells because leukocytes are unable to proliferate in peripheral blood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号