首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The Cochran-Armitage trend test (CATT) is well suited for testing association between a marker and a disease in case-control studies. When the underlying genetic model for the disease is known, the CATT optimal for the genetic model is used. For complex diseases, however, the genetic models of the true disease loci are unknown. In this situation, robust tests are preferable. We propose a two-phase analysis with model selection for the case-control design. In the first phase, we use the difference of Hardy-Weinberg disequilibrium coefficients between the cases and the controls for model selection. Then, an optimal CATT corresponding to the selected model is used for testing association. The correlation of the statistics used for selection and the test for association is derived to adjust the two-phase analysis with control of the Type-I error rate. The simulation studies show that this new approach has greater efficiency robustness than the existing methods.  相似文献   

2.
Summary A two‐stage design is cost‐effective for genome‐wide association studies (GWAS) testing hundreds of thousands of single nucleotide polymorphisms (SNPs). In this design, each SNP is genotyped in stage 1 using a fraction of case–control samples. Top‐ranked SNPs are selected and genotyped in stage 2 using additional samples. A joint analysis, combining statistics from both stages, is applied in the second stage. Follow‐up studies can be regarded as a two‐stage design. Once some potential SNPs are identified, independent samples are further genotyped and analyzed separately or jointly with previous data to confirm the findings. When the underlying genetic model is known, an asymptotically optimal trend test (TT) can be used at each analysis. In practice, however, genetic models for SNPs with true associations are usually unknown. In this case, the existing methods for analysis of the two‐stage design and follow‐up studies are not robust across different genetic models. We propose a simple robust procedure with genetic model selection to the two‐stage GWAS. Our results show that, if the optimal TT has about 80% power when the genetic model is known, then the existing methods for analysis of the two‐stage design have minimum powers about 20% across the four common genetic models (when the true model is unknown), while our robust procedure has minimum powers about 70% across the same genetic models. The results can be also applied to follow‐up and replication studies with a joint analysis.  相似文献   

3.
Zang Y  Zhang H  Yang Y  Zheng G 《Human heredity》2007,63(3-4):187-195
The population-based case-control design is a powerful approach for detecting susceptibility markers of a complex disease. However, this approach may lead to spurious association when there is population substructure: population stratification (PS) or cryptic relatedness (CR). Two simple approaches to correct for the population substructure are genomic control (GC) and delta centralization (DC). GC uses the variance inflation factor to correct for the variance distortion of a test statistic, and the DC centralizes the non-central chi-square distribution of the test statistic. Both GC and DC have been studied for case-control association studies mainly under a specific genetic model (e.g. recessive, additive or dominant), under which an optimal trend test is available. The genetic model is usually unknown for many complex diseases. In this situation, we study the performance of three robust tests based on the GC and DC corrections in the presence of the population substructure. Our results show that, when the genetic model is unknown, the DC- (or GC-) corrected maximum and Pearson's association test are robust and have good control of Type I error and high power relative to the optimal trend tests in the presence of PS (or CR).  相似文献   

4.
Background In genetic association studies with quantitative trait loci (QTL), the association between a candidate genetic marker and the trait of interest is commonly examined by the omnibus F test or by the t-test corresponding to a given genetic model or mode of inheritance. It is known that the t-test with a correct model specification is more powerful than the F test. However, since the underlying genetic model is rarely known in practice, the use of a model-specific t-test may incur substantial power loss. Robust-efficient tests, such as the Maximin Efficiency Robust Test (MERT) and MAX3 have been proposed in the literature.Methods In this paper, we propose a novel two-step robust-efficient approach, namely, the genetic model selection (GMS) method for quantitative trait analysis. GMS selects a genetic model by testing Hardy-Weinberg disequilibrium (HWD) with extremal samples of the population in the first step and then applies the corresponding genetic model-specific t-test in the second step.Results Simulations show that GMS is not only more efficient than MERT and MAX3, but also has comparable power to the optimal t-test when the genetic model is known.Conclusion Application to the data from Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort demonstrates that the proposed approach can identify meaningful biological SNPs on chromosome 19.  相似文献   

5.
Population-based case-control studies are a useful method to test for a genetic association between a trait and a marker. However, the analysis of the resulting data can be affected by population stratification or cryptic relatedness, which may inflate the variance of the usual statistics, resulting in a higher-than-nominal rate of false-positive results. One approach to preserving the nominal type I error is to apply genomic control, which adjusts the variance of the Cochran-Armitage trend test by calculating the statistic on data from null loci. This enables one to estimate any additional variance in the null distribution of statistics. When the underlying genetic model (e.g., recessive, additive, or dominant) is known, genomic control can be applied to the corresponding optimal trend tests. In practice, however, the mode of inheritance is unknown. The genotype-based chi (2) test for a general association between the trait and the marker does not depend on the underlying genetic model. Since this general association test has 2 degrees of freedom (df), the existing formulas for estimating the variance factor by use of genomic control are not directly applicable. By expressing the general association test in terms of two Cochran-Armitage trend tests, one can apply genomic control to each of the two trend tests separately, thereby adjusting the chi (2) statistic. The properties of this robust genomic control test with 2 df are examined by simulation. This genomic control-adjusted 2-df test has control of type I error and achieves reasonable power, relative to the optimal tests for each model.  相似文献   

6.
Chen Z  Ng HK 《Human heredity》2012,73(1):26-34
In genetic association studies, due to the varying underlying genetic models, no single statistical test can be the most powerful test under all situations. Current studies show that if the underlying genetic models are known, trend-based tests, which outperform the classical Pearson χ2 test, can be constructed. However, when the underlying genetic models are unknown, the χ2 test is usually more robust than trend-based tests. In this paper, we propose a new association test based on a generalized genetic model, namely the generalized order-restricted relative risks model. Through a Monte Carlo simulation study, we show that the proposed association test is generally more powerful than the χ2 test, and more robust than those trend-based tests. The proposed methodologies are also illustrated by some real SNP datasets.  相似文献   

7.
Li Q  Yu K  Li Z  Zheng G 《Human genetics》2008,123(6):617-623
In genome-wide association studies (GWAS), single-marker analysis is usually employed to identify the most significant single nucleotide polymorphisms (SNPs). The trend test has been proposed for analysis of case-control association. Three trend tests, optimal for the recessive, additive and dominant models respectively, are available. When the underlying genetic model is unknown, the maximum of the three trend test results (MAX) has been shown to be robust against genetic model misspecification. Since the asymptotic distribution of MAX depends on the allele frequency of the SNP, using the P-value of MAX for ranking may be different from using the MAX statistic. Calculating the P-value of MAX for 300,000 (300 K) or more SNPs is computationally intensive and the software and program to obtain the P-value of MAX are not widely available. On the other hand, the MAX statistic is very easy to calculate without complex computer programs. Thus, we study whether or not one could use the MAX statistic instead of its P-value to rank SNPs in GWAS. The approaches using the MAX and its P-value to rank SNPs are referred to as MAX-rank and P-rank. By applying MAX-rank and P-rank to simulated and four real datasets from GWAS, we found the ranks of SNPs with true association are very similar using both approaches. Thus, we recommend to use MAX-rank for genome-wide scans. After the top-ranked SNPs are identified, their P-values based on MAX can be calculated and compared with the significance level. The work of Q. Li was partially supported by the Knowledge Innovation Program of the Chinese Academy of Sciences, No. 30465W0 and 30475V0. The research of Z Li was partially sponsored by NIH grant EY014478.  相似文献   

8.
Zheng G  Freidlin B  Li Z  Gastwirth JL 《Biometrics》2005,61(1):186-192
Case-control studies are commonly used to study whether a candidate allele and a disease are associated. However, spurious association can arise due to population substructure or cryptic relatedness, which cause the variance of the trend test to increase. Devlin and Roeder derived the appropriate variance inflation factor (VIF) for the trend test and proposed a novel genomic control (GC) approach to estimate VIF and adjust the test statistic. Their results were derived assuming an additive genetic model and the corresponding VIF is independent of the candidate allele frequency. We determine the appropriate VIFs for recessive and dominant models. Unlike the additive test, the VIFs for the optimal tests for these two models depend on the candidate allele frequency. Simulation results show that, when the null loci used to estimate the VIF have allele frequencies similar to that of the candidate gene, the GC tests derived for recessive and dominant models remain optimal. When the underlying genetic model is unknown or the null loci and candidate gene have quite different allele frequencies, the GC tests derived for the recessive or dominant models cannot be used while the GC test derived for the additive model can be.  相似文献   

9.
Tian X  Joo J  Zheng G  Lin JP 《BMC genetics》2005,6(Z1):S107
We studied a trend test for genetic association between disease and the number of risk alleles using case-control data. When the data are sampled from families, this trend test can be adjusted to take into account the correlations among family members in complex pedigrees. However, the test depends on the scores based on the underlying genetic model and thus it may have substantial loss of power when the model is misspecified. Since the mode of inheritance will be unknown for complex diseases, we have developed two robust trend tests for case-control studies using family data. These robust tests have relatively good power for a class of possible genetic models. The trend tests and robust trend tests were applied to a dataset of Genetic Analysis Workshop 14 from the Collaborative Study on the Genetics of Alcoholism.  相似文献   

10.
Complex disease by definition results from the interplay of genetic and environmental factors. However, it is currently unclear how gene-environment interaction can best be used to locate complex disease susceptibility loci, particularly in the context of studies where between 1,000 and 1,000,000 markers are scanned for association with disease. We present a joint test of marginal association and gene-environment interaction for case-control data. We compare the power and sample size requirements of this joint test to other analyses: the marginal test of genetic association, the standard test for gene-environment interaction based on logistic regression, and the case-only test for interaction that exploits gene-environment independence. Although for many penetrance models the joint test of genetic marginal effect and interaction is not the most powerful, it is nearly optimal across all penetrance models we considered. In particular, it generally has better power than the marginal test when the genetic effect is restricted to exposed subjects and much better power than the tests of gene-environment interaction when the genetic effect is not restricted to a particular exposure level. This makes the joint test an attractive tool for large-scale association scans where the true gene-environment interaction model is unknown.  相似文献   

11.
Scanning of the human genome by use of affected relative pairs and dense sets of highly polymorphic markers or by emerging techniques such as genomic mismatch scanning. (GMS) is making it possible to identify the genetic etiology of a disease through detection of susceptibility loci. We present a general statistical model and test to detect disease genes, using affected relative pairs and either markers or GMS technologies in a genome search. There are an exact test and large-sample normal approximation that control for the elevated probability of false detection of linkage in a genome search. The approach can be used to determine the sample size needed to obtain a prespecified power to detect a disease gene in the presence of etiologic heterogeneity for a single class or mixture of relative classes, with any number of markers, or clones, markers PIC values, or mapping function. The approach is used to examine differences in performance of markers and GMS technologies in a common statistical framework and to provide practical information for designing studies of complex traits.  相似文献   

12.
Deng HW 《Genetica》2003,119(3):303-315
While extensive analyses have been conducted to test for, no formal analyses have been conducted to test against, the importance of candidate genes as putative QTLs using random population samples. Previously, we developed an LOD score exclusion mapping approach for candidate genes for complex diseases. Here, we extend this LOD score approach for exclusion analyses of candidate genes for quantitative traits. Under this approach, specific genetic effects (as reflected by heritability) and inheritance models at candidate QTLs can be analyzed and if an LOD score is < or = -2.0, the locus can be excluded from having a heritability larger than that specified. Simulations show that this approach has high power to exclude a candidate gene from having moderate genetic effects if it is not a QTL and is robust to population admixture. Our exclusion analysis complements association analysis for candidate genes as putative QTLs in random population samples. The approach is applied to test the importance of Vitamin D receptor (VDR) gene as a potential QTL underlying the variation of bone mass, an important determinant of osteoporosis.  相似文献   

13.
The Cochran-Armitage trend test is commonly used as a genotype-based test for candidate gene association. Corresponding to each underlying genetic model there is a particular set of scores assigned to the genotypes that maximizes its power. When the variance of the test statistic is known, the formulas for approximate power and associated sample size are readily obtained. In practice, however, the variance of the test statistic needs to be estimated. We present formulas for the required sample size to achieve a prespecified power that account for the need to estimate the variance of the test statistic. When the underlying genetic model is unknown one can incur a substantial loss of power when a test suitable for one mode of inheritance is used where another mode is the true one. Thus, tests having good power properties relative to the optimal tests for each model are useful. These tests are called efficiency robust and we study two of them: the maximin efficiency robust test is a linear combination of the standardized optimal tests that has high efficiency and the MAX test, the maximum of the standardized optimal tests. Simulation results of the robustness of these two tests indicate that the more computationally involved MAX test is preferable.  相似文献   

14.
Meta-analysis of genetic data must account for differences among studies including study designs, markers genotyped, and covariates. The effects of genetic variants may differ from population to population, i.e., heterogeneity. Thus, meta-analysis of combining data of multiple studies is difficult. Novel statistical methods for meta-analysis are needed. In this article, functional linear models are developed for meta-analyses that connect genetic data to quantitative traits, adjusting for covariates. The models can be used to analyze rare variants, common variants, or a combination of the two. Both likelihood-ratio test (LRT) and F-distributed statistics are introduced to test association between quantitative traits and multiple variants in one genetic region. Extensive simulations are performed to evaluate empirical type I error rates and power performance of the proposed tests. The proposed LRT and F-distributed statistics control the type I error very well and have higher power than the existing methods of the meta-analysis sequence kernel association test (MetaSKAT). We analyze four blood lipid levels in data from a meta-analysis of eight European studies. The proposed methods detect more significant associations than MetaSKAT and the P-values of the proposed LRT and F-distributed statistics are usually much smaller than those of MetaSKAT. The functional linear models and related test statistics can be useful in whole-genome and whole-exome association studies.  相似文献   

15.
A test statistic that is valid for data collected according to a particular type of family study design is not necessarily valid when applied to data obtained from a different type of family study design. When this can occur, a different test that usually is valid is developed for each type of family study design. However, investigators might find that their data come from two (or more) different family study designs, each requiring a different test, yet they want an overall conclusion, essentially a valid hypothesis test that is as powerful as possible. When the underlying genetic model is unknown, it is not clear how to proceed, as several alternative approaches might appear feasible. By using as an example the development of a test of association for data concerning affected singletons and their parents and affected sib pairs and their parents, it is shown that it may not be possible to develop a universally optimal approach without knowledge of the underlying genetic model.  相似文献   

16.
The Cochran–Armitage (CA) linear trend test for proportions is often used for genotype‐based analysis of candidate gene association. Depending on the underlying genetic mode of inheritance, the use of model‐specific scores maximises the power. Commonly, the underlying genetic model, i.e. additive, dominant or recessive mode of inheritance, is a priori unknown. Association studies are commonly analysed using permutation tests, where both inference and identification of the underlying mode of inheritance are important. Especially interesting are tests for case–control studies, defined by a maximum over a series of standardised CA tests, because such a procedure has power under all three genetic models. We reformulate the test problem and propose a conditional maximum test of scores‐specific linear‐by‐linear association tests. For maximum‐type, sum and quadratic test statistics the asymptotic expectation and covariance can be derived in a closed form and the limiting distribution is known. Both the limiting distribution and approximations of the exact conditional distribution can easily be computed using standard software packages. In addition to these technical advances, we extend the area of application to stratified designs, studies involving more than two groups and the simultaneous analysis of multiple loci by means of multiplicity‐adjusted p‐values for the underlying multiple CA trend tests. The new test is applied to reanalyse a study investigating genetic components of different subtypes of psoriasis. A new and flexible inference tool for association studies is available both theoretically as well as practically since already available software packages can be easily used to implement the suggested test procedures.  相似文献   

17.
Compound tests for the detection of hitchhiking under positive selection   总被引:2,自引:0,他引:2  
Many statistical tests have been developed for detecting positive selection. Most of these tests draw conclusions based on significant deviations from the patterns of polymorphism predicted by the neutral model. However, many non-equilibrium forces may cause similar deviations, and thus the tests usually have low statistical specificity to positive selection. The main challenge is hence to construct test statistics that are reasonably powerful in detecting positive selection, but are relatively insensitive to other forces. Recently, Zeng et al. (2006) proposed a new test, DH, which is a compound of Tajima's D and Fay and Wu's H, and showed that DH has reasonably high statistical specificity to positive selection. In this report, we expand the idea of a compound test by combining Fay and Wu's H or DH with the Ewens-Watterson (EW) test. We refer to these 2 new tests as HEW and DHEW, respectively. Compared to the DH test, HEW and DHEW are more robust against the presence of recombination, and are also more powerful in detecting positive selection. Furthermore, the DHEW test, similar to DH, is also relatively insensitive to background selection and demography. The HEW test, on the other hand, tends to be somewhat less conservative than DH and DHEW in some cases.  相似文献   

18.
Summary In diagnostic medicine, estimating the diagnostic accuracy of a group of raters or medical tests relative to the gold standard is often the primary goal. When a gold standard is absent, latent class models where the unknown gold standard test is treated as a latent variable are often used. However, these models have been criticized in the literature from both a conceptual and a robustness perspective. As an alternative, we propose an approach where we exploit an imperfect reference standard with unknown diagnostic accuracy and conduct sensitivity analysis by varying this accuracy over scientifically reasonable ranges. In this article, a latent class model with crossed random effects is proposed for estimating the diagnostic accuracy of regional obstetrics and gynaecological (OB/GYN) physicians in diagnosing endometriosis. To avoid the pitfalls of models without a gold standard, we exploit the diagnostic results of a group of OB/GYN physicians with an international reputation for the diagnosis of endometriosis. We construct an ordinal reference standard based on the discordance among these international experts and propose a mechanism for conducting sensitivity analysis relative to the unknown diagnostic accuracy among them. A Monte Carlo EM algorithm is proposed for parameter estimation and a BIC‐type model selection procedure is presented. Through simulations and data analysis we show that this new approach provides a useful alternative to traditional latent class modeling approaches used in this setting.  相似文献   

19.
Competitive exclusion and habitat filtering influence community assembly, but ecologists and evolutionary biologists have not reached consensus on how to quantify patterns that would reveal the action of these processes. Currently, at least 22 α‐diversity and 10 β‐diversity metrics of community phylogenetic structure can be combined with nine null models (eight for β‐diversity metrics), providing 278 potentially distinct approaches to test for phylogenetic clustering and overdispersion. Selecting the appropriate approach for a study is daunting. First, we describe similarities among metrics and null models across variance in phylogeny size and shape, species abundance, and species richness. Second, we develop spatially explicit, individual‐based simulations of neutral, competitive exclusion, or habitat filtering community assembly, and quantify the performance (type I and II error rates) of all 278 metric and null model combinations against each assembly process. Many α‐diversity metrics and null models are at least functionally equivalent, reducing the number of truly unique metrics to 12 and the number of unique metric + null model combinations to 72. An even smaller subset of metric and null model combinations showed robust statistical performance. For α‐diversity metrics, phylogenetic diversity and mean nearest taxon distance were best able to detect habitat filtering, while mean pairwise phylogenetic distance‐based metrics were best able to detect competitive exclusion. Overall, β‐diversity metrics tended to have greater power to detect habitat filtering and competitive exclusion than α‐diversity metrics, but had higher type 1 error in some cases. Across both α‐ and β‐diversity metrics, null model selection affected type I error rates more than metric selection. A null model that maintained species richness, and approximately maintained species occurrence frequency and abundance across sites, exhibited low type I and II error rates. This regional null model simulates neutral dispersal of individuals into local communities by sampling from a regional species pool. We introduce a flexible new R package, metricTester, to facilitate robust analyses of method performance.  相似文献   

20.
Case-control disease-marker association studies are often used in the search for variants that predispose to complex diseases. One approach to increasing the power of these studies is to enrich the case sample for individuals likely to be affected because of genetic factors. In this article, we compare three case-selection strategies that use allele-sharing information with the standard strategy that selects a single individual from each family at random. In affected sibship samples, we show that, by carefully selecting sibships and/or individuals on the basis of allele sharing, we can increase the frequency of disease-associated alleles in the case sample. When these cases are compared with unrelated controls, the difference in the frequency of the disease-associated allele is therefore also increased. We find that, by choosing the affected sib who shows the most evidence for pairwise allele sharing with the other affected sibs in families, the test statistic is increased by >20%, on average, for additive models with modest genotype relative risks. In addition, we find that the per-genotype information associated with the allele sharing-based strategies is increased compared with that associated with random selection of a sib for genotyping. Even though we select sibs on the basis of a nonparametric statistic, the additional gain for selection based on the unknown underlying mode of inheritance is minimal. We show that these properties hold even when the power to detect linkage to a region in the entire sample is negligible. This approach can be extended to more-general pedigree structures and quantitative traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号