首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatic microsomes isolated from untreated male rats or from rats pretreated with phenobarbital (PB) or 3-methylcholanthrene (3-MC) were labeled with the hydrophobic, photoactivated reagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID). [125I]TID incorporation into 3-MC- and PB-induced liver microsomal protein was enhanced 5- and 8-fold, respectively, relative to the incorporation of [125I]TID into uninduced liver microsomes. The major hepatic microsomal cytochrome P-450 forms inducible by PB and 3-MC, respectively designated P-450s PB-4 and BNF-B, were shown to be the principal polypeptides labeled by [125I]TID in the correspondingly induced microsomes. Trypsin cleavage of [125I]TID-labeled microsomal P-450 PB-4 yielded several radiolabeled fragments, with a single labeled peptide of Mr approximately 4000 resistant to extensive proteolytic digestion. The following experiments suggested that TID binds to the substrate-binding site of P-450 PB-4. [125I]TID incorporation into microsomal P-450 PB-4 was inhibited in a dose-dependent manner by the P-450 PB-4 substrate benzphetamine. In the absence of photoactivation, TID inhibited competitively about 80% of the cytochrome P-450-dependent 7-ethoxycoumarin O-deethylation catalyzed by PB-induced microsomes with a Ki of 10 microM; TID was a markedly less effective inhibitor of the corresponding activity catalyzed by microsomes isolated from uninduced or beta-naphthoflavone-induced livers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Incorporation of newly synthesized heme into microsome-bound cytochrome P-450 in rat liver was not affected by cycloheximide administration to the animals, indicating that the heme incorporation into cytochrome P-450 is not tightly coupled with the synthesis of the apo-cytochrome. When the heme of microsomal cytochrome P-450 had been labeled in vivo with delta-[14C]aminolevulinic acid, and then the animals were treated with phenobarbital (PB) or 3-methylcholanthrene (MC), PB-induced or MC-induced form of cytochrome P-450 was found to contain labeled heme derived from preexistent cytochrome P-450. These observations indicated that the heme of microsome-bound cytochrome P-450 is not tightly associated with the protein portion, and exchanges reversibly between different molecular species of cytochrome P-450 in vivo.  相似文献   

3.
14 microsomal cytochromes P-450 were purified from the liver of untreated and phenobarbital- or 3-methylcholanthrene-treated male rats. Following solubilization of microsomes with sodium cholate, poly(ethylene glycol) fractionation and aminohexyl-Sepharose 4B chromatography, cytochromes P-450 were purified by high-performance liquid chromatography (HPLC), using a preparative DEAE-anion-exchange column. The pass-through fraction was further purified by HPLC using a cation-exchange column. Other fractions eluted on preparative DEAE-HPLC were further applied onto an HPLC using a DEAE-column. Five kinds (P-450UT-2-6), four kinds (P-450PB-1,2,4 and 5) and five kinds (P-450MC-1-5) of cytochromes P-450 were purified from untreated rats or rats treated with phenobarbital or 3-methylcholanthrene, respectively. HPLC profiles of tryptic peptides of cytochromes P-450UT-2 and P-450MC-2 were identical and the other profiles obtained from seven purified cytochromes P-450 were distinct from each other. Amino-terminal sequences of eight forms of cytochrome P-450 (UT-2, UT-5, PB-1, PB-2, PB-4, PB-5, MC-1 and MC-5) were distinct except for cytochromes P-450PB-4 and P-450PB-5.  相似文献   

4.
Four cytochromes P-450 induced by phenobarbital (PB-1--PB-4) and two cytochromes P-450 induced by S-methylcholanthrene (MC-1, MC-2) were purified to electrophoretic homogeneity from rat liver microsomes. The purification procedure involved sequential chromatography on n-aminooctyl-Sepharose 4B, DEAE-Sephacel and hydroxylapatite columns. The spectral and immunochemical properties of the cytochromes P-450 were estimated. All, but MC-1, cytochromes P-450 were found to exist in a low spin state. Using the Ouchterlony double diffusion method, it was shown that all cytochromes P-450 under study can be divided into two groups, i. e., PB-1--PB-2 and PB-3--PB-4, sharing common antigenic determinants inside the groups. High performance liquid chromatography of PB-3 and MC-2 on anion-exchangers yielded two additional peaks from the PB-induced major cytochrome P-450 PB-3 and three peaks from the MC-induced major cytochrome P-450 MC-2. The multiplicity of cytochrome P-450 forms is discussed.  相似文献   

5.
The heme in rat liver microsomal cytochrome P-450 was labeled with 14C or 3H and the microsomes were fractionated after in vitro incubations with a variety of agents known to destroy cytochrome P-450 heme. A major fraction of the heme label was irreversibly bound to apoprotein in all cases, including incubations with fluroxene, 1-octene, vinyl bromide, trichloroethylene, vinyl chloride, parathion, cumene hydroperoxide, NaN3, or iron-ADP complex. Label was also extensively bound to apoprotein when purified and reconstituted cytochrome P-450 was incubated with NADPH and vinyl chloride. This process appears to be widespread and involved to a significant extent in the cytochrome P-450 heme destruction observed with many compounds.  相似文献   

6.
The effects of phenobarbital (PB), 3-methylcholanthrene (MC), and alpha-naphthoflavone (alpha-NF) on the synthesis of drug-inducible forms of cytochrome P-450, P-450(PB-1), and P-450(MC-1), and sex-specific forms of cytochrome P-450, P-450(M-1), and P-450(F-1), in male and female rats were studied. Whereas P-450(PB-1) and P-450(MC-1) in liver microsomes were markedly induced in both sexes by treatment with PB and MC, respectively, the contents of P-450(M-1) and P-450(F-1) were significantly decreased by the treatments. alpha-NF, which is not a P-450 inducer, did not change the contents of sex-specific forms of cytochrome P-450. The translatable mRNAs of the P-450s were also determined by using an in vitro translation system. The mRNAs coding for P-450(PB-1) and P-450(MC-1) were increased by drug administrations. On the other hand, the mRNAs coding for P-450(M-1) and P-450(F-1) were transiently decreased by the drugs, and then returned to the normal levels. The time courses of the induction of the drug-inducible P-450s and the repression of the sex-specific P-450s showed no close correlation. alpha-NF had no effect on the synthesis of P-450(M-1) and P-450(F-1). We also found that the synthesis of P-450(M-1) in the livers of untreated rats showed no diurnal variations.  相似文献   

7.
1. The stereoselective hydroxylation of testosterone by microsomal cytochrome P-450 and the changes in level of components participated in the microsomal electron transport system were observed in the microsomes induced unique P-450 isozymes. 2. Flavone- and hesperetin-inducible P-450 catalyzed the hydroxylation of testosterone more effectively than other chemicals-inducible ones. 3. The P-450 in all the microsomal preparations tested most rapidly oxidized testosterone to 6 beta-monohydroxy form. 4. Particularly, MC- and BNF-inducible P-450 showed high stereoselectivity on C6-position of testosterone, and PB-, flavone- and hesperetin-inducible one showed that on C2-position of this compound, respectively. 5. This specificity of two flavonoid-inducible P-450 for the formation of 2 alpha- and 2 beta-epimer of monohydroxytestosterone was opposite to each other. 6. The content of P-450 and the activity of NADPH-cytochrome P-450 reductase were high in PB-, MC- and BNF-microsomes, whereas NADH-cytochrome b5 reductase activity was high in two flavonoid-microsomes and the content of cytochrome b5 was not changed except the PB-treated rats. 7. It is suggested that the increasing activities of testosterone hydroxylases in flavonoid-microsomes seems to be closely related to NADH-cytochrome b5 reductase.  相似文献   

8.
Androgen hydroxylation catalysed by Chinese hamster fibroblast SD1 cells, which stably express cytochrome P-450 form PB-4, the rat P450IIB1 gene product, was assessed and compared to that catalysed by purified cytochrome P-450 PB-4 isolated from rat liver. SD1 cell homogenates catalysed the NADPH-dependent hydroxylation of androstenedione and testosterone with a regioselectivity very similar to that purified by P-450 PB-4 (16 beta-hydroxylation/16 alpha-hydroxylation = 6.0-6.8 for androstenedione; 16 beta/16 alpha = 0.9 for testosterone). Homogenates prepared from the parental cell line V79, which does not express detectable levels of P-450 PB-4 or any other cytochrome P-450, exhibited no androgen 16 beta- or 16 alpha-hydroxylase activity. The hydroxylase activities catalysed by the SD1 cell homogenate were selectively and quantitatively inhibited (greater than 90%) by a monoclonal antibody to P-450 PB-4 at a level of antibody (40 pmol of antibody binding sites/mg of SD1 homogenate) that closely corresponds to the P-450 PB-4 content of the cells (48 pmol of PB-4/mg of SD1 homogenate). Fractionation of cell homogenates into cytosol and microsomes revealed that the P-450 PB-4-mediated activities are associated with the membrane fraction. Although the P-450 PB-4-specific content of the SD1 microsomes was 15% of that present in phenobarbital-induced rat liver microsomes, the P-450 PB-4-dependent androstenedione 16 beta-hydroxylase activity of the SD1 membrane fraction was only 2-3% of that present in the liver microsomes. This activity could be stimulated several-fold, however, by supplementation of SD1 microsomes with purified rat NADPH P-450 reductase. These studies establish that a single P-450 gene product (IIB1) can account for the hydroxylation of androgen substrates at multiple sites, and suggest that SD1 cells can be used to assess the catalytic specificity of P-450 PB-4 with other substrates as well.  相似文献   

9.
J A Koch  D J Waxman 《Biochemistry》1989,28(8):3145-3152
Phosphorylation of hepatic cytochrome P-450 was studied in isolated hepatocytes incubated in the presence of agents known to stimulate protein kinase activity. Incubation of hepatocytes isolated from phenobarbital-induced adult male rats with [32P]orthophosphate in the presence of N6,O2'-dibutyryl-cAMP (diBtcAMP) or glucagon resulted in the phosphorylation of microsomal proteins that are immunoprecipitable by polyclonal antibodies raised to the phenobarbital-inducible P-450 form PB-4 (P-450 gene IIB1). Little or no phosphorylation of these proteins was observed in the absence of diBtcAMP or glucagon or in the presence of activators of Ca2+-dependent protein kinases. Two-dimensional gel electrophoresis revealed that these 32P-labeled microsomal proteins consist of a mixture of P-450 PB-4 and the closely related P-450 PB-5 (gene IIB2), both of which exhibited heterogeneity in the isoelectric focusing dimension. Phosphorylation of both P-450 forms was markedly enhanced by diBtcAMP at concentrations as low as 5 microM. In contrast, little or no phosphorylation of P-450 forms reactive with antibodies to P-450 PB-1 (gene IIC6), P-450 2c (gene IIC11), or P-450 PB-2a (gene IIIA1) was detected in the isolated hepatocytes under these incubation conditions. Phosphoamino acid analysis of the 32P-labeled P-450 PB-4 + PB-5 immunoprecipitate revealed that these P-450s are phosphorylated on serine in the isolated hepatocytes. Peptide mapping indicated that the site of phosphorylation in hepatocytes is indistinguishable from the site utilized by cAMP-dependent protein kinase in vitro, which was previously identified as serine-128 for the related rabbit protein P-450 LM2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Anaerobic in vitro incubation of microsomes from phenobarbital(PB)-induced rats with halothane results in an irreversible decrease of measurable cytochrome P-450. There is a parallel decrease in heme content under the same incubation conditions. However, microsomes from 3-methylcholanthrene(3-MC)-induced or untreated animals do not show a reduction in cytochrome P-450 content. Aerobic incubation with halothane results in a decrease of cytochrome P-450 which can be completely reversed by dialysis or the addition of potassium ferricyanide. These latter treatments only partially restore the cytochrome P-450 levels following anaerobic incubations. The decrease in cytochrome caused by halothane is not associated with measureable heme N-alkyl adduct formation; lipid peroxidation does not play a role as indicated by the lack of effect of 1 mM EDTA or a decrease in glucose-6-phosphatase activity. Halothane metabolites are bound irreversibly to microsomal protein as determined by gel electrophoresis only when the oxygen concentration is very low. The mechanism of cytochrome P-450 decrease is consistent with the formation of a reactive metabolite which binds to the protein portion and also destroys heme.  相似文献   

11.
Cytochrome P-450 catalyzing 25-hydroxylation of cholecalciferol (cytochrome P-450 cc25 ) was purified from rat liver microsomes based on its catalytic activity at each purification step. The specific cytochrome P-450 content of the final preparation was 15.1 nmol/mg of protein. Reconstituted activity of 25-hydroxylation of cholecalciferol with the purified enzyme was 2.3 nmol/min/mg of protein, which was 4,300 times as high as that in microsomes. The minimum molecular weight of the enzyme was 50,000 based on SDS-polyacrylamide gel electrophoretogram. Amino terminal sequence of the P-450 cc25 was H2N-Met-Asp-Pro-Val-Leu-Val-. Immunochemical study showed that the purified P-450 cc25 was homogeneous and the cytochrome was immunochemically different from either cytochrome P-450(PB-1) or cytochrome P-448(MC-1).  相似文献   

12.
Two hepatic microsomal cytochromes P-450, P-450F-1 and P-450F-2 were purified to electrophoretic homogeneity from untreated adult female rats by high-performance liquid chromatography (HPLC) with anion-exchange, cation-exchange, and hydroxyapatite columns. Cytochromes P-450F-1 and P-450F-2 were not adsorbed with the anion-exchange column, but were retained on a cation-exchange column and were separated poorly. These forms separated on hydroxyapatite HPLC. The molecular weights of cytochromes P-450F-1 and P-450F-2 were 50,000 and 49,000, respectively. The absolute spectrum of the oxidized forms indicated that they had the low-spin state of heme, and the CO-reduced spectral maxima of cytochromes P-450F-1 and P-450F-2 were at 450 and 448 nm, respectively. Both forms catalyzed the N-demethylation of benzphetamine and had low catalytic activity for 7-ethoxycoumarin. Cytochrome P-450F-1 had low 2 alpha-hydroxylation activity toward testosterone. Cytochrome P-450F-2 had low 15 alpha-hydroxylation activity. On the basis of these results and those of NH2-terminal sequence analysis, cytochrome P-450F-2 seemed to be the typical female-specific cytochrome P-450. The NH2-terminal sequence of cytochrome P-450F-1 was identical to that of cytochrome P-450PB-2 purified from hepatic microsomes of male rats treated with phenobarbital. Cytochromes P-450F-1 and P-450PB-2 had identical chromatographic properties, minimum molecular weight, spectral properties, and peptide maps. Furthermore, the antibody to phenobarbital-inducible cytochrome P-450PB-2 gave a single immunoprecipitin band with cytochrome P-450F-1 by Ouchterlony double-diffusion analysis.  相似文献   

13.
When CCl4 was incubated with rat liver microsomes from phenobarbital-treated rats in an aerobic or anaerobic atmosphere, over 69% of the heme moiety of cytochrome P-450 was destroyed. At least 45% of the degraded heme under both reaction conditions was accounted for as heme-derived products irreversibly bound to microsomal proteins. Furthermore, 33% of the irreversibly bound products were bound specifically to a 54-kDa form of cytochrome P-450. A structurally different compound, 2-isopropyl-4-pentenamide, also destroyed the heme moiety of cytochrome P-450 and produced heme-derived adducts of microsomal proteins that accounted for 28% of the destroyed heme. These results represent a novel mechanism for the destruction of cytochromes P-450 by xenobiotics.  相似文献   

14.
Administration of antimineralocorticoid spironolactone (SPL) to rats results in modest destruction of hepatic cytochrome P-450 with parallel loss of heme. This process is accentuated by pretreatment with dexamethasone (DEX), an inducer of cytochrome P-450p and is associated with marked functional loss of cytochrome P-450p-dependent hydroxylases. Cytochrome P-450 destruction may be replicated in vitro when microsomes from DEX-pretreated rats are incubated with SPL and NADPH and is impaired when these rats are given triacetyloleandomycin, an inhibitor of cytochrome P-450p. In vitro SPL-mediated cytochrome P-450 destruction is accompanied by a loss of heme, which appears to be converted to reactive intermediates which covalently bind to microsomes or are converted to polar metabolites.  相似文献   

15.
In vitro incubation of rat liver micro-somes with [14C]-furan in the presence of NADPH resulted in the covalent incorporation of furan-derived radioactivity in microsomal protein. Compared to microsomes from untreated rats a two- to threefold increase in binding was observed with microsomes from phenobarbital-treated rats and a four- to five-fold increase was observed with microsomes from rats pretreated with imidazole or pyrazole. Covalent binding was reduced with microsomes from rats pretreated with β-naphthoflavone. Chemicals containing an amine group (semicarbazide), those in which the amine group is blocked but have a free thiol group (N-acetylcysteine), and those which have both an amine and a thiol group (glutathione) effectively blocked binding of [14C]-furan to microsomal protein. A decrease in cytochrome P-450 (P-450) content and decreases in the activities of P-450-dependent aniline hydroxylase, 7-ethoxycoumarin-O-deethylase (BCD), and 7-ethoxyresorufin-O-deethylase (ERD) was observed 24 hours after a single oral administration of 8 or 25 mg/kg of furan, suggesting that the reactive intermediate formed during P-450 catalyzed metabolism could be binding with nucleophilic groups within the P-450. In vitro studies indicated a significant decrease in the activity of aniline hydroxylase in pyrazole microsomes and BCD in phenobarbital microsomes without any significant change in the CO-binding spectrum of P-450 or in the total microsomal heme content, suggesting that furan inhibits the P-450s induced by PB and pyrazole. An almost equal distribution of furan-derived radioactivity in the heme and protein fractions of the CO-binding particles after In vitro treatment of microsomes with furan suggests binding of furan metabolites with heme and apoprotein of P-450, and, probably, due to this interaction, furan is acting as a suicide inhibitor of P-450.  相似文献   

16.
Constitutive testosterone 6 beta-hydroxylase in rat liver   总被引:1,自引:0,他引:1  
The cytochrome P-450 that was purified from hepatic microsomes of male rats treated with phenobarbital and designated P450 PB-1 (Funae and Imaoka (1985) Biochim. Biophys. Acta 842, 119-132) had high testosterone 6 beta-hydroxylation activity (turnover rate, 13.5 nmol of product/min/nmol of P-450) in a reconstituted system consisting of cytochrome P-450, NADPH-cytochrome P-450 reductase, cytochrome b5, and a 1:1 mixture of lecithin and phosphatidylserine in the presence of sodium cholate. In ordinary conditions in the reconstituted system with cytochrome P-450, reductase, and dilauroylphosphatidylcholine, P450 PB-1 had little 6 beta-hydroxylase activity. The catalytic activities toward testosterone of two major constitutive forms, P450 UT-2 and P450 UT-5, were not affected by cytochrome b5, phospholipid, or sodium cholate. P450 PB-1 in rat liver microsomes was assayed by immunoblotting with specific antibody to P450 PB-1. P450 PB-1 accounted for 24.4 +/- 5.6% (mean +/- SD) of the total spectrally-measured cytochrome P-450 in hepatic microsomes of untreated adult male rats, and was not found in untreated adult female rats. P450 PB-1 was induced twofold with phenobarbital in male rats. P450 PB-1 was purified from untreated male rats and identified as P450 PB-1 from phenobarbital-treated rats by its NH2-terminal sequence, peptide mapping, and immunochemistry. These results showed that P450 PB-1 is a constitutive male-specific form in rat liver. There was a good correlation (r = 0.925) between the P450 PB-1 level and testosterone 6 beta-hydroxylase activity in rat liver microsomes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The addition of heme (1-10 muM) to liver microsomes from phenobarbital (PB)-treated and 3-methylcholanthrene (MC)-treated male rats increased the rate of benzpyrene (BP) hydroxylation by about 20-40%. On the other hand, protoporphyrin IX caused only inhibition of BP hydroxylation. There was no increase of enzymatic activity by heme when solubilized preparations of liver microsomes were used. This suggested the possibility that an apo-cytochrome P-450 was present in intact microsomes. Higher concentrations of heme inhibited BP hydroxylation by either intact or solubilized microsomes. The inhibition by heme with solubilized microsomal preparations was noncompetitive, "mixed-type". However, with intact microsomes, the lack of linearity, precluded the determination of the type of inhibition. To examine possible effects of heme on the binding of BP to microsomal cytochrome P-450, the spectrum elicited by the addition of BP to microsomes was obtained in the presence or absence of added heme. The addition of heme to liver microsomes produced a marked increase in the trough (419-420 nm) of the difference spectrum formed by the subsequent addition of BP. These findings would suggest that heme increased the binding of BP to microsomes. However, the possibility that BP merely displaces the bound heme of the microsomes to yield, as expected, a trough at 413-416 nm (the addition of heme to microsomes yields a peak of 413-416 nm, unpublished) cannot be ruled out. Nevertheless, independent of our understanding of the mechanism involved in the spectral interactions between heme and BP with liver microsomes it is clear that an effect at their binding site(s) must have been elicited by the presence of both compounds.  相似文献   

18.
Hepatic microsonal cytochrome P-450 levels are significantly decreased (46–68%) in ascorbic acid-deficient guinea pigs. Studies attempting to elucidate the mechanism responsible for decreased cytochrome P-450 demonstrated that ascorbic acid status did not influence the turnover (t12) or the degradation of hepatic cytochrome P-450 heme. Urinary excretion of Δ-aminolevulinic acid (ALA) and coproporphyrin was significantly decreased (30 and 69% respectively) in ascorbic acid-deficient guinea pigs. Injections (ip) of ALA into ascorbic acid-deficient guinea pigs were not effective in returning cytochrome P-450 levels to values found in ascorbic acid-supplemented guinea pigs. In addition, plasma and hepatic iron and blood heme were related directly, while hepatic copper and plasma copper or ceruloplasmin were related inversely, to the ascorbic-acid status of the guinea pig. These data, along with past investigations on heme synthesis in the ascorbic acid-deficient guinea pig, are consistent with mechanisms proposing that ascorbic acid may influence: 1) apocytochrome P-450 synthesis, 2) binding of heme and apo-cytochrome P-450 to form active cytochrome P-450, and/or 3) incorporation of Fe++ into the heme moiety of cytochrome P-450, perhaps via changes in copper metabolism.  相似文献   

19.
In vivo administration of pulegone once daily decreased the levels of liver microsomal cyt. P-450 to the extent of 32 and 76% at the end of 24 and 96 hrs respectively. However, cyt. b5 and NAD(P)H-cyt. c reductase activities remained unchanged. In vitro incubation (15 min) of liver microsomes from phenobarbitol (PB)-treated rats with pulegone (10 mM), aerobically or anaerobically resulted in the loss (approximately 60%) of cyt. P-450 in the presence or absence of NADPH. Destruction of cyt. P-450 was more in PB-treated microsomes as compared to 3-methylcholanthrene (MC)-treated and control microsomes. The loss of cyt. P-450 was accompanied by a concomitant loss of microsomal heme. In contrast, menthone or carvone upon incubation with PB-induced microsomes resulted in the conversion (25-40%) of cyt. P-450 to cyt. P-420 without any loss of microsomal heme. The destructive process is irreversible, time dependent, linear upto a substrate concentration of 10 mM and follows first order kinetics.  相似文献   

20.
Using two consecutive oligo(dT)-cellulose column chromatography steps, the total poly(A)RNA was isolated from the livers of rats injected with phenobarbital (PB) or 3-methylcholanthrene (MC). During translation of the PB-induced mRNA in the reticulocyte lysate cell-free protein-synthesizing system, a single polypeptide with an apparent molecular weight of 50,000 was synthesized which was specifically immunoprecipitated by antibodies to major PB-inducible cytochrome P-450 PB-3. In contrast, after completion of MC-mRNA translation, the antibodies to major MC-induced cytochrome MC-2 precipitated from the incubation mixture 4-5 polypeptides, of which the largest one with an apparent molecular weight of 58,000 corresponded to cytochrome P-450 MC-2. During sucrose density gradient centrifugation, the PB- and MS-mRNAs with sedimentation coefficients of about 18S and 20S, respectively, were precipitated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号