首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leukotriene E4 (LTE4) is shown to be a partial agonist of leukotriene D4 (LTD4) in differentiated U-937 cells. The data that support this conclusion are: 1) LTE4 completely displaced [3H]LTD4 from its receptors in U-937 cell membranes. 2) LTE4 induced only 30 +/- 4% of the maximal Ca2+ transient induced by LTD4 in the presence of 1 mM extracellular Ca2+ and 60 +/- 4% of the maximal LTD4 response in the absence of extracellular Ca2+. 3) LTE4 induced only a fraction of the inositol phosphates metabolized by LTD4. Moreover, LTE4 resulted in essentially no production of the inositol 1,4,5-trisphosphate isomer, while LTD4 induced a rapid and substantial transient increase in this isomer. The generation of inositol phosphates by both agonists was unaffected by extracellular Ca2+. 4) The EC50 values for Ca2+ mobilization for LTD4 and LTE4 corresponded with their affinity (Kd values) for the LTD4 receptor. 5) A series of structurally diverse LTD4 receptor antagonists blocked the Ca2+ mobilization responses to LTD4 and LTE4 with identical rank orders of potency. 6) LTE4 acted as an antagonist of LTD4 of potency. 6) LTE4 acted as an antagonist of LTD4 effects when they were coadministered. 7) LTE4 and LTD4 acutely desensitized Ca2+ mobilization to each other. All of the effects of LTE4 are explained by its partial agonist activity at the LTD4 receptor as shown by the following data. 1) Neither LTD4 nor LTE4 had any effect on the agonist activity of fMet-Leu-Phe, LTB4, or platelet-activating factor. 2) None of the above agonists or antagonists to the above receptors affected any of the activities of LTD4 or LTE4. 3) Neither LTD4 nor LTE4 induced desensitization of Ca2+ mobilization to any of the non-LTD4 receptor agonists tested. 4) Under the conditions studied, we have not observed any evidence of multiple subclasses of LTD4 receptors in U-937 cells. LTE4 is a partial agonist of the LTD4 receptor, because it can only couple the LTD4 receptor to a portion of the signaling system available to the receptor when occupied by LTD4. Specifically, LTD4 caused the activation of receptor-operated calcium channels, mobilization of intracellular Ca2+, the activation of phosphatidylinositol-phospholipase C, and the liberation of an additional, as yet undefined, intracellular mediator. To do this, LTD4 receptors couple to at least two and perhaps more guanine nucleotide binding proteins. LTE4 is unable to activate the phosphatidylinositol-phospholipase C but can mimic the other effects of LTD4.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Staurosporine induced the association of purified protein kinase C (PKC) with inside-out vesicles from erythrocyte membranes. This effect was Ca2+ and concentration dependent, and maximum PKC translocation was observed at 50 nM staurosporine and 0.5 microM Ca2+, or higher. A significant effect of staurosporine was already obtained at free Ca2+ concentrations in the range found in resting cells. Under these conditions, the PKC activator 4-phorbol 12,13-dibutyrate was by itself inactive, but enhanced translocation by staurosporine. Protein phosphorylation by staurosporine-translocated PKC was inhibited in the presence or absence of phorbol esters. Translocation and inhibition of PKC occurred in the same staurosporine concentration range.  相似文献   

3.
Leukotrienes C4 and D4 (LTC4 and LTD4) stimulated, 5- to 6-fold, the adhesion of the monoblastoid cell line U-937 to plastic. Half-maximal effects were observed around 1 nM. Leukotrienes E4 and B4 (LTE4 and LTB4) were less effective. The adhesive response to LTC4 was inhibited by pertussis toxin and was completely dependent on the presence of extracellular Ca2+. The LTC4-stimulated increases in inositol-phosphates and in intracellular Ca(2+)-concentration were insensitive to pertussis toxin. Activation of leukocyte adhesion is a novel action of cysteinyl-leukotrienes and the present study suggests that control of U-937-cell adhesion by LTC4 involves two pathways; one pertussis toxin insensitive pathway regulating intracellular Ca2+ in a manner partly dependent on extracellular Ca2+ and one pertussis toxin sensitive pathway not concerned with Cai(2+)-regulation.  相似文献   

4.
Leukotrienes are recognized as important mediators of the inflammatory process. Recently, increasing attention has been paid to the role of noninflammatory cells in the regulation of the inflammatory process. To further increase our knowledge of this matter we have, in the present study, investigated leukotriene-induced Ca2+ signaling, using a single cell technique in a human epithelial cell line, Intestine 407. It was evident that both LTD4 and LTE4, at physiological concentrations (10 nM), triggered rapid and pronounced cytosolic free Ca2+ transients, due to both influx across the plasma membrane and intracellular mobilization. Preincubation with pertussis toxin (1200 ng/ml) decreased the level of agonist-induced Ca2+ transients to an extent similar to that caused by depletion of extracellular Ca2+, suggesting that the toxin affected the influx but not the intracellular mobilization of Ca2+. Indeed, by using the Mn2+ quenching technique, it could be shown that pertussis toxin totally inhibited the influx of Ca2+. The fact that, even after pertussis toxin treatment, direct G-protein activation by AIF4- was still able to trigger a cytosolic free Ca2+ transient, indicates that, in these cells, G-proteins (GTP-binding proteins) that are insensitive to pertussis toxin are capable of mediating a Ca2+ signal. In order to test the idea that such G-proteins regulate mobilization of intracellular Ca2+ induced by LTD4 and LTE4, we electropermeabilized and preincubated the Intestine 407 cells with guanosine-5'-O-(2-thiodiphosphate) (GDP beta S), let them reseal, and, after loading with fura2, investigated the effects on agonist-stimulated Ca2+ signaling. Electropermeabiization and resealing alone did not significantly affect the Ca2+ responses triggered by LTD4 or LTE4. Addition of GDP beta S, in the presence of extracellular Ca2+, reduced the Ca2+ responses by approximately 60-70%. In Ca2(+)-depleted medium, GDP beta S also impaired the LTD4-induced response by 65%, however, it had no effect on the Ca2+ response induced by LTE4. In conclusion, LTD4 and LTE4 trigger cytosolic free Ca2+ signaling in a human epithelial cell line by causing both an influx of Ca2+ and mobilization of intracellular Ca2+. The Ca2(+)-signaling mechanism appears to consist of dual pathways, since the influx is regulated by a pertussis toxin-sensitive G-protein, but, the mobilization of Ca2+ is not. Furthermore, our data suggest that the LTD4-induced mobilization is regulated by a pertussis toxin-insensitive G-protein whereas the LTE4-induced mobilization is relatively insensitive to both pertussis toxin and GDP beta S.  相似文献   

5.
We previously showed that prostaglandin (PG) D2 stimulates Ca2+ influx from extracellular space and activates phosphoinositidic (PI)-hydrolyzing phospholipase C and phosphatidylcholine (PC)-hydrolyzing phospholipase D independently from PGE2 or PGF2alpha in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of PGD2 on the synthesis of interleukin-6 (IL-6) and its regulatory mechanism in MC3T3-E1 cells. PGD2 significantly stimulated IL-6 synthesis dose-dependently in the range between 10 nM and 10 microM. The depletion of extracellular Ca2+ by EGTA reduced the PGD2-induced IL-6 synthesis. TMB-8, an inhibitor of intracellular Ca2+ mobilization, significantly inhibited the PGD2-induced IL-6 synthesis. On the other hand, calphostin C, a specific inhibitor of protein kinase C (PKC), enhanced the synthesis of IL-6 induced by PGD2. In addition, U-73122, an inhibitor of phospholipase C, and propranolol, a phosphatidic acid phosphohydrolase inhibitor, enhanced the PGD2-induced IL-6 synthesis. These results strongly suggest that PGD2 stimulates IL-6 synthesis through intracellular Ca2+ mobilization in osteoblasts, and that the PKC activation by PGD2 itself regulates the over-synthesis of IL-6.  相似文献   

6.
Staurosporine, a microbial alkaloid, enhances inositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DG) production rapidly and dose-dependently in fMet-Leu-Phe (FMLP)-stimulated human neutrophils showing maximal effects at 1 microM concentration. The IP3 increase was specific for staurosporine as three other putative protein kinase C (PKC) inhibitors, H7, sphingosine and palmitoylcarnitine were unable to enhance the IP3 generation in FMLP-stimulated human neutrophils. Staurosporine, at concentrations 0.3-1.0 microM, did not affect the initial mobilization of FMLP-induced intracellular Ca2+ (Ca2+i), although a sustained elevation of cytosolic Ca2+ level was observed within 5 min. This effect could not be suppressed, even by 1 microM phorbol-myristate 12,13-acetate (PMA). Whereas lower concentrations of staurosporine (less than or equal to 100 nM) were unable to affect FMLP-induced IP3 production, DG accumulation and Ca2+i, the PMA-inhibited initial Ca2+i signal and IP3 formation triggered by FMLP were almost completely restored. At higher concentrations (greater than or equal to 300 nM) staurosporine reversed the inhibitory effect of other protein kinases, distinct from the PMA-inducible one, which may be responsible for the phosphatidyl inositol 4,5-bisphosphate (PIP2) breakdown, thus causing accumulation of IP3 and DG and an elevation of C2+i level. Whereas IP3 declined to basal level within 5 min, the DG level remained elevated during the same period. This phenomenon is attributed to phospholipase D (PLD) stimulation by staurosporine, which augments the DG synthesis, in part through PA degradation via phosphatidic acid (PA) phosphohydrolase.  相似文献   

7.
We investigated the effect of cellular cholesterol content on platelet activating factor (PAF)-stimulated Ca2+ mobilization in the human monocytic cell line U937. When cholesterol auxotroph U937 cells were depleted of cellular cholesterol by a 48-h incubation in delipidated medium, a 40% reduction in the PAF (100 nM)-stimulated increase in cytosolic Ca2+ concentration was seen. Ca2+ mobilization following stimulation with LTD4 (10 nM) or ATP (10 microM) was not affected. Addition of LDL (100 micrograms/ml, 24 h) to the delipidated medium completely recovered cellular cholesterol content and PAF-induced Ca2+ mobilization. These two LDL effects had very similar time- and dose-dependences. Partial recoveries of PAF-induced Ca2+ mobilization, seen after addition of pure cholesterol dissolved in ethanol (30 micrograms/ml, 24 h) or acetyl-LDL (100 micrograms/ml, 24 h), were associated with partial recoveries of cellular cholesterol content. Our results indicate that cellular cholesterol influences PAF-stimulated events in monocytic cells.  相似文献   

8.
We examined whether protein kinase C activation plays a modulatory or an obligatory role in exocytosis of catecholamines from chromaffin cells by using PKC(19-31) (a protein kinase C pseudosubstrate inhibitory peptide), Ca/CaM kinase II(291-317) (a calmodulin-binding peptide), and staurosporine. In permeabilized cells, PKC (19-31) inhibited the phorbol ester-mediated enhancement of Ca2(+)-dependent secretion as much as 90% but had no effect on Ca2(+)-dependent secretion in the absence of phorbol ester. The inhibition of the phorbol ester-induced enhancement of secretion by PKC (19-31) was correlated closely with the ability of the peptide to inhibit in situ phorbol ester-stimulated protein kinase C activity. PKC(19-31) also blocked 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced phosphorylation of numerous endogenous proteins in permeabilized cells but had no effect on Ca2(+)-stimulated phosphorylation of tyrosine hydroxylase. Ca/CaM kinase II(291-317), derived from the calmodulin binding region of Ca/calmodulin kinase II, had no effect on Ca2(+)-dependent secretion in the presence or absence of phorbol ester. The peptide completely blocked the Ca2(+)-dependent increase in tyrosine hydroxylase phosphorylation but had no effect on TPA-induced phosphorylation of endogenous proteins in permeabilized cells. To determine whether a long-lived protein kinase C substrate might be required for secretion, the lipophilic protein kinase inhibitor, staurosporine, was added to intact cells for 30 min before permeabilizing and measuring secretion. Staurosporine strongly inhibited the phorbol ester-mediated enhancement of Ca2(+)-dependent secretion. It caused a small inhibition of Ca2(+)-dependent secretion in the absence of phorbol ester which could not be readily attributed to inhibition of protein kinase C. Staurosporine also inhibited the phorbol ester-mediated enhancement of elevated K(+)-induced secretion from intact cells while it enhanced 45Ca2+ uptake. Staurosporine inhibited to a small extent secretion stimulated by elevated K+ in the absence of TPA. The data indicate that activation of protein kinase C is modulatory but not obligatory in the exocytotoxic pathway.  相似文献   

9.
Three protein kinase C (PKC) activators (PMA, mezerein, and a diacylglycerol) had bidirectional effects on human polymorphonuclear neutrophil (PMN) degranulation responses to leukotriene (LT) B4. Lower concentrations of the three agents enhanced, whereas higher concentrations inhibited, release of lysozyme and beta-glucuronidase stimulated by the arachidonic acid metabolite. Contrastingly, the activators inhibited but never enhanced LTB4-induced Ca2+ transients. We examined the causes for these varying effects. Each PKC activator reduced PMN specific binding of [3H]LTB4. Scatchard analyses revealed that PMA (greater than or equal to 0.16 nM) decreased the number of high affinity LTB4 receptors. The receptor losses correlated closely with inhibition of Ca2+ transients. PMN pretreated with 0.5 nM PMA for 5 min retained approximately 50% of their high affinity LTB4 receptors. These cells responded to 10 nM LTB4 with reduced but still substantial rises in cytosolic Ca2+, enhanced PKC mobilization, and increased granule enzyme release. The latter two effects appeared calcium-dependent because sequential exposure to PMA and LTB4 did not synergistically stimulate PKC mobilization or degranulation in PMN that were: 1) Ca2(+)-depleted; 2) challenged with 5 nM PMA; or 3) treated with LTB4 for 5 min before PMA. Each of the latter treatments completely interfered with the extent or timing of LTB4-induced Ca2+ transients. Accordingly, we suggest that the response-specific, bidirectional effects of PKC activators on LTB4 result from two opposing mechanisms. First, PKC activators down-regulate LTB4 high affinity receptors and thereby reduce those PMN responses that are not elicited by activated PKC (i.e., Ca2+ transients). Second, LTB4, by elevating cytosolic Ca2+, increases the amount of PKC mobilized by PKC activators and thereby promotes PKC-dependent responses (e.g., degranulation). The two mechanisms may be pertinent to the bidirectional effects of PKC activators on various other agonists. Furthermore, PKC, by down-regulating receptors, may serve as a physiologic stop signal for terminating function and producing a poststimulatory state of desensitization.  相似文献   

10.
In HeLa cells, histamine induces production of inositol 1,4,5-trisphosphate (InsP3) and release of Ca2+ from the endoplasmic reticulum (ER). Ca2+ release is typically biphasic, with a fast and brief initial phase, followed by a much slower and prolonged one. In the presence of inhibitors of protein kinase C (PKC), including staurosporine and the specific inhibitors GF109203X and Ro-31-8220, the fast phase continued until the ER became fully empty. On the contrary, treatment with phorbol 12,13-dibutyrate inhibited Ca2+ release. Staurosporine had no effect on InsP3-induced Ca2+ release in permeabilized cells and did not modify either histamine-induced InsP3 production. These data suggest that histamine induces Ca2+ release and with a short lag activates PKC to down-regulate it. Consistently, Ca2+ oscillations induced by histamine were increased in amplitude and decreased in frequency in the presence of PKC inhibitors. We show also that mitochondrial [Ca2+] was much more sensitive to changes in ER-Ca2+ release induced by PKC modulation than cytosolic [Ca2+]. PKC inhibitors increased the histamine-induced mitochondrial [Ca2+] peak by 4-fold but increased the cytosolic [Ca2+] peak only by 20%. On the contrary, PKC activation inhibited the mitochondrial [Ca2+] peak by 90% and the cytosolic one by only 50%. Similarly, the combination of PKC inhibitors with the mitochondrial Ca2+ uniporter activator SB202190 led to dramatic increases in mitochondrial [Ca2+] peaks, with little effect on cytosolic ones. This suggests that activation of ER-Ca2+ release by PKC inhibitors could be involved in apoptosis induced by staurosporine. In addition, these mechanisms allow flexible and independent regulation of cytosolic and mitochondrial [Ca2+] during cell stimulation.  相似文献   

11.
We investigated signal transduction pathways for LTD4 in the human promonocytic cell line U937 known, upon differentiation, to express CysLT1 receptors. We confirmed the presence of high-affinity binding sites for 3H-LTD4, which, in functional studies, displayed the features of CysLT1 receptor. In fact, three potent and selective CysLT1 receptor antagonists were able to completely inhibit LTD4-induced response. In turn, cytosolic Ca2+ ([Ca2+]i) increase (EC50 = 3.4 nM +/- 27% CV) was only partially sensitive to pertussis toxin (PTx) as well as to the prenylation inhibitor fluvastatin and to the specific geranylgeranylation and farnesylation inhibitors BAL 9504 and FPT II. Finally, Clostridium sordellii lethal toxin, inhibitor of the Ras family of GTPases, and FTS, a potent methyltransferase inhibitor, were both able to partially inhibit LTD4-induced [Ca2+] increase, suggesting a role for a Ras family member in [Ca2+]i regulation. In conclusion, in dU937 LTD4 signal transduction involves: (a) at least two pathways, one sensitive and one insensitive to PTx; (b) isoprenylated proteins, such as betagamma subunits and, possibly, a small G protein of the Ras family.  相似文献   

12.
The protein kinase C (PKC) activator, phorbol 12, 13-dibutyrate (PDBa) dose-dependently inhibited platelet-activating factor (PAF)-induced [Ca2+]i elevation and inositol monophosphate (IP1) accumulation in neurohybrid NG108-15 cells with IC50 values of 162 nM and 35 nM, respectively. Pretreatment of NG108-15 cells with PKC inhibitor H-7 partially prevented the inhibitory effect of PDBu on PAF-induced [Ca2+]i elevation as well as PI metabolism in NG108-15 cells. Pretreatment of the cells with pertussis toxin (PTX) resulted in a dose-dependent inhibition of PAF-induced IP1 and IP3 accumulation but only slightly affected PAF-induced [Ca2+]i elevation in NG108-15 cells. The results reveal that PAF receptor-mediated Ca2+ mobilization and PI metabolism in NG108-15 cells are regulated by PKC while a PTX-sensitive G protein is coupled to PAF receptor for inducing activation of phospholipase C.  相似文献   

13.
Lipoteichoic acid (LTA), the principal component of the cell wall of gram-positive bacteria, triggers several inflammatory responses. However, the mechanisms underlying its action on human tracheal smooth muscle cells (HTSMCs) were largely unknown. This study was to investigate the mechanisms underlying LTA-stimulated p42/p44 mitogen-activated protein kinase (MAPK) using Western blotting assay. LTA stimulated phosphorylation of p42/p44 MAPK via a Toll-like receptor 2 (TLR2). Pretreatment with pertussis toxin attenuated the LTA-induced responses. LTA-stimulated phosphorylation of p42/p44 MAPK was attenuated by inhibitors of tyrosine kinase (genistein), phosphatidylcholine-phospholipase C (PLC; D609), phosphatidylinositol (PI)-PLC (U-73122), PKC (staurosporine, G?-6976, rottlerin, or Ro-318220), MEK1/2 (U-0126), PI 3-kinase (LY-294002 and wortmannin), and an intracellular Ca(2+) chelator (BAPTA-AM). LTA directly evoked initial transient peak of [Ca(2+)](i), supporting the involvement of Ca(2+) mobilization in LTA-induced responses. These results suggest that in HTSMCs, LTA-stimulated p42/p44 MAPK phosphorylation is mediated through a TLR2 receptor and involves tyrosine kinase, PLC, PKC, Ca(2+), MEK, and PI 3-kinase.  相似文献   

14.
We investigated the potential roles of specific isoforms of protein kinase C (PKC) in the regulation of leukotriene D(4)-induced Ca(2+) signaling in the intestinal epithelial cell line Int 407. RT-PCR and Western blot analysis revealed that these cells express the PKC isoforms alpha, betaII, delta, epsilon, zeta, and mu, but not betaI, gamma, eta, or theta;. The inflammatory mediator leukotriene D(4) (LTD(4)) caused the TPA-sensitive PKC isoforms alpha, delta, and epsilon, but not betaII, to rapidly translocate to a membrane-enriched fraction. The PKC inhibitor GF109203X at 30 microM but not 2 microM significantly impaired the LTD(4)-induced Ca(2+) signal, indicating that the response involves a novel PKC isoform, such as delta or epsilon, but not alpha. LTD(4)-induced Ca(2+) signaling was significantly suppressed in cells pretreated with TPA for 15 min and was abolished when the pretreatment was prolonged to 2 h. Immunoblot analysis revealed that the reduction in the LTD(4)-induced calcium signal coincided with a reduction in the cellular content of PKCepsilon and, to a limited extent, PKCdelta. LTD(4)-induced Ca(2+) signaling was also markedly suppressed by microinjection of antibodies against PKCepsilon but not PKCdelta. These data suggest that PKCepsilon plays a unique role in regulation of the LTD(4)-dependent Ca(2+) signal in intestinal epithelial cells.  相似文献   

15.
In cloned osteoblast-like MC3T3-E1 cells, prostaglandin E2 (PGE2) stimulated 45Ca2+ influx even in the presence of nifedipine, a Ca2+ antagonist that inhibits voltage-dependent Ca2+ channel, in a dose-dependent manner, attaining a maximum at 0.5 microM. Dose of PGE2 above 0.5 microM caused less than maximal stimulation. While PGE2 stimulated the formation of inositol trisphosphate dose dependently in the range between 1 nM and 10 microM. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC)-activating phorbol ester, which by itself had little effect on 45Ca2+ influx, significantly suppressed the 45Ca2+ influx induced by PGE2 in a dose-dependent manner between 1 nM and 1 microM. 4 alpha-Phorbol 12,13-didecanoate, a phorbol ester which is inactive for PKC, showed little effect in this capacity. Staurosporine, a PKC inhibitor, enhanced the PGE2-induced 45Ca2+ influx. On the other hand, dibutyryl cAMP had little effect on the 45Ca2+ influx induced by PGE2. Our data suggest that PGE2 regulates Ca2+ influx through self-induced activation of PKC. These results indicate that there is an autoregulatory mechanism in signal transduction by PGE2, and PGE2 modulates osteoblast functions through the interaction between Ca2+ influx and phosphoinositide hydrolysis in osteoblast-like cells.  相似文献   

16.
Phorbol esters, potent activators of protein kinase C (PKC), greatly enhance the release of arachidonic acid and its metabolites (TXA2, HETES, HHT) by Ca2+ ionophores in human platelets. In this paper, we report the relationship between intracellular Ca2+ mobilization and external calcium influx into platelets and the ability of PMA plus A23187 to promote thromboxane A2 (TXA2) synthesis. The enhanced levels of TXA2 due to the synergistic stimulation of the platelets with A23187 and phorbol esters are not affected significantly by the presence of external Ca2+ or the calcium-chelator EGTA. PKC inhibitors, staurosporine and sphingosine, abolished phorbol myristate acetate (PMA) potentiation of TXA2 production which strongly supports the role of PKC in the synergism. Platelet aggregation is more sensitive to PMA and external calcium than TXA2 formation. PMA increased TXA2 production as much as 4-fold at low ionophore concentrations. The A23187-induced rise in [Ca2+]i was reduced by pretreatment of human platelets with phorbol esters, both in the presence and absence of EGTA, and staurosporine reversed this inhibitory effect. These results indicate that the synergistic stimulation of TXA2 production by A23187 and phorbol esters is promoted by intracellular Ca2+ mobilization and not by external calcium influx. Our data also suggest that PKC is involved in the regulation of Ca2+ mobilization from some specific intracellular stores and that PKC may also stimulate the Ca(2+)-dependent phospholipase A2 at suboptimal Ca2+i concentrations.  相似文献   

17.
Stimulation of Jurkat T cells with antibodies against the T cell receptor/CD3 complex induces a rise in the intracellular concentration of Ca2+ within seconds. The inositol phosphate-dependent Ca2+ mobilization induced by OKT3 was completely abrogated when Jurkat cells were pretreated for 1 min with the phorbol 12-myristate 13-acetate TPA (10nM), a concentration which activates protein kinase C (PKC). The effects of TPA on the Ca2+ fluxes were insensitive to treatment of the cells with known PKC inhibitors (H-7 and staurosporin) under conditions where the PKC-mediated phosphorylation was blocked. Furthermore, another activator of PKC, mezerein, inhibited the Ca2+ signal induced by OKT3. This inhibition, however, could completely be reversed by pretreatment with H-7 or staurosporine. We conclude that the TPA-mediated inhibition of Ca2+ fluxes in Jurkat T cells largely acts through a PKC-independent pathway.  相似文献   

18.
19.
Addition of LTD4 (10 nM) to Xenopus laevis oocytes expressing the mCysLT1 receptor together with hBK or hIK channels resulted in the activation of both channels secondary to an LTD4-induced increase in [Ca2+]i. In addition, the hIK channel is activated by low concentrations of LTD4 (<0.1 nM), which did not result in any increase in [Ca2+]i. Even though activation of hIK by low concentrations of LTD4 was independent of an increase in [Ca2+]i, a certain "permissive" level of [Ca2+]i was required for its activation, since buffering of intracellular Ca2+ by EGTA completely abolished the response to LTD4. Neither hTBAK1 nor hTASK2 was activated following stimulations with LTD4 (0.1 and 100 nM).  相似文献   

20.
《The Journal of cell biology》1993,120(6):1491-1499
Thrombin, a potent activator of cellular responses, proteolytically cleaves, and thereby activates its receptor. In the present study, we compared the effects of the thrombin receptor 14-amino acid peptide (TRP-14; SFLLRNPNDKYEPF), which comprises the NH2 terminus after cleavage of the thrombin receptor, and of the native alpha-thrombin on endothelial monolayer permeability. Addition of TRP-14 (1-200 microM) to bovine pulmonary artery endothelial cells increased [Ca2+]i in a dose-dependent manner. The peak increase in [Ca2+]i in response to 100 microM TRP-14 or 0.1 microM alpha-thrombin was similar (i.e., 931 +/- 74 nM and 1032 +/- 80 nM, respectively), which was followed by a slow decrease with t1/2 values of 0.73 and 0.61 min, respectively. Extracellular Ca2+ chelation with 5 mM EGTA abolished the sustained increases in [Ca2+]i induced by either TRP-14 or alpha-thrombin. alpha- thrombin (0.1 microM) increased transendothelial [125I]albumin permeability, whereas TRP-14 (1-100 microM) had no effect. Coincubation of 100 microM TRP-14 with 1 microM DIP-alpha-thrombin also did not increase permeability over control values. Stimulation of BPAEC with 0.1 microM alpha-thrombin induced translocation of protein kinase C (PKC) from the cytosol to the plasma membrane indicative of PKC activation, whereas TRP-14 had no effect at any concentration. TRP-14 at 100 microM desensitized BPAEC to thrombin-induced increases in [Ca2+]i and transendothelial permeability. The Ca2+ desensitization was reversed after approximately 60 min, and this recovery paralleled the recovery of the permeability response. These findings indicate that the TRP-14-induced Ca2+ mobilization in the absence of PKC activation is insufficient to increase endothelial permeability. In contrast, the increase in endothelial permeability after alpha-thrombin occurred in conjunction with Ca2+ mobilization as well as PKC activation. TRP-14 pretreatment prevented the alpha-thrombin-induced increase in endothelial permeability secondary to desensitization of the Ca2+ signal. The results suggest that combined cytosolic Ca2+ mobilization mediated by TRP-14 and PKC activation mediated by a TRP-14-independent pathway are dual signals responsible for the thrombin-induced increase in vascular endothelial permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号