首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rock varnish from Arizona's Whipple Mountains harbors a microbial community containing about 108 microorganisms g−1 of varnish. Analyses of varnish phospholipid fatty acids and rRNA gene libraries reveal a community comprised of mostly Proteobacteria but also including Actinobacteria, eukaryota, and a few members of the Archaea. Rock varnish represents a significant niche for microbial colonization.  相似文献   

2.

While a number of studies have shown that a close association exists between microorganisms and varnished rocks, there is little hard evidence to support the existence of either specific desert varnish communities, or any role these microbes might play in the genesis of the varnish layers. To this end, we analyzed fatty acid methyl esters (FAMEs) of samples collected from the Mojave desert of southern California to compare the microbial community structure of desert varnish with the adjacent desert soil. These analyses indicated prokaryotic and fungal communities in both desert varnish and soil samples. FAMEs specific to gram-positive bacteria were found more often, and in greater abundance in varnish samples than in adjacent soils. This may represent a higher preservation potential of gram-positive bacteria fatty acids in varnish, a source area of varnish microorganisms dominated by gram-positive bacteria, or a varnish community dominated by gram-positive microorganisms. Heterogeneity in fatty acids was documented between varnished rocks and soils from different localities, as well as between samples collected from the same locality. This heterogeneity suggests that there are significant differences in the community structure of the microbial fauna found in varnish samples compared to the adjacent soil, and that desert varnish in the Mojave desert is not characterized by a unique and ubiquitous microbial community. These results suggest that the varnish is not a homogeneous and unique environment for biota, and provide no support for the hypothesis that the varnish layers are biogenic in origin.  相似文献   

3.
Rock varnish is a darkly pigmented coating rich in manganese oxides. Though microbes inhabit varnish deposits, it is unclear whether they are involved in varnish formation. The fungal communities of rock varnish and adjacent rock sites with no visible varnish deposits were examined. Microcolonial fungi were identified at all sampling sites, and were associated with manganese oxides in patches of incipient varnish at non-varnish sites. Fungi were closely related to manganese-oxidizing genera and seventeen isolates oxidized manganese in culture, producing six distinct manganese-oxide morphologies. Our results indicate that microcolonial fungi may play a crucial role in rock varnish formation. Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the free supplemental file.  相似文献   

4.
Summary The ecology of the microflora, which produces rock varnishes in the Negev is described. It is shown that biogenic rock varnishes may form within relatively short periods (1967–1981) on places where pre-existing varnishes were eliminated. Rock varnishes are thin coatings, mainly composed of Fe and Mn hydroxides and clay material. Biogenic rock varnishes form at places where microbial weathering fronts, which destroy the rock substrate, advance extremely slowly or come to stillstand, thus enabling the development of biogenic protective coatings. Rock varnish is mainly produced by the activity of often lichenised epi- and endolithic cyanobacteria, chemoorganotrophic bacteria, and fungi, which are sometimes associated with the still debatable Metallogenium symbioticum. In cases, where microbial weathering fronts reach harder bedrocks during their progress, the then developing rock varnish plays a protective role for the microflora beneath the varnish in formation. This microflora otherwise would be directly exposed to the harsh desert conditions and could not survive. Biogenic rock varnishes are characteristic examples of a microbial ecosystem, which adapted itself to one of the most extreme environments on this planet, i.e. high irradiation, extremely low water activity, no chances of deplacement upwards or downwards and in addition the highest daily changes in temperature and irradiation and humidity one may observe in natural environments. It seems, that the solution front community which is trapped on increasingly harder and resistant rocks has evolved the capacity to protect itself from the harsh environmental conditions by the creation of rock varnish as a kind of armour shielding it from the extremes of environmental stress.33The Lord spoke to Moses and Aaron and said: 34When you have entered the land of Canaan which I give you to occupy, if I inflict a fungous infection upon the house in the land you have occupied, 35its owner shall come and report to the priest that there appears to be a patch of infection on his house. 36The priest shall order the house to be cleared before he goes in to examine the infection, or everything in it will become unclean. After this the priest shall go in to inspect the house. 37If on inspection he finds the patch on the walls consists of greenish or reddish depressions, apparently going deeper than the surface, 38he shall go out of the house, and standing in the entrance, shall put the house in quarantine for seven days. 39On the seventh day he shall come back to inspect the house, and if the patch has spread in the walls, 40he shall order the infected stones to be pulled out and thrown away outside the city in an unclean place. (Levithicus 13, 14, appr. 3000 B.P.)  相似文献   

5.
【目的】了解新疆特殊生境不同类型岩石内生细菌的组成及多样性。【方法】采用末端限制性片段长度多态性技术(Terminal Restriction Fragment Length Polymorphism,T-RFLP),分析新疆乌苏花岗岩(1号样)、一号冰川和木垒变质岩(2,3号样)、裕民和托克逊岩石漆(4,5号样)内生细菌群落。【结果】样品间多样性指数变化不大;聚类分析表明岩石类型相同,其相似性较高,2号样和3号样聚为一支并与1号样再聚为一支,4号样与5号样聚为一支;各样品共有种群为厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)、变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes),1号样存在酸杆菌门(Acidobacteria),2号样存在浮霉菌门(Planctomycetes);除5号样优势类群为放线菌门(29.3%),其它4个样品均为变形菌门,只是所占比例略有不同。【结论】生境不同的同类型岩石的内生细菌群落组成存在差异,各类岩石中可能存在大量未知细菌新种。  相似文献   

6.
Jennifer D. Eoff 《Facies》2014,60(3):801-814
The Furongian (Upper Cambrian; Jiangshanian and Sunwaptan) Tunnel City Group (Lone Rock Formation and Mazomanie Formation), exposed in Wisconsin and Minnesota, represents a shallow-marine clastic environment during a time of exceptionally high sea level. Lithofacies from shoreface to transitional-offshore settings document deposition in a wave- and storm-dominated sea. Flooding of the cratonic interior was associated with formation of a condensed section and the extensive development of microbial mats. Biolamination, mat fragments, wrinkle structures, and syneresis cracks are preserved in various sandstone facies of the Lone Rock Formation, as is evidence for the cohesive behavior of sand. These microbial-induced sedimentary structures (MISS) provide unique signals of biological–physical processes that physical structures alone cannot mimic. The MISS are associated with a trilobite extinction event in the Steptoean–Sunwaptan boundary interval. This may support recent claims that Phanerozoic microbial mats were opportunistic disaster forms that flourished during periods of faunal turnover. Further investigation of stratigraphic, taphonomic, and other potential biases, however, is needed to fully test this hypothesis.  相似文献   

7.
Potential effects of antibiotics on agricultural soil microflora have recently become increasing concerns with antibiotic-contaminated biosolid now being used in agricultural land. However, changes of soil microbial community function caused by the antibiotic-associated disturbance are less addressed. This paper investigated the changes in microbial functional diversity by spiking sulfamethoxazole (SMX) and chlortetracycline (CTC) in a loam paddy soil and then incubating for 21 days. The dose-effect and time-dependent changes of antibiotic-associated disturbance on soil microbial community were analyzed with the soils sampled at 7 and 21 days using Biolog EcoPlate. At day 7 following treatment, SMX decreased functional diversity of soil microbial community, and the treatment of 100 mg SMX kg?1 dry soil had a significant inhibition of average well color development (AWCD) and Shannon index as compared to the control (p?相似文献   

8.
The species present within a community result from a combination of local and regional processes. We experimentally tested the importance of these two processes for lake zooplankton communities by examining the ability of additional species to persist when introduced into mesocosms in Little Rock Lake, Wisconsin, from other nearby lakes in the Northern Highland Lake District. We established a control treatment with only Little Rock Lake zooplankton and two treatments that supplemented the Little Rock communities with zooplankton from nearby lakes. Species richness declined during the 3 weeks of the experiment so that, at the end of the third week, the treatments with added zooplankton species had the same number of species as the controls; increasing the initial number of species in the community did not increase its final species richness. A plot of the mean species richness in the local habitat against the mean species richness of the regional pool fell below a 1:1 slope. This suggested that local processes were more important in structuring Little Rock Lake zooplankton communities.   相似文献   

9.
Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA). Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling microbial community composition and function.  相似文献   

10.
Tito Bustillo cave (Ribadesella, Spain) contains valuable Palaeolithic paintings, which date back 15 000-20 000 years. Since 1969, the cave has been open to the public. Rock wall surfaces, spelaeothems and soils are covered by apparent biofilms of phototrophic microorganisms, which develop under artificial lighting. In addition, rock surfaces present conspicuous bacterial growth in the form of round colonies of different colours and about 1-2 mm in diameter. Even the famous Paintings Panel shows some evident microbial growth. In the present study, bacterial communities on the paintings and on the rock surfaces near the paintings were analysed by culture-independent techniques, including polymerase chain reaction (PCR) amplification of bacterial 16S rRNA genes (16S rDNA), phylogenetic sequence analyses and genetic community fingerprinting by denaturing gradient gel electrophoresis (DGGE). DGGE fingerprints showed complex bacterial community patterns. Forty-one clones matching DGGE bands of the community fingerprints were sequenced, representing about 39% of DNA fragments in the DGGE patterns. Phylogenetic sequence analyses revealed a high number of phylogenetically novel 16S rDNA sequence types and a high diversity of putatively chemotrophic and heterotrophic bacteria. Sequences were phylogenetically most closely related to the Proteobacteria (20 clones), green non-sulphur bacteria (three clones), Planctomycetales order (one clone), Cytophaga-Flexibacter- Bacteroides division (one clone) and the Actinobacteria (four clones). Furthermore, we report the presence of members of the Acidobacterium division (12 clones) in a karstic hypogean environment. Members of this phylum have not so far been detected in these particular environments.  相似文献   

11.
森林次生演替和土壤层次对微生物群落结构的影响   总被引:2,自引:0,他引:2  
森林次生演替与生态系统结构和功能的动态变化密切相关。大多数研究主要关注植物群落以及土壤有机碳(SOC)的变化,然而土壤微生物群落如何响应森林次生演替还需要进一步探究。本研究以长白山森林次生演替序列(20、80、120、200和≥300年)和两个土壤层次为对象,采用磷脂脂肪酸微生物标志物,探究温带森林次生演替过程中地下微生物群落结构变化。森林次生演替改变了土壤微生物群落结构,主要归因于某些特定微生物类群的变化,演替前期革兰氏阴性菌和腐生真菌占主导,而在演替后期革兰氏阳性菌和丛枝菌根真菌占主导。另外,土壤有机质数量和质量差异是影响微生物群落结构和生物量的主要环境因素。森林演替前期和中期增加的SOC含量促进了微生物生物量,而演替后期增加的难分解芳香族有机组分抑制了微生物生物量合成。土壤层次间理化性质的差异导致微生物群落变化,有机质层高的SOC以及氮含量导致更多微生物生物量的合成。微生物群落在时间和空间尺度的变化及其驱动因素反映了生态系统结构和功能对环境变化的响应。  相似文献   

12.
Changes in soil microbial community structure due to improvement are often attributed to concurrent shifts in floristic community composition. The bacterial and fungal communities of unimproved and semi-improved (as determined by floristic classification) grassland soils were studied at five upland sites on similar geological substrata using both broad-scale (microbial activity and fungal biomass) and molecular [terminal restriction fragment length polymorphism (TRFLP), automated ribosomal intergenic spacer analysis (ARISA)] approaches. It was hypothesized that microbial community structure would be similar in soils from the same grassland type, and that grassland vegetation classifications could thus be used as predictors of microbial community structure. Microbial community measurements varied widely according to both site and grassland type, and trends in the effect of grassland improvement differed between sites. These results were consistent with those from similar studies, and indicated that floristic community composition was not a stable predictor of microbial community structure across sites. This may indicate a lack of correlation between grassland plant composition and soil microbial community structure, or that differences in soil chemistry between sites had larger impacts on soil microbial populations than plant-related effects.  相似文献   

13.
Indigenous and contaminant microbes in ultradeep mines   总被引:2,自引:1,他引:1  
Rock, air and service water samples were collected for microbial analyses from 3.2 kilometres depth in a working Au mine in the Witwatersrand basin, South Africa. The approximately metre-wide mined zone was comprised of a carbonaceous, quartz, sulphide, uraninite and Au bearing layer, called the Carbon Leader, sandwiched by quartzite and conglomerate. The microbial community in the service water was dominated by mesophilic aerobic and anaerobic, alpha-, beta- and gamma-Proteobacteria with a total biomass concentration approximately 10(4) cells ml(-1), whereas, that of the mine air was dominated by members of the Chlorobi and Bacteroidetes groups and a fungal component. The microorganisms in the Carbon Leader were predominantly mesophilic, aerobic heterotrophic, nitrate reducing and methylotrophic, beta- and gamma-Proteobacteria that were more closely related to service water microorganisms than to air microbes. Rhodamine WT dye and fluorescent microspheres employed as contaminant tracers, however, indicated that service water contamination of most of the rock samples was < 0.01% during acquisition. The microbial contaminants most likely originated from the service water, infiltrated the low permeability rock through and accumulated within mining-induced fractures where they survived for several days before being mined. Combined PLFA and terminal restriction fragment length profile (T-RFLP) analyses suggest that the maximum concentration of indigenous microorganisms in the Carbon Leader was < 10(2) cells g(-1). PLFA, 35S autoradiography and enrichments suggest that the adjacent quartzite was less contaminated and contained approximately 10(3) cells gram(-1) of thermophilic, sulphate reducing bacteria, SRB, some of which are delta-Proteobacteria. Pore water and rock geochemical analyses suggest that these SRB's may have been sustained by sulphate diffusing from the adjacent U-rich, Carbon Leader where it was formed by radiolysis of sulphide.  相似文献   

14.
To investigate the potential role of microbial community composition in soil carbon and nitrogen cycling, we transplanted soil cores between a grassland and a conifer ecosystem in the Sierra Nevada California and measured soil process rates (N-mineralization, nitrous oxide and carbondioxide flux, nitrification potential), soil water and temperature, and microbial community parameters (PLFA and substrate utilization profiles) over a 2 year period. Our goal was to assess whether microbial community composition could be related to soil process rates independent of soil temperature and water content. We performed multiple regression analyses using microbial community parameters and soil water and temperature as X-variables and soil process rates and inorganic N concentrations as Y-variables. We found that field soil temperature had the strongest relationship with CO2 production and soil NH4+ concentration, while microbial community characteristics correlated with N2O production, nitrification potential, gross N-mineralization, and soil NO3 concentration, independent of environmentalcontrollers. We observed a relationship between specific components of the microbial community (as determined by PLFA) and soil processes,particularly processes tightly linked to microbial phylogeny (e.g. nitrification). The most apparent change in microbial community composition in response to the 2 year transplant was a change in relative abundance of fungi (there was only one significant change in PLFA biomarkers for bacteria during 2 years). The relationship between microbial community composition and soil processes suggests that prediction of ecosystem response to environmental change may be improved by recognizing and accounting for changes in microbial community composition and physiological ecology.  相似文献   

15.
Soil microorganisms mediate many critical ecosystem processes. Little is known, however, about the factors that determine soil microbial community composition, and whether microbial community composition influences process rates. Here, we investigated whether aboveground plant diversity affects soil microbial community composition, and whether differences in microbial communities in turn affect ecosystem process rates. Using an experimental system at La Selva Biological Station, Costa Rica, we found that plant diversity (plots contained 1, 3, 5, or > 25 plant species) had a significant effect on microbial community composition (as determined by phospholipid fatty acid analysis). The different microbial communities had significantly different respiration responses to 24 labile carbon compounds. We then tested whether these differences in microbial composition and catabolic capabilities were indicative of the ability of distinct microbial communities to decompose different types of litter in a fully factorial laboratory litter transplant experiment. Both microbial biomass and microbial community composition appeared to play a role in litter decomposition rates. Our work suggests, however, that the more important mechanism through which changes in plant diversity affect soil microbial communities and their carbon cycling activities may be through alterations in their abundance rather than their community composition.  相似文献   

16.
The influence of chromium on the microbial community structure was analyzed in a river system subjected to long-term chromium contamination, by plating and by sequencing 16S rRNA genes cloned from DNA extracted from the river sediments. We also analyzed the influence of chromium on the ability of the microbial community to resist and reduce Cr(VI) and on its resistance to antibiotics. Shifts in the microbial community structure were analyzed by amplified ribosomal DNA restriction analysis fingerprinting. The isolates obtained were phylogenetically related to Actinobacteria, Firmicutes, Bacteroidetes and Proteobacteria, whereas Acidobacteria and Deltaproteobacteria were only revealed by clone analyses. Cr(VI)-resistant and Cr(VI)-reducing strains were isolated in all sites examined. However, each sample site had a microbial community with a different antibiotic resistance pattern. Our study seems to indicate that in this river ecosystem chromium influenced the microbial communities, altering some of their functional characteristics, such as the percentage of the microbial community able to resist or to reduce Cr(VI) and the phylogenetic groups isolated, but it did not affect the structural diversity. Furthermore, the concentration of Cr(VI) in the sediments could not be correlated with a lower number of bacteria or lower index of generic diversity, neither with the ability of the microbial community to resist or to reduce higher Cr(VI) concentrations.  相似文献   

17.
A nucleic acid-based method was evaluated in the course of a study of microbial community structure in the cricket hindgut. Genomic DNA was extracted from the hindgut microbial community of Acheta domesticus and used as a template in the polymerase chain reaction (PCR) method, using primers that align to well conserved regions of the 16S rRNA gene. The rDNA-PCR product was used as a community probe to generate restriction fragment length polymorphisms (RFLPs) of hindgut bacterial isolates and gut microbial communities of insects fed different diets. Fingerprints of the bacterial isolates consisted of several bands suggesting multiple rRNA operons. In contrast with soil communities, hindgut community RFLP contained distinguishable band patterns. However, community rDNA fingerprints were complex and varied among insects fed similar diets, suggesting considerable intrinsic variability in the hindgut microbial community structure between crickets regardless of dietary regime. These results suggest that community RFLP methods using broad-specific phylogenetic probes do not have the resolution or specificity required to ascertain the effect of diet on the cricket hindgut microbial community structure.  相似文献   

18.
How diversity influences the stability of a community function is a major question in ecology. However, only limited empirical investigations of the diversity–stability relationship in soil microbial communities have been undertaken, despite the fundamental role of microbial communities in driving carbon and nutrient cycling in terrestrial ecosystems. In this study, we conducted a microcosm experiment to investigate the relationship between microbial diversity and stability of soil decomposition activities against changes in decomposition substrate quality by manipulating microbial community using selective biocides. We found that soil respiration rates and degradation enzyme activities by a coexisting fungal and bacterial community (a taxonomically diverse community) are more stable against changes in substrate quality (plant leaf materials) than those of a fungi-dominated or a bacteria-dominated community (less diverse community). Flexible changes in the microbial community composition and/or physiological state in the coexisting community against changes in substrate quality, as inferred by the soil lipid profile, may be the mechanism underlying this positive diversity–stability relationship. Our experiment demonstrated that the previously found positive diversity–stability relationship could also be valid in the soil microbial community. Our results also imply that the functional/taxonomic diversity and community ecology of soil microbes should be incorporated into the context of climate–ecosystem feedbacks. Changes in substrate quality, which could be induced by climate change, have impacts on decomposition process and carbon dioxide emission from soils, but such impacts may be attenuated by the functional diversity of soil microbial communities.  相似文献   

19.
Aboriginal and experimental (constructed of pure microbial cultures) communities of acidophilic chemolithotrophs have been studied. The oxidation of elemental sulfur, sodium thiosulfate, and potassium tetrathionate as sole sources of energy has been monitored. The oxidation rate of the experimental community is higher as compared to the aboriginal community isolated from a flotation concentrate of pyrrhotine-containing pyrite-arsenopyrite gold-arsenic sulfide ore. The degree of oxidation of the mentioned S substrates amounts to 17.91, 68.30, and 93.94% for the experimental microbial community and to 10.71, 56.03, and 79.50% for the aboriginal community, respectively. The degree of oxidation of sulfur sulfide forms in the ore flotation concentrate is 59.15% by the aboriginal microbial community and 49.40% by the experimental microbial community. Despite a higher rate of oxidation of S substrates as a sole source of energy by the experimental microbial community, the aboriginal community oxidizes S substrates at a higher rate in the flotation concentrate of pyrrhotine-containing pyrite-arsenopyrite gold-arsenic sulfide ore, from which it was isolated. Bacterial-chemical oxidation of the flotation concentrate by the aboriginal microbial community allows for the extraction of an additional 32.3% of gold from sulfide minerals, which is by 5.7% larger compared to the yield obtained by the experimental microbial community.  相似文献   

20.
Sessile invertebrate coelobite communities attached to the walls and roof of cavities in coralgal reefs on the annular rim of the Bermuda platform near North Rock (4 sites) and in the algal cup reef tract on the south shore (3 sites) have been studied by belt photo-transects and direct sampling. Irradiance measurements reveal a light gradient which appears to exert a strong influence on the composition, relative coverage and zonation of the attached biotic communities. Two main communities are recognised from cluster analysis and relative areal coverage data. Near the cavity entrances is a community dominated by crustose coralline algae, with subsidiary ascidians, demosponges, bryozoans and Foraminifera. Species richness is high and there is total biotic coverage of walls and roof. This community grades laterally into an exclusively animal community characterised by encrusting sponges and Foraminifera, with subsidiary bryozoans and unidentified branching organisms. Coverage varies from 100% to 30%, the substrate often exhibiting high micro-relief from the branching growth forms of the Foraminifera. Species richness is high at North Rock sites, less so on the south shore. The distribution of coelobite species is compared with that described from previous studies in Bermuda, Grand Cayman and Madagascar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号