首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Four ErbB receptors and multiple growth factors sharing an epidermal growth factor (EGF) motif underlie transmembrane signaling by the ErbB family in development and cancer. Unlike other ErbB proteins, ErbB-2 binds no known EGF-like ligand. To address the existence of a direct ligand for ErbB-2, we applied algorithms based on genomic and cDNA structures to search sequence data bases. These searches reidentified all known EGF-like growth factors including Epigen (EPG), the least characterized ligand, but failed to identify novel factors. The precursor of EPG is a widely expressed transmembrane glycoprotein that undergoes cleavage at two sites to release a soluble EGF-like domain. A recombinant EPG cannot stimulate cells singly expressing ErbB-2, but it acts as a mitogen for cells expressing ErbB-1 and co-expressing ErbB-2 in combination with the other ErbBs. Interestingly, soluble EPG is more mitogenic than EGF, although its binding affinity is 100-fold lower. Our results attribute the anomalous mitogenic power of EPG to evasion of receptor-mediated depletion of ligand molecules, as well as to inefficient receptor ubiquitylation and down-regulation. In conclusion, EPG might represent the last EGF-like growth factor and define a category of low affinity ligands, whose bioactivity differs from the more extensively studied high affinity ligands.  相似文献   

2.
Epidermal growth factor (EGF) and transforming growth factor (TGF)-alpha are potent activators of the ErbB-1 receptor, but, unlike TGF-alpha, EGF is also a weak activator of ErbB-2/ErbB-3 heterodimers. To understand the specificity of EGF-like growth factors for binding to distinct ErbB members, we used EGF/TGF-alpha chimeras to examine the requirements for ErbB-2/ErbB-3 activation. Here we show that in contrast to these two wild-type ligands, distinct EGF/TGF-alpha chimeras are potent activators of ErbB-2/ErbB-3 heterodimers. On the basis of differences in the potency of these various chimeras, specific residues in the linear N-terminal region and the so-called B-loop of these ligands were identified to be involved in interaction with ErbB-2/ErbB-3. A chimera consisting of human EGF sequences with the linear N-terminal region of human TGF-alpha was found to be almost as potent as the natural ligand neuregulin (NRG)-1beta in activating 32D cells expressing ErbB-2/ErbB-3 and human breast cancer cells. Binding studies revealed that this chimera, designated T1E, has high affinity for ErbB-2/ErbB-3 heterodimers, but not for ErbB-3 alone. Subsequent exchange studies revealed that introduction of both His2 and Phe3 into the linear N-terminal region was already sufficient to make EGF a potent activator of ErbB-2/ErbB-3 heterodimers, indicating that these two amino acids contribute positively to this receptor binding. Analysis of the B-loop revealed that Leu26 in EGF facilitates interaction with ErbB-2/ErbB-3 heterodimers, while the equivalent Glu residue in TGF-alpha impairs binding. Since all EGF/TGF-alpha chimeras tested have maintained high binding affinity for ErbB-1, it is concluded that the diversity of the ErbB signaling network is determined by specific amino acids that facilitate binding to one receptor member, in addition to residues that impede binding to other ErbB family members.  相似文献   

3.
Epidermal growth factor (EGF) binds with high affinity to the EGF receptor, also known as ErbB-1, but upon replacement of the N-terminal linear region by neuregulin (NRG) 1 or transforming growth factor (TGF) alpha sequences it gains in addition high affinity for ErbB-2/ErbB-3 heterodimers. However, these chimeras weakly bind to ErbB-3 alone. To further dissect the ligand binding selectivity of the ErbB network, we have applied the phage display technique to examine the role of the linear N-terminal region in EGF for interaction with ErbB-2/ErbB-3 heterodimers. A library of EGF variants was constructed in which residues 2, 3, and 4 were randomly mutated, followed by selection for binding to intact MDA-MB-453 cells that overexpress ErbB-2 and ErbB-3 but lack ErbB-1. Analysis of the selected phage EGF variants revealed clones with high binding affinity to ErbB-2/ErbB-3 while maintaining high affinity to ErbB-1. In these variants, Trp (or alternatively His) was almost exclusively present at position 2, while specific combinations of hydrophobic, basic, and small residues were found at positions 3 and 4. The mitogenic activity of the phage EGF variants corresponded with their relative binding affinity. Two of the selected EGF variants, EGF/WVS and EGF/WRS, were further characterized as recombinant proteins. In contrast to previously characterized chimeras of EGF with NRG-1 or TGF-alpha, these variants did not only show high binding affinity for ErbB-2/ErbB-3 heterodimers but also for ErbB-3 alone. These data show that the linear N-terminal region of EGF-like growth factors is directly involved in binding to ErbB-3.  相似文献   

4.
The family of epidermal growth factor (EGF)-like ligands binds to ErbB receptors in a highly selective manner. Previous studies indicated that both linear regions of the ligand play a major role in determining receptor selectivity, and phage display studies showed that each region could be optimized independently for enhanced affinity. In this study, we broadened the ErbB binding specificity of EGF by introducing the optimal sequence requirements for ErbB3 binding in both the N- and C-terminal linear regions. One such EGF mutant, designated WVR/EGF/IADIQ, gained high affinity for ErbB3 and showed concomitant ErbB3 activation through ErbB2.ErbB3 heterodimers similar to the natural ErbB3 ligand NRG1beta, while the capacity to bind and activate ErbB1 was fully maintained. Despite its high affinity for ErbB1 and ErbB3, this mutant was unable to activate ErbB1.ErbB3 heterodimers, as shown by the cell survival and receptor phosphorylation analysis. We concluded that despite the fact that no naturally occurring ligand exists with this dual-specificity, high-affinity binding to both ErbB1 and ErbB3 is not mutually exclusive. This mutant can be useful in a direct structural comparison of the ligand-binding characteristics of ErbB1 and ErbB3.  相似文献   

5.
Various chimeras of the ErbB1-specific ligands epidermal growth factor (EGF) and transforming growth factor-alpha (TGFalpha) display an enlarged repertoire as activators of ErbB2.ErbB3 heterodimers. Mutational analysis indicated that particularly residues in the N terminus and B-loop region of these ligands are involved in the broadened receptor specificity. In order to understand the receptor specificity of T1E, a chimeric ligand constructed by the introduction of the linear N-terminal region of TGFalpha into EGF, we determined in this study the solution structure and dynamics of T1E by multidimensional NMR analysis. Subsequently, we studied the structural characteristics of T1E binding to both ErbB1 and ErbB3 by superposition modeling of its structure on the known crystal structures of ErbB3 and liganded ErbB1 complexes. The results show that the overall structure of T1E in solution is very similar to that of native EGF and TGFalpha but that its N terminus shows an extended structure that is appropriately positioned to form a triple beta-sheet with the large antiparallel beta-sheet in the B-loop region. This conformational effect of the N terminus together with the large overall flexibility of T1E, as determined by 15N NMR relaxation analysis, may be a facilitative property for its broad receptor specificity. The structural superposition models indicate that hydrophobic and electrostatic interactions of the N terminus and B-loop of T1E are particularly important for its binding to ErbB3.  相似文献   

6.
Epidermal growth factor (EGF) and transforming growth factor-alpha (TGFalpha) are mitogenic hormones that exert their activity primarily by binding to the EGF receptor, also known as ErbB-1. We have recently characterized a set of EGF/TGFalpha chimeric molecules with similar high affinity for ErbB-1 as EGF and TGFalpha and shown that three of these chimeras induce mitogenic cell stimulation at already a 10-fold lower concentration than their wild-type counterparts (Lenferink, A. E., Kramer, R. H., van Vugt, M. J., K?nigswieser, M., DiFiore, P. P., van Zoelen, E. J., and van de Poll, M. L. (1997) Biochem. J. 327, 859-865). In the present study we show that these so-called superagonistic chimeras do not differ from EGF and TGFalpha in their ability to induce ErbB-1 tyrosine phosphorylation but are considerably more potent in activation of mitogen-activated protein kinase phosphorylation. Direct cell binding studies and analysis of ligand-receptor interaction by surface plasmon resonance measurements revealed that both the association rate constant (k(on)) and the dissociation rate constant (k(off)) of these superagonists is 3-5-fold higher in comparison with the wild-type ligands and nonsuperagonistic chimeras. These data indicate that the dynamic on and off rate constants for receptor binding may be more specific parameters for determining the mitogenic activity of peptide hormones than their constants for equilibrium receptor binding.  相似文献   

7.
Epidermal growth factor (EGF) and transforming growth factor α (TGFα) elicit quantitatively different cell proliferation responses even though they act via a common receptor, the epidermal growth factor receptor (EGFR). We hypothesized that differential cellular trafficking of available ligand is responsible for the different mitogenic responses elicited by EGF and TGFα. Mitogenesis and ligand depletion were determined simultaneously in NR6 mouse fibroblasts expressing either wild-type (WT) or internalization-deficient cytoplasmic domain-truncated (c'973) EGFR. Thus we could determine the effects of both ligand-induced and low level constitutive ligand/receptor processing. For a given initial amount of growth factor, TGFα is a weaker stimulus than EGF in cells expressing either form of the EGFR. This difference in the mitogenic potencies correlates with increased depletion of TGFα observed during the growth assays. When this difference in ligand depletion is accounted for, or minimized, EGF and TGFα elicit quantitatively similar growth responses. Therefore, the relative mitogenic potencies of EGF and TGFα depend on ligand availability, as determined by the cellular trafficking of these ligands in conjunction with environmental circumstances. Interestingly, our data demonstrate that TGFα can be a less potent mitogenic stimulus than EGF under conditions where ligand availability is limited. Further, in our assays, differences in ligand processing are sufficient to explain the different mitogenic potencies of these growth factors in either of the receptor trafficking scenarios. Our results suggest a model of regulation of hormone responsiveness which favors dissociative ligands (such as TGFα) in receptor-limited situations and non-dissociative ligands (such as EGF) in the face of high receptor levels. © 1996 Wiley-Liss, Inc.  相似文献   

8.
The Notch signaling pathway plays a key role in a myriad of cellular processes, including cell fate determination. Despite extensive study of the downstream consequences of receptor activation, very little molecular data are available for the initial binding event between the Notch receptor and its ligands. In this study, we have expressed and purified a natively folded wild-type epidermal growth factor-like domain (EGF) 11-14 construct from human Notch-1 and have used flow cytometry and surface plasmon resonance analysis to demonstrate a calcium-dependent interaction with the human ligand Delta-like-1. Site-directed mutagenesis of three of the calcium-binding sites within the Notch-(11-14) fragment indicated that only loss of calcium binding to EGF12, and not EGF11 or EGF13, abrogates ligand binding. Further mapping of the ligand-binding site within this region by limited proteolysis of Notch wild-type and mutant fragments suggested that EGF12 rather than EGF11 contains the major Delta-like-1-binding site. Analysis of an extended fragment EGF-(10-14), where EGF11 is placed in a native context, surprisingly demonstrated a reduction in ligand binding, suggesting that EGF10 modulates binding by limiting access of ligand. This inhibition could be overcome by the introduction of a calcium binding mutation in EGF11, which decouples the EGF-(10-11) module interface. This study therefore demonstrates that long range calcium-dependent structural perturbations can influence the affinity of Notch for its ligand, in the absence of any post-translational modifications.  相似文献   

9.
Epidermal growth factor (EGF)-like growth factors bind their ErbB receptors in a highly selective manner, but the molecular basis for this specificity is poorly understood. We have previously shown that certain residues in human EGF (Ser(2)-Asp(3)) and TGFalpha (Glu(26)) are not essential for their binding to ErbB1 but prevent binding to ErbB3 and ErbB4. In the present study, we have used a phage display approach to affinity-optimize the C-terminal linear region of EGF-like growth factors for binding to each ErbB receptor and thereby shown that Arg(45) in EGF impairs binding to both ErbB3 and ErbB4. By omitting all these so-called negative constraints from EGF, we designed a ligand designated panerbin that binds ErbB1, ErbB3, and ErbB4 with similarly high affinity as their wild-type ligands. Homology models, based on the known crystal structure of TGFalpha-bound ErbB1, showed that panerbin is able to bind ErbB1, ErbB3, and ErbB4 in a highly similar manner with respect to position and number of interaction sites. Upon in silico introduction of the experimentally known negative constraints into panerbin, we found that Arg(45) induced local charge repulsion and Glu(26) induced steric hindrance in a receptor-specific manner, whereas Ser(2)-Asp(3) impaired binding due to a disordered conformation. Furthermore, radiolabeled panerbin was used to quantify the level of all three receptors on human breast cancer cells in a single radioreceptor assay. It is concluded that the ErbB specificity of EGF-like growth factors primarily results from the presence of a limited number of residues that impair the unintended interaction with other ErbB receptors.  相似文献   

10.
The epidermal growth factor (EGF) receptor is a member of the ErbB family of receptors that also includes ErbB2, ErbB3, and ErbB4. These receptors form homo- and heterodimers in response to ligand with ErbB2 being the preferred dimerization partner. Here we use (125)I-EGF binding to quantitate the interaction of the EGF receptor with ErbB2. We show that the EGFR/ErbB2 heterodimer binds EGF with a 7-fold higher affinity than the EGFR homodimer. Because it cannot bind a second ligand, the EGFR/ErbB2 heterodimer is not subject to ligand-induced dissociation caused by the negatively cooperative binding of EGF to the second site on the EGFR homodimer. This increases the stability of the heterodimer relative to the homodimer and is associated with enhanced and prolonged EGF receptor autophosphorylation. These effects are independent of the kinase activity of ErbB2 but require back-to-back dimerization of the EGF receptor with ErbB2. Back-to-back dimerization is also required for phosphorylation of ErbB2. These findings provide a molecular explanation for the apparent preference of the EGF receptor for dimerizing with ErbB2 and suggest that the phosphorylation of ErbB2 occurs largely in the context of the EGFR/ErbB2 heterodimer, rather than through lateral phosphorylation of isolated ErbB2 subunits.  相似文献   

11.
Notch signaling makes critical contributions to cell fate determination in all metazoan organisms, yet remarkably little is known about the binding affinity of the four mammalian Notch receptors for their three Delta-like and two Jagged family ligands. Here, we utilized signaling assays and biochemical studies of purified recombinant ligand and receptor molecules to investigate the differences in signaling behavior and intrinsic affinity between Notch1-Dll1 and Notch1-Dll4 complexes. Systematic deletion mutagenesis of the human Notch1 ectodomain revealed that epidermal growth factor (EGF) repeats 6–15 are sufficient to maintain signaling in a reporter assay at levels comparable with the full-length receptor, and identified important contributions from EGF repeats 8–10 in conveying an activating signal in response to either Dll1 or Dll4. Truncation studies of the Dll1 and Dll4 ectodomains showed that the MNNL-EGF3 region was both necessary and sufficient for full activation. Plate-based and cell binding assays revealed a specific, calcium-dependent interaction between cell-surface and recombinant Notch receptors and ligand molecules. Finally, direct measurement of the binding affinity of Notch1 EGF repeats 6–15 for Dll1 and Dll4 revealed that Dll4 binds with at least an order of magnitude higher affinity than Dll1. Together, these studies give new insights into the features of ligand recognition by Notch1, and highlight how intrinsic differences in the biochemical behavior of receptor-ligand complexes can influence receptor-mediated responses of developmental signaling pathways.  相似文献   

12.
hMena and the epithelial specific isoform hMena(11a) are actin cytoskeleton regulatory proteins belonging to the Ena/VASP family. EGF treatment of breast cancer cell lines upregulates hMena/hMena(11a) expression and phosphorylates hMena(11a), suggesting cross-talk between the ErbB receptor family and hMena/hMena(11a) in breast cancer. The aim of this study was to determine whether the hMena/hMena(11a) overexpression cooperates with HER-2 signalling, thereby affecting the HER2 mitogenic activity in breast cancer. In a cohort of breast cancer tissue samples a significant correlation among hMena, HER2 overexpression, the proliferation index (high Ki67), and phosphorylated MAPK and AKT was found and among the molecular subtypes the highest frequency of hMena overexpressing tumors was found in the HER2 subtype. From a clinical viewpoint, concomitant overexpression of HER2 and hMena identifies a subgroup of breast cancer patients showing the worst prognosis, indicating that hMena overexpression adds prognostic information to HER2 overexpressing tumors. To identify a functional link between HER2 and hMena, we show here that HER2 transfection in MCF7 cells increased hMena/hMena(11a) expression and hMena(11a) phosphorylation. On the other hand, hMena/hMena(11a) knock-down reduced HER3, AKT and p44/42 MAPK phosphorylation and inhibited the EGF and NRG1-dependent HER2 phosphorylation and cell proliferation. Of functional significance, hMena/hMena(11a) knock-down reduced the mitogenic activity of EGF and NRG1. Collectively these data provide new insights into the relevance of hMena and hMena(11a) as downstream effectors of the ErbB receptor family which may represent a novel prognostic indicator in breast cancer progression, helping to stratify patients.  相似文献   

13.
Betacellulin (BTC) is one of the members of the epidermal growth factor (EGF) ligand family of ErbB receptor tyrosine kinases. It is a differentiation factor as well as a potent mitogen. BTC promotes the differentiation of pancreatic acinar-derived AR42J cells into insulin-producing cells. It independently and preferentially binds to two type I tyrosine kinase receptors, the EGF receptor (ErbB1) and ErbB4. However, the physiochemical characteristics of BTC that are responsible for its preferential binding to these two receptors have not been fully defined. In this study, to investigate the essential amino acid residues of BTC for binding to the two receptors, we introduced point mutations into the EGF domain of BTC employing error-prone PCR. The receptor binding abilities of 190 mutants expressed in Escherichia coli were assessed by enzyme immunoassay. Replacement of the glutamic acid residue at position 88 with a lysine residue in BTC was found to produce a significant loss of affinity for binding to ErbB1, while the affinity of binding to ErbB4 was unchanged. In addition, the mutant of BTC-E/88/K showed less growth-promoting activity on BALB/c 3T3 cells compared with that of the wild-type BTC protein. Interestingly, the BTC mutant protein promoted differentiation of pancreatic acinar AR42J cells at a high frequency into insulin-producing cells compared with AR42J cells that were treated with wild-type BTC protein. These results indicate the possibility of designing BTC mutants, which have an activity of inducing differentiation only, without facilitating growth promotion.  相似文献   

14.
A fundamental aspect of epithelial homeostasis is the dependence on specific growth factors for cell survival, yet the underlying mechanisms remain obscure. We found an "inverse" mode of receptor tyrosine kinase signaling that directly links ErbB receptor inactivation to the induction of apoptosis. Upon ligand deprivation Mig6 dissociates from the ErbB receptor and binds to and activates the tyrosine kinase c-Abl to trigger p73-dependent apoptosis in mammary epithelial cells. Deletion of Errfi1 (encoding Mig6) and inhibition or RNAi silencing of c-Abl causes impaired apoptosis and luminal filling of mammary ducts. Mig6 activates c-Abl by binding to the kinase domain, which is prevented in the presence of epidermal growth factor (EGF) by Src family kinase-mediated phosphorylation on c-Abl-Tyr488. These results reveal a receptor-proximal switch mechanism by which Mig6 actively senses EGF deprivation to directly activate proapoptotic c-Abl. Our findings challenge the common belief that deprivation of growth factors induces apoptosis passively by lack of mitogenic signaling.  相似文献   

15.
The antiproliferative effects of gamma-tocotrienol are associated with suppression in epidermal growth factor (EGF)-dependent phosphatidylinositol-3-kinase (PI3K)/PI3K-dependent kinase-1 (PDK-1)/Akt mitogenic signalling in neoplastic mammary epithelial cells. Studies were conducted to investigate the direct effects of gamma-tocotrienol treatment on specific components within the PI3K/PDK-1/Akt mitogenic pathway. +SA cells were grown in culture and maintained in serum-free media containing 10 ng/ml EGF as a mitogen. Treatment with 0-8 microm gamma-tocotrienol resulted in a dose-responsive decrease in the +SA cell growth and a corresponding decrease in phospho-Akt (active) levels. However, gamma-tocotrienol treatment had no direct inhibitory effect on Akt or PI3K enzymatic activity, suggesting that the inhibitory effects of gamma-tocotrienol occur upstream of PI3K, possibly at the level of the EGF-receptor (ErbB1). Additional studies were conducted to determine the effects of gamma-tocotrienol on ErbB receptor activation. Results showed that gamma-tocotrienol treatment had little or no effect on ErbB1 or ErbB2 receptor tyrosine phosphorylation, a prerequisite for substrate interaction and signal transduction, but did cause a significant and progressive decrease in the ErbB3 tyrosine phosphorylation. Because ErbB1 or ErbB2 receptors form heterodimers with the ErbB3 receptor, and ErbB3 heterodimers have been shown to be the most potent activators of PI3K, these findings strongly suggest that the antiproliferative effects of gamma-tocotrienol in neoplastic +SA mouse mammary epithelial cells are mediated by a suppression in ErbB3-receptor tyrosine phosphorylation and subsequent reduction in PI3K/PDK-1/Akt mitogenic signalling.  相似文献   

16.
The epidermal growth factor receptor (EGFR) mediates the actions of a family of bioactive peptides that include epidermal growth factor (EGF) and amphiregulin (AR). Here we have studied AR and EGF mitogenic signaling in EGFR-devoid NR6 fibroblasts that ectopically express either wild type EGFR (WT) or a truncated EGFR that lacks the three major sites of autophosphorylation (c'1000). COOH-terminal truncation of the EGFR significantly impairs the ability of AR to (i) stimulate DNA synthesis, (ii) elicit Elk-1 transactivation, and (iii) generate sustained enzymatic activation of mitogen-activated protein kinase. EGFR truncation had no significant effect on AR binding to receptor but did result in defective GRB2 adaptor function. In contrast, EGFR truncation did not impair EGF mitogenic signaling, and in c'1000 cells EGF was able to stimulate the association of ErbB2 with GRB2 and SHC. Elk-1 transactivation was monitored when either ErbB2 or a truncated dominant-negative ErbB2 mutant (ErbB2-(1-813)) was overexpressed in cells. Overexpression of full-length ErbB2 resulted in a strong constitutive transactivation of Elk-1 in c'1000 but only slightly stimulated Elk-1 in WT or parental NR6 cells. Conversely, overexpression of ErbB2-(1-813) inhibited EGF-stimulated Elk-1 transactivation in c'1000 but not in WT cells. Thus, the cytoplasmic tail of the EGFR plays a critical role in AR mitogenic signaling but is dispensable for EGF, since EGF-activated truncated EGFRs can signal through ErbB2.  相似文献   

17.
We have analyzed ErbB receptor interplay induced by the epidermal growth factor (EGF)-related peptides in cell lines naturally expressing the four ErbB receptors. Down-regulation of cell surface ErbB-1 or ErbB-2 by intracellular expression of specific antibodies has allowed us to delineate the role of these receptors during signaling elicited by: EGF and heparin binding EGF (HB-EGF), ligands of ErbB-1; betacellulin (BTC), a ligand of ErbB-1 and ErbB-4; and neu differentiation factor (NDF), a ligand of ErbB-3 and ErbB-4. Ligand-induced ErbB receptor heterodimerization follows a strict hierarchy and ErbB-2 is the preferred heterodimerization partner of all ErbB proteins. NDF-activated ErbB-3 or ErbB-4 heterodimerize with ErbB-1 only when no ErbB-2 is available. If all ErbB receptors are present, NDF receptors preferentially dimerize with ErbB-2. Furthermore, EGF- and BTC-induced activation of ErbB-3 is impaired in the absence of ErbB-2, suggesting that ErbB-2 has a role in the lateral transmission of signals between other ErbB receptors. Finally, ErbB-1 activated by all EGF-related peptides (EGF, HB-EGF, BTC and NDF) couples to SHC, whereas only ErbB-1 activated by its own ligands associates with and phosphorylates Cbl. These results provide the first biochemical evidence that a given ErbB receptor has distinct signaling properties depending on its dimerization.  相似文献   

18.
Binding specificities and affinities of egf domains for ErbB receptors   总被引:14,自引:0,他引:14  
Jones JT  Akita RW  Sliwkowski MX 《FEBS letters》1999,447(2-3):227-231
ErbB receptor activation is a complex process and is dependent upon the type and number of receptors expressed on a given cell. Previous studies with defined combinations of ErbB receptors expressed in mammalian cells have helped elucidate specific biological responses for many of the recognized gene products that serve as ligands for these receptors. However, no study has examined the binding of these ligands in a defined experimental system. To address this issue, the relative binding affinities of the egf domains of eleven ErbB ligands were measured on six ErbB receptor combinations using a soluble receptor-ligand binding format. The ErbB2/4 heterodimer was shown to bind all ligands tested with moderate to very high affinity. In contrast, ErbB3 showed much more restrictive ligand binding specificity and measurable binding was observed only with heregulin, neuregulin2beta, epiregulin and the synthetic heregulin/egf chimera, biregulin. These studies also revealed that ErbB2 preferentially enhances ligand binding to ErbB3 or ErbB4 and to a lesser degree to ErbB1.  相似文献   

19.
20.
Targeting and down-regulation of ErbB2, a member of EGF receptor family, is regarded as one of the key aspect for cancer treatment because it is often overexpressed in breast and ovarian cancer cells. Although natural ligands for ErbB2 have not been found, unlike other ErbB receptors, EC-1, a 20-amino acid circular peptide, has been shown to bind to ErbB2 as an artificial ligand. Previously we showed EC-1 peptide did not induce the internalization of ErbB2 in SK-BR-3 cells. In this report, we designed divalent and multivalent forms of EC-1 peptide with the Fc portion of the human IgG and bionanocapsule modified with ZZ-tag on its surface to improve the interaction with ErbB2. These forms showed higher affinity to ErbB2 than that of EC-1 monomer. Furthermore, prominent endosomal accumulation of ErbB2 occurred in SK-BR-3 cells when stimulated with EC-Fc ligand multivalently displayed on the surface of the bionanocapsule, whereas SK-BR-3 cells as themselves displayed stringent mechanism against ErbB2 internalization without stimulation. The multivalent form of EC-1 peptide appeared to internalize ErbB2 more efficiently than divalent form did. This internalization was unaffected by the inhibition of clathrin association, but inhibited when the cholesterol was depleted which explained either caveolar or GPI-AP-early endocytic compartment (GEEC) pathway. Because of the lack of caveolin-1 expression, caveolar machinery may be lost in SK-BR-3 cell line. Therefore, it is suggested that the multivalent form of EC-1 induces the internalization of ErbB2 through the GEEC pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号