首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tobacco (Nicotiana tabacum L. var. xanthi) seedlings were treated with aqueous solutions of lead nitrate (Pb2+) at concentrations ranging from 0.4 mM to 2.4 mM for 24 h and from 25 μM to 200 μM for 7 days. The DNA damage measured by the comet assay was high in the root nuclei, but in the leaf nuclei a slight but significant increase in DNA damage could be demonstrated only after a 7-day treatment with 200 μM Pb2+. In tobacco plants growing for 6 weeks in soil polluted with Pb2+ severe toxic effects, expressed by the decrease in leaf area, and a slight but significant increase in DNA damage were observed. The tobacco plants with increased levels of DNA damage were severely injured and showed stunted growth, distorted leaves and brown root tips. The frequency of somatic mutations in tobacco plants growing in the Pb2+-polluted soil did not significantly increase. Analytical studies by inductively coupled plasma optical emission spectrometry demonstrate that after a 24-h treatment of tobacco with 2.4 mM Pb2+, the accumulation of the heavy metal is 40-fold higher in the roots than in the above-ground biomass. Low Pb2+ accumulation in the above-ground parts may explain the lower levels or the absence of Pb2+-induced DNA damage in leaves.  相似文献   

2.
In the present study, the effect of copper (Cu2+) and lead (Pb2+) ions on the growth and lipid composition of various parts of the fern, Matteuccia sthruthiopteris, was examined. Plants were incubated in the presence or absence of 1, 10, 100 μM of Cu(NO3)2 or Pb(NO3)2. Cu2+ and Pb2+ ions at concentrations of 1 and 10 μM caused an increased growth of the roots and leaves. A higher concentration of Pb2+ did not show any effect on growth, whereas that of Cu2+ slowed down the growth of the whole plants. The roots accumulated more than 700 μg of Cu2+ and 400 μg of Pb2+ per 1 g dry weight when the plants were incubated with the higher concentrations of metals, whereas in the leaves the concentration of Cu2+ was much lower and did not exceed 12 μg/g dry weight. No accumulation of Pb2+ ions by leaves was detected. The lipid composition of photosynthetic leave tissues was shown to be affected by the presence of metal ions in the root medium at either concentration studied. Various changes in lipid classes were noted as responsive reactions of M. sthruthiopteris to the heavy metal ions in nutrient medium. Cu2+ ions decreased the content of total lipids, total phospholipids, and individual phosphatidylcholines and phosphatidylethanolamines, whereas Pb2+ ions caused a decrease in the content of total lipids and glycolipids. Changes in the lipid composition were more pronounced in the mature leaves than in the scrolls of the studied fern.  相似文献   

3.
Prokaryotic enzymes formamidopyrimidine-DNA glycosylase (Fpg) and endonuclease VIII (Nei) and their eukaryotic homologs NEIL1, NEIL2, and NEIL3 define the Fpg family of DNA glycosylases, which initiate the process of repair of oxidized DNA bases. The repair of oxidative DNA lesions is known to be impaired in vivo in the presence of ions of some heavy metals. We have studied the effect of salts of several alkaline earth and transition metals on the activity of Fpg-family DNA glycosylases in the reaction of excision of 5,6-dihydrouracil, a typical DNA oxidation product. The reaction catalyzed by NEIL1 was characterized by values K m = 150 nM and k cat = 1.2 min−1, which were in the range of these constants for excision of other damaged bases by this enzyme. NEIL1 was inhibited by Al3+, Ni2+, Co2+, Cd2+, Cu2+, Zn2+, and Fe2+ in Tris-HCl buffer and by Cd2+, Zn2+, Cu2+, and Fe2+ in potassium phosphate buffer. Fpg and Nei, the prokaryotic homologs of NEIL1, were inhibited by the same metal ions as NEIL1. The values of I50 for NEIL1 inhibition were 7 μM for Cd2+, 16 μM for Zn2+, and 400 μM for Cu2+. The inhibition of NEIL1 by Cd2+, Zn2+, and Cu2+ was at least partly due to the formation of metal-DNA complexes. In the case of Cd2+ and Cu2+, which preferentially bind to DNA bases rather than phosphates, the presence of metal ions caused the enzyme to lose the ability for preferential binding to damaged DNA. Therefore, the inhibition of NEIL1 activity in removal of oxidative lesions by heavy metal ions may be a reason for their comutagenicity under oxidative stress.  相似文献   

4.
Phytochelatins (PCs) are metal binding peptides involved in heavy metal detoxification. To assess whether enhanced phytochelatin synthesis would increase heavy metal tolerance and accumulation in plants, we overexpressed the Arabidopsis phytochelatin synthase gene (AtPCS1) in the non-accumulator plant Nicotiana tabacum. Wild-type plants and plants harbouring the Agrobacterium rhizogenes rolB oncogene were transformed with a 35S AtPCS1 construct. Root cultures from rolB plants could be easily established and we demonstrated here that they represent a reliable system to study heavy metal tolerance. Cd2+ tolerance in cultured rolB roots was increased as a result of overexpression of AtPCS1, and further enhanced when reduced glutathione (GSH, the substrate of PCS1) was added to the culture medium. Accordingly, HPLC analysis showed that total PC production in PCS1-overexpressing rolB roots was higher than in rolB roots in the presence of GSH. Overexpression of AtPCS1 in whole seedlings led to a twofold increase in Cd2+ accumulation in the roots and shoots of both rolB and wild-type seedlings. Similarly, a significant increase in Cd2+ accumulation linked to a higher production of PCs in both roots and shoots was observed in adult plants. However, the percentage of Cd2+ translocated to the shoots of seedlings and adult overexpressing plants was unaffected. We conclude that the increase in Cd2+ tolerance and accumulation of PCS1 overexpressing plants is directly related to the availability of GSH, while overexpression of phytochelatin synthase does not enhance long distance root-to-shoot Cd2+ transport.  相似文献   

5.
Industrial wastewaters contain various heavy metal components and therefore threaten aquatic bodies. Heavy metals can be adsorbed by living or non‐living biomass. Submerged aquatic plants can be used for the removal of heavy metals. This paper exhibits the comparison of the adsorption properties of two aquatic plants Myriophyllum spicatum and Ceratophyllum demersum for lead, zinc, and copper. The data obtained from batch studies conformed well to the Langmuir Model. Maximum adsorption capacities (qmax) were obtained for both plant species and each metal. The maximum adsorption capacities (qmax) achieved with M. spicatum were 10.37 mg/g for Cu2+, and 15.59 mg/g for Zn2+ as well as 46.49 mg/g for Pb2+ and with C. demersum they were 6.17 mg/g for Cu2+, 13.98 mg/g for Zn2+ and 44.8 mg/g for Pb2+. It was found that M. spicatum has a better adsorption capacity than C. demersum for each metal tested. Gibbs free energy and the specific surface area based on the qmax values were also determined for each metal.  相似文献   

6.
该研究以山茶属金花茶组的金花茶、凹脉金花茶和崇左金花茶为材料,利用超高效液相色谱-四极杆-飞行时间质谱联用技术定性定量分析其花朵中类黄酮成分与含量。结果表明:三种植物中检测到15种类黄酮,其中天竺葵素-3-O-葡萄糖苷、木犀草素、木犀草素-7-O-芸香糖苷、槲皮素-3,7-O-二葡萄糖苷、芸香柚皮苷、圣草素和染料木苷为金花茶组首次发现;槲皮素-3-O-葡萄糖苷、槲皮素-7-O-葡萄糖苷、槲皮素-3-O-芸香糖苷和山萘酚-3-O-葡萄糖苷为凹脉金花茶和崇左金花茶中首次发现。儿茶素、表儿茶素、槲皮素-3-O-葡萄糖苷、槲皮素-7-O-葡萄糖苷、槲皮素-3-O-芸香糖苷和山萘酚-3-O-葡萄糖苷为三个物种主体成分;天竺葵素-3-O-葡萄糖苷为金花茶特有,槲皮素-3,7-O-二葡萄糖苷为崇左金花茶特有;木犀草素-7-O-芸香糖苷主要存在于金花茶和崇左金花茶;木犀草素主要存在于凹脉金花茶和崇左金花茶。类黄酮类型主要为儿茶素类、槲皮素类、木犀草素类和山萘酚类;崇左金花茶中槲皮素类、木犀草素类及类黄酮总量远高于金花茶和凹脉金花茶,凹脉金花茶和崇左金花茶儿茶素类高于金花茶,金花茶和崇左金花茶山萘酚类高于凹脉金花茶。  相似文献   

7.
Effects of heavy metals on pollen tube growth and ultrastructure   总被引:3,自引:0,他引:3  
T. Sawidis  H. -D. Reiss 《Protoplasma》1995,185(3-4):113-122
Summary The influence of different concentrations of the heavy metals cadmium (Cd2+), cobalt (Co2+), copper (Cu2+), iron (Fe2+ and Fe3+), mercury (Hg2+), manganese (Mn2+), and zinc (Zn2+), plus aluminium (Al3+) (a toxic metal in polluted areas), on pollen germination and tube growth ofLilium longiflorum was investigated using light microscopy. Effects could be observed with 3 M and 100 M of heavy metal, added as chloride salts to the medium. Cd2+, Cu2+, and Hg2+, showed the greatest toxicity, whereas germination and growth rate was less affected by Mn2+. Affected tubes showed swelling of the tip region. Tubes treated with Cd2+, Co2+, Fe2+, Fe3+, Hg2+, and Mn2+ were also prepared for ultrastructural studies. In all cases, the main effect was abnormal cell wall organization, mostly at the tip, where round, fibrillar aggregates, the shape and size of secretory Golgi vesicles were formed. They built up a loose network which could be up to 10 m thick compared to untreated tubes where the cell wall was composed of thin layers of long fibrils and about 100 nm thick. Cd2+ was the only metal which produced effects at the intracellular level: organelle distribution within the tip region appeared disorganized. A general mechanism of heavy metal action on pollen tube growth is discussed.  相似文献   

8.
Plants of Indian mustard (Brassica juncea) were treated with either 50 μM Cd, 250 μM Zn, or 25 μM Cd+125 μM Zn and the progression of chlorosis in the mature leaves monitored. As relative chlorophyll (Chl) contents in the mature leaves decreased to 75, 50, and 25 % relative to controls, both mature and young leaves were harvested and the Chl pools extracted. The metal treatments caused a greater loss of Chl b than Chl a. As mature leaves underwent progressive chlorosis, the young leaves displayed a characteristic over-greening, due largely to increased content of Chl b. However, as the young leaves began to experience chlorosis, a greater loss of Chl b was also observed. Thus during metal induced chlorosis, there is a preferential turnover of the Chl b pool in mature and young leaves.  相似文献   

9.
[目的] 为探究重金属对淡水绿藻生长的影响。[方法] 选取对水质检测具有明显指示作用的普通小球藻(Chlorella vulgaris)为实验材料,CdCl2·2H2O和CrCl3·7H2O提供重金属离子,探究不同浓度Cr3+和Cd2+在单一和复合胁迫下对藻细胞浓度、叶绿素a及相关抗氧化酶活性的影响。[结果] 随着Cr3+和Cd2+浓度不断增加,藻细胞浓度呈先增长后下降趋势;叶绿素a含量呈现先下降后升高再下降的现象,浓度为1 mg/L的单一和复合胁迫下有最大值,且毒性作用表现为Cr3+ < Cd2+ < Cr3++Cd2+;与藻细胞膜相关的丙二醛(MDA)和过氧化氢(H2O2)含量随着重金属离子浓度的增大而增长;重金属离子浓度低于10 mg/L时对藻细胞内抗氧化酶系统中的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)表现为促进作用,而大于10 mg/L时具有抑制作用。[结论] 结果表明在单一或复合重金属胁迫下,普通小球藻会充分调动与抗逆性相关的酶来维持自身的正常生长。  相似文献   

10.
Cohen CK  Garvin DF  Kochian LV 《Planta》2004,218(5):784-792
Fe uptake in dicotyledonous plants is mediated by a root plasma membrane-bound ferric reductase that reduces extracellular Fe(III)-chelates, releasing Fe2+ ions, which are then absorbed via a metal ion transporter. We previously showed that Fe deficiency induces an increased capacity to absorb Fe and other micronutrient and heavy metals such as Zn2+ and Cd2+ into pea (Pisum sativum L.) roots [Cohen et al. (1998) Plant Physiol 116:1063–1072). To investigate the molecular basis for this phenomenon, an Fe-regulated transporter that is a homologue of the Arabidopsis IRT1 micronutrient transporter was isolated from pea seedlings. This cDNA clone, designated RIT1 for root iron transporter, encodes a 348 amino acid polypeptide with eight putative membrane-spanning domains that is induced under Fe deficiency and can functionally complement yeast mutants defective in high- and low-affinity Fe transport. Chelate buffer techniques were used to control Fe2+ in the uptake solution at nanomolar activities representative of those found in the rhizosphere, and radiotracer methodologies were employed to show that RIT1 is a very high-affinity 59Fe2+ uptake system (K m =54–93 nM). Additionally, radiotracer (65Zn, 109Cd) flux techniques were used to show that RIT can also mediate a lower affinity Zn and Cd influx (K m of 4 and 100 M, for Zn2+ and Cd2+, respectively). These findings suggest that, in typical agricultural soils, RIT1 functions primarily as a high-affinity Fe2+ transporter that mediates root Fe acquisition. This is consistent with recent findings with Arabidopsis IRT1 knockout mutants that strongly suggest that this transporter plays a key role in root Fe uptake and nutrition. However, the ability of RIT1 to facilitate Zn and Cd uptake when these metals are present at elevated concentrations suggests that RIT1 may be one pathway for the entry of toxic metals into the food chain. Furthermore, the finding that plant Fe deficiency status may promote heavy metal uptake via increased expression of this transporter could have implications both for human nutrition and also for phytoremediation, the use of terrestrial plants to sequester toxic metals from contaminated soil.  相似文献   

11.
A pot-culture experiment was carried out to investigate the effect of arbuscular mycorrhizal (AM) fungus (Glomus macrocarpum Tul. and Tul.) on plant growth and Cd2+uptake by Apium graveolens L. in soil with different levels of Cd2+. Mycorrhizal (M) and non-mycorrhizal (NM) plants were grown in soil with 0, 5, 10, 40 and 80 Cd2+ mg kg−1soil. The infectivity of the fungus was not affected by the presence of Cd2+ in the soil. M plants showed better growth and less Cd2+ toxicity symptoms. Cd2+ root : shoot ratio was higher in M plants than in NM plants. These differences were more evident at highest Cd2+ level (80 mg kg−1 soil). Chlorophyll a and chlorophyll b concentrations were significantly higher in AM-inoculated celery leaves. The dilution effect due to increased biomass, immobilization of Cd2+ in root and enhanced P-uptake in M plants may be related to attenuation of Cd2+toxicity in celery.  相似文献   

12.
Summary 1. The effects of heavy metals (Pb2+, Hg2+, and Zn2+) on synaptic transmission in the identified neural network ofHelix pomatia L. andLymnaea stagnalis L. (Gastropoda, Mollusca) were studied, with investigation of effects on inputs and outputs as wells as on interneuronal connections.2. The sensory input running from the cardiorenal system to the central nervous system and the synaptic connections between central neurons were affected by heavy metals.3. Lead and mercury (10–5–10–3 M) eliminated first the inhibitory, then the excitatory inputs running from the heart to central neurons. At the onset of action lead increased the amplitude of the excitatory postsynaptic potentials, but blockade of sensory information transfer occurred after 10–20 min of treatment.4. The monosynaptic connections between identified interneurons were inhibited by lead and mercury but not by zinc. Motoneurons were found to be less sensitive to heavy metal treatment than interneurons or sensory pathways.5. The treatment with Pb2+ and Hg2+ often elicited pacemaker and bursting-type firing in central neurons, accompanied by disconnection of synaptic pathways, manifested by insensitivity to sensory synaptic influences.6. Zn2+ treatment also sometimes induced pacemaker activity and burst firing but did not cause disconnection of the synaptic transmission between interneurons.7. A network analysis of heavy metal effects can be a useful tool in understanding the connection between their cellular and their behavioral modulatory influences.  相似文献   

13.
Waste biomass Sargassum sp. biosorbed 100% of Cd2+ and 99.4% of Zn2+ from a 3 and 98 mg l–1 solution (pH 4.5), respectively, at the end of four serial experiments. Of the five desorbents studied in consecutive adsorption/desorption cycles, CaCl2 0.05 M eluted nearly 40% of both metals and decreased the biosorption in only 8% and 17% of Cd2+ and Zn2+, respectively. Although NaOH desorbent improved the heavy metal uptake from the second cycle onwards, it did not elute metals from the pre-loaded biomass.  相似文献   

14.
河流、湖泊等水生环境中普遍存在的重金属污染破坏水生生态系统并间接威胁人类健康。为探究重金属胁迫下水生昆虫花翅摇蚊(Chironomus kiiensis)生态毒理,测定了重金属Cd2+和Pb2+胁迫对花翅摇蚊化蛹率和羽化率的影响,检测了摇蚊的口器致畸与富集效应。研究结果表明,Cd2+和Pb2+影响摇蚊幼虫化蛹和羽化过程,单一重金属离子处理14 d Pb2+处理组的化蛹率和羽化率分别为22.22%和8.89%,低于Cd2+的化蛹率(25.56%)和羽化率(11.11%),表现出更强的抑制效应。混合离子1:2和2:1配比处理组化蛹率和羽化率均为11.11%和4.44%,显著低于单一重金属离子胁迫下的化蛹率和羽化率。单一重金属离子及混合离子处理均能导致花翅摇蚊幼虫口器致畸,表现为上颚前齿断裂,中齿和基齿磨损、缺失,下唇板齿部不规则,下唇板边缘齿与中央齿磨损、断裂、增生、缺失。不同重金属离子处理下幼虫口器致畸率不同,并与暴露时间呈正相关,其中1:2配比处理14 d致畸率达到40.61%。重金属离子在摇蚊幼虫体内产生生物富集效应,单一重金属离子处理下的Pb2+富集含量7 d至14 d由11.46 mg/kg上升至31.32 mg/kg,不同配比混合离子处理下Pb2+富集含量均呈增加趋势,其中1:2配比处理组由15.48 mg/kg上升至42.50 mg/kg,而Cd2+在单一重金属与1:1混合离子处理组7 d至14 d的富集含量无显著性变化,2:1配比处理组由14.20 mg/kg下降至9.52 mg/kg,1:2配比由5.85 mg/kg上升至20.99 mg/kg。这些研究结果表明Cd2+和Pb2+胁迫影响花翅摇蚊幼虫生长发育且口器出现畸型,与重金属在幼虫体内的富集密切相关,为研究重金属对水生生态系统多重效应提供了理论依据。  相似文献   

15.
The superoxide anion scavenging capacity of two flavonols (quercetin and kaempferol) and some of their conjugates (quercetin-3-rhamnoglucoside, quercetin-3-sophoroside, quercetin-3-sulphate, quercetin-3-glucuronide, kaempferol-3-sophoroside, kaempferol-3-glucuronide) and of several hydroxycinnamic acids (caffeic acid, ferulic acid, 5-5 diferulic acid, 8-O-4 diferulic acid and 8-8 diferulic acid) were studied. Superoxide anions were generated non-enzymatically in a phenazine methosulphate-NADH system and assayed by reduction of nitro-blue tetrazolium. Among the flavonols examined, the most effective scavengers of superoxide anions were the sophoroside, glucuronide and rhamnoglucoside conjugates. Conversely, quercetin-3-sulphate and the flavonol aglycones, exhibited some pro-oxidant activity at the range of concentrations tested (0.5-10 microM). These results show that conjugation has a marked effect on the scavenging capacity of flavonols and that the type of conjugate at the 3-position determines the final superoxide scavenging capacity. Caffeic acid and ferulic acid showed no effect on the generation of superoxide anions by phenazine methosulphate-NADH. However, dimerization of ferulic acid enhanced the superoxide scavenging capacity of this hydroxycinnamic acid, but this depended on the type of linkage between the monomers. The order, from highest to lowest, of superoxide radical scavenging capacity for the dimers of ferulic acid was: 5-5-diferulic acid > 8-O-4-diferulic acid > 8-8-diferulic acid.  相似文献   

16.
In vitro organogenesis was achieved from callus derived from hypocotyl explants of Cucumis sativus L. cv. Poinsett 76. Calli were induced from hypocotyl explants excised from 7-d-old seedlings grown on Murashige and Skoog (MS) medium containing 87.64 μM sucrose, 0.8 % agar, 3.62 μM 2,4-dichlorophenoxy acetic acid and 2.22 μM 6-benzyladenine (BA). Regeneration of adventitious buds from callus (25 shoots explant−1) was achieved on MS medium supplemented with 8.88 μM BA, 2.5 μM zeatin and 10 % coconut water after two subcultures in the same medium at 30-d interval. Gibberellic acid (1.75 μM) favoured shoot elongation and indole 3-butyric acid (7.36 μM) induced rooting. Rooted plants were hardened and successfully established in soil.  相似文献   

17.
Cunningham OD  Edwards R 《Phytochemistry》2008,69(10):2016-2021
The potential for chemically-regulating the acylation of natural products in whole plants has been determined by treating petunia leaves with phenylpropanoid acyl donors supplied as the respective methyl esters. Treatment with derivatives of the naturally-occurring acylating species caffeic acid resulted in a general increase in flavonol derivatives, notably caffeoylated quercetin-3-O-diglucoside (QDG) and kaempferol-3-O-diglucoside (KDG). Similarly, methyl ferulate increased the content of feruloylated KDG 40-fold. Treatment with methyl coumarate resulted in the appearance of a coumaroylated derivative of quercetin-3-O-glucuronyl-glucoside (QGGA). When the feeding studies were repeated with the equivalent phenylpropanoid isosubstituted with fluorine groups a semi-synthetic 4-fluorocinnamoyl ester of QGGA was observed. Our results demonstrate the potential to regulate the acylation of flavonols and potentially other natural products by treating whole plants with methyl esters of natural and unnatural acyl donors.  相似文献   

18.
沙棘(Hippophae rhamnoides)是重要的雌雄异株人工林防护树种,但对其环境胁迫的性别响应差异研究不足,性别竞争与胁迫因子的交互效应响应特征尚不清楚。为了探讨锰胁迫和性别竞争交互处理下沙棘雌雄植株的生理响应特征和耐受能力,旨在为沙棘修复土壤重金属污染提供实践指导,该文研究了锰胁迫(4 000 mg·kg-1)和3种不同性别组合模式(雌雄、雌雌、雄雄)处理下沙棘的生理响应,分别测定雌雄沙棘叶片中叶绿素、过氧化物酶(peroxidase,POD)、超氧化物歧化酶(superoxide dismutase,SOD)、丙二醛(malondialdehyde,MDA)、总酚(total phenols, TP)、游离脯氨酸(free proline,Pro)、可溶性糖(soluble sugar,SS)、甜菜碱(glycine betaine, GB)以及锰含量。结果表明:(1)锰胁迫下,在所有竞争组合中,性间竞争的雄株(M/FM)SOD活性最高,而MDA含量与对照相比未有明显升高,表明雄株的抗氧化能力更好,膜氧化损伤程度更小。(2)锰胁迫时M/FM积累了更多的游离脯氨酸,表现出更好的渗透调节能力和耐受能力。(3)交互效应分析显示性别互作和锰胁迫交互处理显著影响了沙棘雌雄叶片的光合色素、抗氧化酶活性和渗透调节能力; 主成分分析显示SOD、POD、MDA、叶绿素b(chlorophyll b, Chlb)、SS、Pro可作为重要的生理响应指示参数。该研究结果对于利用沙棘修复土壤重金属污染可提供一定的参考。  相似文献   

19.
N-acyl-l-homoserine lactones (AHLs) are quorum sensing (QS) signal molecules that are commonly used in gram-negative bacteria. Recently, it has become evident that AHLs can influence the behavior of plant cells. However, little is known about the mechanism of the plants’ response to these bacterial signals. Calcium ions (Ca2+), ubiquitous intracellular second messengers, play an essential role in numerous signal transduction pathways in plants. In this study, the cytosolic free Ca2+ concentration ([Ca2+]cyt) was measured by a luminometric method in the excised root cells of Arabidopsis plants that were treated with N-butyryl-homoserine lactone (C4-HSL). There was a transient and immediate increase in [Ca2+]cyt levels, and the highest level (0.4 μM), approximately 2-fold higher than the basal level, was observed at the 6th second after the addition of 10 μM C4-HSL. Pretreatments with La3+, verapamil or ethylene glycol tetraacetic acid (EGTA) inhibited the increase in [Ca2+]cyt caused by C4-HSL, whereas it remained unaffected by pretreatment with Li+, indicating that the Ca2+ contributing to the increase in [Ca2+]cyt was mobilized from the extracellular medium via the plasma membrane Ca2+ channels but not from the intracellular Ca2+ stores. Furthermore, electrophysiological approaches showed that the transmembrane Ca2+ current was significantly increased with the addition of C4-HSL. Taken together, our observations suggest that C4-HSL may act as an elicitor from bacteria to plants and that Ca2+ signaling participates in the ability of plant cells to sense the bacterial QS signals.  相似文献   

20.
The cadmium (Cd2+) and lead (Pb2+)-induced changes in Cu,Zn-SOD gene expression on the level of mRNA accumulation and enzyme activity were analyzed in roots of soybean (Glycine max) seedlings. The Cd2+ caused the induction of copper–zinc superoxide dismutase (Cu,Zn-SOD) mRNA accumulation, at each analyzed metal concentration (5–25 mg/l), whereas in Pb2+-treated roots this effect was observed only at the medium metal concentrations (50–100 mg/l of Pb2+). The analysis of Cu,Zn-SOD activity proved an increase in enzyme activity during Cd2+/Pb2+ stresses, however in Pb2+-treated plants the activity of enzyme was not correlated with respective mRNAs level. Presented data suggest that different metals may act on various level of Cu,Zn-SOD expression in plants exposed to heavy metals stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号