首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2009年A(H1N1)pdm09亚型流感病毒在墨西哥暴发,之后在全世界流行。为了解海南省2016-2018年A(H1N1)pdm09亚型流感病毒流行态势,分析血凝素(HA)与神经氨酸酶(NA)基因遗传进化特征与变异情况,本研究从中国流感监测信息系统获取海南省2016-2018年流感病毒病原学监测数据,选取5家流感监测网络实验室分离鉴定的37株A(H1N1)pdm09亚型流感毒株进行HA与NA基因测序,利用MEGA 10.1.8构建HA与NA基因种系进化树,并分析其氨基酸变异情况。结果显示,2016-2018年共出现3次A(H1N1)pdm09亚型流感病毒活动高峰。2017年10月份以后的分离株(4/8)与2018年大部分分离株(21/22)独立于疫苗株A/Michigan/45/2015聚为一个小支,发生20余处HA与NA氨基酸位点变异。与疫苗株A/California/7/2009(2010-2016)相比,2016-2018年流感病毒分离株在HA基因抗原决定簇上发生7处氨基酸变异并有一个潜在糖基化位点,未发现HA基因受体结合位点变异与NA基因耐药性变异。本研究提示,2016-2018年,A(H1N1)pdm09亚型流感病毒逐步发生规律性进化,氨基酸变异频率有增加趋势,今后应持续加强流感病毒病原学监测,密切追踪A(H1N1)pdm09亚型流感病毒基因变异情况,为科学防控提供理论依据。  相似文献   

2.
The 2009 pandemic H1N1 influenza virus (pdm/09) is typically mildly virulent in mice. In a previous study, we identified four novel swine isolates of pdm/09 viruses that exhibited high lethality in mice. Comparing the consensus sequences of the PB2 subunit of human isolates of pdm/09 viruses with those of the four swine isolate viruses revealed one consensus mutation: T588I. In this study, we determined that 588T is an amino acid mutation conserved in pdm/09 viruses that was exceedingly rare in previous human influenza isolates. To investigate whether the PB2 with the T5581 mutation (PB2-T558I) has an effect on the increased pathogenicity, we rescued a variant containing PB2-588I (Mex_PB2-588I) in the pdm/09 virus, A/Mexico/4486/2009(H1N1), referred to as Mex_WT (where WT is wild type), and characterized the variant in vitro and in vivo. The results indicated that the mutation significantly enhanced polymerase activity in mammalian cells, and the variant exhibited increased growth properties and induced significant weight loss in a mouse model compared to the wild type. We determined that the mutation exacerbated PB2 inhibition of mitochondrial antiviral signaling protein (MAVS)-mediated beta interferon (IFN-β) expression, and PB2-588I was observed to bind to MAVS more efficiently than PB2-588T. The variant induced lower levels of host IFN-β expression than the WT strain during infection. These findings indicate that the pdm/09 influenza virus has increased pathogenicity upon the acquisition of the PB2-T588I mutation and highlight the need for the continued surveillance of the genetic variation of molecular markers in influenza viruses because of their potential effects on pathogenicity and threats to human health.  相似文献   

3.
4.
5.
Under selective pressure from the host immune system, antigenic epitopes of influenza virus hemagglutinin (HA) have continually evolved to escape antibody recognition, termed antigenic drift. We analyzed the genomes of influenza A(H3N2) and A(H1N1)pdm09 virus strains circulating in Thailand between 2010 and 2014 and assessed how well the yearly vaccine strains recommended for the southern hemisphere matched them. We amplified and sequenced the HA gene of 120 A(H3N2) and 81 A(H1N1)pdm09 influenza virus samples obtained from respiratory specimens and calculated the perfect-match vaccine efficacy using the p epitope model, which quantitated the antigenic drift in the dominant epitope of HA. Phylogenetic analysis of the A(H3N2) HA1 genes classified most strains into genetic clades 1, 3A, 3B, and 3C. The A(H3N2) strains from the 2013 and 2014 seasons showed very low to moderate vaccine efficacy and demonstrated antigenic drift from epitopes C and A to epitope B. Meanwhile, most A(H1N1)pdm09 strains from the 2012–2014 seasons belonged to genetic clades 6A, 6B, and 6C and displayed the dominant epitope mutations at epitopes B and E. Finally, the vaccine efficacy for A(H1N1)pdm09 (79.6–93.4%) was generally higher than that of A(H3N2). These findings further confirmed the accelerating antigenic drift of the circulating influenza A(H3N2) in recent years.  相似文献   

6.

Background

In early 2009, a novel influenza A(H1N1) virus that emerged in Mexico and United States rapidly disseminated worldwide. The spread of this virus caused considerable morbidity with over 18000 recorded deaths. The new virus was found to be a reassortant containing gene segments from human, avian and swine influenza viruses.

Methods/Results

The first case of human infection with A(H1N1)pdm09 in Pakistan was detected on 18th June 2009. Since then, 262 laboratory-confirmed cases have been detected during various outbreaks with 29 deaths (as of 31st August 2010). The peak of the epidemic was observed in December with over 51% of total respiratory cases positive for influenza. Representative isolates from Pakistan viruses were sequenced and analyzed antigenically. Sequence analysis of genes coding for surface glycoproteins HA and NA showed high degree of high levels of sequence identity with corresponding genes of regional viruses circulating South East Asia. All tested viruses were sensitive to Oseltamivir in the Neuraminidase Inhibition assays.

Conclusions

Influenza A(H1N1)pdm09 viruses from Pakistan form a homogenous group of viruses. Their HA genes belong to clade 7 and show antigenic profile similar to the vaccine strain A/California/07/2009. These isolates do not show any amino acid changes indicative of high pathogenicity and virulence. It is imperative to continue monitoring of these viruses for identification of potential variants of high virulence or drug resistance.  相似文献   

7.
Vaccination is an effective means to protect against influenza virus. Although inactivated and live-attenuated vaccines are currently available, each vaccine has disadvantages (e.g., immunogenicity and safety issues). To overcome these problems, we previously developed a replication-incompetent PB2-knockout (PB2-KO) influenza virus that replicates only in PB2 protein-expressing cells. Here, we generated two PB2-KO viruses whose PB2-coding regions were replaced with the HA genes of either A/California/04/2009 (H1N1pdm09) or A/Vietnam/1203/2004 (H5N1). The resultant viruses comparably, or in some cases more efficiently, induced virus-specific antibodies in the serum, nasal wash, and bronchoalveolar lavage fluid of mice relative to a conventional formalin-inactivated vaccine. Furthermore, mice immunized with these PB2-KO viruses were protected from lethal challenges with not only the backbone virus strain but also strains from which their foreign HAs originated, indicating that PB2-KO viruses with antigenically different HAs could serve as bivalent influenza vaccines.  相似文献   

8.
The hemagglutinin genes (HA1 subunit) from human and animal 2009 pandemic H1N1 virus isolates were expressed with a baculovirus vector. Recombinant HA1 (rHA1) protein‐based ELISA was evaluated for detection of specific influenza A(H1N1)pdm09 antibodies in serum samples from vaccinated humans. It was found that rHA1 ELISA consistently differentiated between antibodies recognizing the seasonal influenza H1N1 and pdm09 viruses, with a concordance of 94% as compared to the hemagglutination inhibition test. This study suggests the utility of rHA1 ELISA in serosurveillance.  相似文献   

9.
Oseltamivir is relied upon worldwide as the drug of choice for the treatment of human influenza infection. Surveillance for oseltamivir resistance is routinely performed to ensure the ongoing efficacy of oseltamivir against circulating viruses. Since the emergence of the pandemic 2009 A(H1N1) influenza virus (A(H1N1)pdm09), the proportion of A(H1N1)pdm09 viruses that are oseltamivir resistant (OR) has generally been low. However, a cluster of OR A(H1N1)pdm09 viruses, encoding the neuraminidase (NA) H275Y oseltamivir resistance mutation, was detected in Australia in 2011 amongst community patients that had not been treated with oseltamivir. Here we combine a competitive mixtures ferret model of influenza infection with a mathematical model to assess the fitness, both within and between hosts, of recent OR A(H1N1)pdm09 viruses. In conjunction with data from in vitro analyses of NA expression and activity we demonstrate that contemporary A(H1N1)pdm09 viruses are now more capable of acquiring H275Y without compromising their fitness, than earlier A(H1N1)pdm09 viruses circulating in 2009. Furthermore, using reverse engineered viruses we demonstrate that a pair of permissive secondary NA mutations, V241I and N369K, confers robust fitness on recent H275Y A(H1N1)pdm09 viruses, which correlated with enhanced surface expression and enzymatic activity of the A(H1N1)pdm09 NA protein. These permissive mutations first emerged in 2010 and are now present in almost all circulating A(H1N1)pdm09 viruses. Our findings suggest that recent A(H1N1)pdm09 viruses are now more permissive to the acquisition of H275Y than earlier A(H1N1)pdm09 viruses, increasing the risk that OR A(H1N1)pdm09 will emerge and spread worldwide.  相似文献   

10.
To study genetic evolution of Moroccan influenza A(H1N1)pdm09 virus strains, we conducted a molecular characterization of the hemagglutinin gene subunit 1 (HA1) of 36 influenza A(H1N1)pdm09 virus strains. The stains were collected from patients in Rabat and Casablanca during two influenza seasons 2009–2010 and 2010–2011. Nucleotide and amino acid sequences of 14 influenza A(H1N1)pdm09 virus strains from 2009 to 2010 were ~97 and 99 %, respectively, similar to the reference strain A/California/07/2009 (H1N1). Phylogenetic analysis of 22 influenza A(H1N1)pdm09 virus strains from 2010 to 2011 revealed a co-circulation of three well-described different genetic groups. Most important, none of the identified groups showed significant changes at the antigenic site of the virus HA1 subunit which may alter the efficacy of California/07/2009 (H1N1) vaccine.  相似文献   

11.

Background

The influenza A(H1N1)2009 virus has been the dominant type of influenza A virus in Finland during the 2009–2010 and 2010–2011 epidemic seasons. We analyzed the antigenic characteristics of several influenza A(H1N1)2009 viruses isolated during the two influenza seasons by analyzing the amino acid sequences of the hemagglutinin (HA), modeling the amino acid changes in the HA structure and measuring antibody responses induced by natural infection or influenza vaccination.

Methods/Results

Based on the HA sequences of influenza A(H1N1)2009 viruses we selected 13 different strains for antigenic characterization. The analysis included the vaccine virus, A/California/07/2009 and multiple California-like isolates from 2009–2010 and 2010–2011 epidemic seasons. These viruses had two to five amino acid changes in their HA1 molecule. The mutation(s) were located in antigenic sites Sa, Ca1, Ca2 and Cb region. Analysis of the antibody levels by hemagglutination inhibition test (HI) indicated that vaccinated individuals and people who had experienced a natural influenza A(H1N1)2009 virus infection showed good immune responses against the vaccine virus and most of the wild-type viruses. However, one to two amino acid changes in the antigenic site Sa dramatically affected the ability of antibodies to recognize these viruses. In contrast, the tested viruses were indistinguishable in regard to antibody recognition by the sera from elderly individuals who had been exposed to the Spanish influenza or its descendant viruses during the early 20th century.

Conclusions

According to our results, one to two amino acid changes (N125D and/or N156K) in the major antigenic sites of the hemagglutinin of influenza A(H1N1)2009 virus may lead to significant reduction in the ability of patient and vaccine sera to recognize A(H1N1)2009 viruses.  相似文献   

12.
The swine-origin pandemic A(H1N1)2009 virus, A(H1N1)pdm09, is still circulating in parts of the human population. To monitor variants that may escape from vaccination specificity, antigenic characterization of circulating viruses is important. In this study, a hybridoma clone producing human monoclonal antibody against A(H1N1)pdm09, designated 5E4, was prepared using peripheral lymphocytes from a vaccinated volunteer. The 5E4 showed viral neutralization activity and inhibited hemagglutination. 5E4 escape mutants harbored amino acid substitutions (A189T and D190E) in the hemagglutinin (HA) protein, suggesting that 5E4 recognized the antigenic site Sb in the HA protein. To study the diversity of Sb in A(H1N1)pdm09, 58 viral isolates were obtained during the 2009/10 and 2010/11 winter seasons in Osaka, Japan. Hemagglutination-inhibition titers were significantly reduced against 5E4 in the 2010/11 compared with the 2009/10 samples. Viral neutralizing titers were also significantly decreased in the 2010/11 samples. By contrast, isolated samples reacted well to ferret anti-A(H1N1)pdm09 serum from both seasons. Nonsynonymous substitution rates revealed that the variant Sb and Ca2 sequences were being positively selected between 2009/10 and 2010/11. In 7,415 HA protein sequences derived from GenBank, variants in the antigenic sites Sa and Sb increased significantly worldwide from 2009 to 2013. These results indicate that the antigenic variants in Sb are likely to be in global circulation currently.  相似文献   

13.
Pandemic influenza H1N1 virus (A[H1N1]pdm09) emerged in 2009. To determine the phylogeography of A(H1N1)pdm09 in a single population, 70 strains of the virus were isolated from university students or trainee doctors at Tobetsu, Hokkaido, Japan, between September and December 2009. The nucleotide sequences of the HA1 region of the HA genes and described phylogenetic relationships of the strains circulating among them were analyzed. It was found that the 70 isolates could be phylogenetically separated into three groups and that two epidemics were caused by different groups of the virus. The three groups were also distinguishable from each other by three amino acid changes: A197T, S203T and Q293H. The substitution of S203T, which is located in the antigenic site, suggests antigenic drift of the virus.  相似文献   

14.
A swine-origin influenza A was detected in April 2009 and soon became the 2009 H1N1 pandemic strain (H1N1pdm). The current study revealed the genetic diversity of H1N1pdm, based on 77 and 70 isolates which we collected, respectively, during the 2009/2010 and 2010/2011 influenza seasons in Taiwan. We focused on tracking the amino acid transitioning of hemagglutinin (HA) and neuraminidase (NA) genes in the early diversification of the virus and compared them with H1N1pdm strains reported worldwide. We identified newly emerged mutation markers based on A/California/04/2009, described how these markers shifted from the first H1N1pdm season to the one that immediately followed, and discussed how these observations may relate to antigenicity, receptor-binding, and drug susceptibility. It was found that the amino acid mutation rates of H1N1pdm were elevated, from 9.29×10−3 substitutions per site in the first season to 1.46×10−2 in the second season in HA, and from 5.23×10−3 to 1.10×10−2 in NA. Many mutation markers were newly detected in the second season, including 11 in HA and 8 in NA, and some were found having statistical correlation to disease severity. There were five noticeable HA mutations made to antigenic sites. No significant titer changes, however, were detected based on hemagglutination inhibition tests. Only one isolate with H275Y mutation known to reduce susceptibility to NA inhibitors was detected. As limited Taiwanese H1N1pdm viruses were isolated after our sampling period, we gathered 8,876 HA and 6,017 NA H1N1pdm sequences up to April 2012 from NCBI to follow up the dynamics of mentioned HA mutations. While some mutations described in this study seemed to either settle in or die out in the 2011–2012 season, a number of them still showed signs of transitioning, prompting the importance of continuous monitoring of this virus for more seasons to come.  相似文献   

15.
Genetic mutation and reassortment of influenza virus gene segments, in particular those of hemagglutinin (HA) and neuraminidase (NA), that lead to antigenic drift and shift are the major strategies for influenza virus to escape preexisting immunity. The most recent example of such phenomena is the first pandemic of H1N1 influenza of the 21st century, which started in 2009. Cross-reactive antibodies raised against H1N1 viruses circulating before 1930 show protective activity against the 2009 pandemic virus. Cross-reactive T-cell responses can also contribute to protection, but in vivo support of this view is lacking. To explore the protection mechanisms in vivo, we primed mice with H1 and H3 influenza virus isolates and rechallenged them with a virus derived from the 2009 H1N1 A/CA/04/09 virus, named CA/E3/09. We found that priming with influenza viruses of both H1 and H3 homo- and heterosubtypes protected against lethal CA/E3/09 virus challenge. Convalescent-phase sera from these primed mice conferred no neutralization activity in vitro and no protection in vivo. However, T-cell depletion studies suggested that both CD4 and CD8 T cells contributed to the protection. Taken together, these results indicate that cross-reactive T cells established after initial priming with distally related viruses can be a vital component for prevention of disease and control of pandemic H1N1 influenza virus infection. Our results highlight the importance of establishing cross-reactive T-cell responses for protecting against existing or newly emerging pandemic influenza viruses.  相似文献   

16.
In this study, the effect of innate serum inhibitors on influenza virus infection was addressed. Seasonal influenza A(H1N1) and A(H3N2), 2009 pandemic A(H1N1) (H1N1pdm) and highly pathogenic avian influenza (HPAI) A(H5N1) viruses were tested with guinea pig sera negative for antibodies against all of these viruses as evaluated by hemagglutination-inhibition and microneutralization assays. In the presence of serum inhibitors, the infection by each virus was inhibited differently as measured by the amount of viral nucleoprotein produced in Madin-Darby canine kidney cells. The serum inhibitors inhibited seasonal influenza A(H3N2) virus the most, while the effect was less in seasonal influenza A(H1N1) and H1N1pdm viruses. The suppression by serum inhibitors could be reduced by heat inactivation or treatment with receptor destroying enzyme. In contrast, all H5N1 strains tested were resistant to serum inhibitors. To determine which structure (hemagglutinin (HA) and/or neuraminidase (NA)) on the virus particles that provided the resistance, reverse genetics (rg) was applied to construct chimeric recombinant viruses from A/Puerto Rico/8/1934(H1N1) (PR8) plasmid vectors. rgPR8-H5 HA and rgPR8-H5 HANA were resistant to serum inhibitors while rgPR8-H5 NA and PR8 A(H1N1) parental viruses were sensitive, suggesting that HA of HPAI H5N1 viruses bestowed viral resistance to serum inhibition. These results suggested that the ability to resist serum inhibition might enable the viremic H5N1 viruses to disseminate to distal end organs. The present study also analyzed for correlation between susceptibility to serum inhibitors and number of glycosylation sites present on the globular heads of HA and NA. H3N2 viruses, the subtype with highest susceptibility to serum inhibitors, harbored the highest number of glycosylation sites on the HA globular head. However, this positive correlation cannot be drawn for the other influenza subtypes.  相似文献   

17.
H3N2 influenza viruses have now circulated in the human population for 43 years since the pandemic of 1968, accumulating sequence changes in the hemagglutinin (HA) and neuraminidase (NA) that are believed to be predominantly due to selection for escape from antibodies. Examination of mutations that persist and accumulate led to identification of antigenically significant mutations that are contained in five antigenic sites (A-E) mapped on to the H3 HA. In early H3N2 isolates, antigenic site A appeared to be dominant while in the 1990s site B seemed more important. To obtain experimental evidence for dominance of antigenic sites on modern H3 HAs, we have measured antibodies in plasma of human subjects who received the 2006-07 trivalent subunit influenza vaccine (H3 component A/Wisconsin/67/05) or the 2008-09 formulation (H3 component A/Uruguay/716/07). Plasmas were tested against expressed HA of Wisconsin-like influenza A/Oklahoma/309/06 and site-directed mutants in antigenic site A (NNES121-124ITEG, N126T, N133D, TSSS135-138GSNA, K140I, RSNNS142-146PGSG), and antigenic site B (HL156-157KS, KFK158-160GST, NDQI189-192QEQT, A196V). "Native ELISA" analysis and escape mutant selection with two human monoclonal antibodies demonstrated that antibody E05 binds to antigenic site A and 1_C02 binds to site B. We find that most individuals, after vaccination in seasons 2006-07 and/or 2008-09, showed dominance of antigenic site B recognition over antigenic site A. A minority showed dominance of site A in 2006 but these were reduced in 2008 when the vaccine virus had a site A mutation. A better understanding of immunodominance may allow prediction of future antigenic drift and assist in vaccine strain selection.  相似文献   

18.
Limited antiviral compounds are available for the control of influenza, and the emergence of resistant variants would further narrow the options for defense. The H275Y neuraminidase (NA) mutation, which confers resistance to oseltamivir carboxylate, has been identified among the seasonal H1N1 and 2009 pandemic influenza viruses; however, those H275Y resistant variants demonstrated distinct epidemiological outcomes in humans. Specifically, dominance of the H275Y variant over the oseltamivir-sensitive viruses was only reported for a seasonal H1N1 variant during 2008-2009. Here, we systematically analyze the effect of the H275Y NA mutation on viral fitness and transmissibility of A(H1N1)pdm09 and seasonal H1N1 influenza viruses. The NA genes from A(H1N1)pdm09 A/California/04/09 (CA04), seasonal H1N1 A/New Caledonia/20/1999 (NewCal), and A/Brisbane/59/2007 (Brisbane) were individually introduced into the genetic background of CA04. The H275Y mutation led to reduced NA enzyme activity, an increased Km for 3′-sialylactose or 6′-sialylactose, and decreased infectivity in mucin-secreting human airway epithelial cells compared to the oseltamivir-sensitive wild-type counterparts. Attenuated pathogenicity in both RG-CA04NA-H275Y and RG-CA04 × BrisbaneNA-H275Y viruses was observed in ferrets compared to RG-CA04 virus, although the transmissibility was minimally affected. In parallel experiments using recombinant Brisbane viruses differing by hemagglutinin and NA, comparable direct contact and respiratory droplet transmissibilities were observed among RG-NewCalHA,NA, RG-NewCalHA,NA-H275Y, RG-BrisbaneHA,NA-H275Y, and RG-NewCalHA × BrisbaneNA-H275Y viruses. Our results demonstrate that, despite the H275Y mutation leading to a minor reduction in viral fitness, the transmission potentials of three different antigenic strains carrying this mutation were comparable in the naïve ferret model.  相似文献   

19.
Although the ferret model has been extensively used to study pathogenesis and transmission of influenza viruses, little has been done to determine whether ferrets are a good surrogate animal model to study influenza virus reassortment. It has been previously shown that the pandemic 2009 H1N1 (H1N1pdm) virus was able to transmit efficiently in ferrets. In coinfection studies with either seasonal H1N1 or H3N2 strains (H1N1s or H3N2s, respectively), the H1N1pdm virus was able to outcompete these strains and become the dominant transmissible virus. However, lack of reassortment could have been the result of differences in the cell or tissue tropism of these viruses in the ferret. To address this issue, we performed coinfection studies with recombinant influenza viruses carrying the surface genes of a seasonal H3N2 strain in the background of an H1N1pdm strain and vice versa. After serial passages in ferrets, a dominant H1N2 virus population was obtained with a constellation of gene segments, most of which, except for the neuraminidase (NA) and PB1 segments, were from the H1N1pdm strain. Our studies suggest that ferrets recapitulate influenza virus reassortment events. The H1N2 virus generated through this process resembles similar viruses that are emerging in nature, particularly in pigs.  相似文献   

20.
The neuraminidase (NA) genes of A(H1N1)pdm09 influenza virus isolates from 306 infected patients were analysed. The circulation of oseltamivir-resistant viruses in Brazil has not been reported previously. Clinical samples were collected in the state of Rio Grande do Sul (RS) from 2009-2011 and two NA inhibitor-resistant mutants were identified, one in 2009 (H275Y) and the other in 2011 (S247N). This study revealed a low prevalence of resistant viruses (0.8%) with no spread of the resistant mutants throughout RS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号