首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The success of introduced species is often facilitated by escape from the effects of natural predators and parasites. Introduced species can profit from this favourable situation, attaining higher population densities and greater individual sizes in novel areas. In this study, somatic condition and parasite infection were compared between native and non-native populations of Neogobius kessleri Günther; introduced only within the interconnected Danube and Rhine River system, and N. melanostomus (Pallas); widely introduced throughout several river systems in Europe and North America. Higher values of Fulton’s condition factor were observed in non-native populations of both goby species. Neogobius melanostomus attained higher gonadosomatic index values in non-native populations, indicating potential increased investment in reproduction in its new area. A lower splenosomatic index was observed in non-native populations, especially in N. melanostomus. Parasite infracommunity richness and mean abundance were higher in N. kessleri in both native and non-native populations, suggesting higher susceptibility of N. kessleri to these parasites. Non-native populations of both hosts showed higher infra-community richness as a result of acquiring parasites native to the new area, but lower parasite abundance. Differences in success of the introduction and establishment in new areas between the two fish species may be associated with a relatively low parasite infection rate and a higher gonadosomatic index in non-native populations of N. melanostomus in comparison to N. kessleri.  相似文献   

2.
Within a single organism, numerous parasites often compete for space and resources. This competition, together with a parasite’s ability to locate and successfully establish in a host, can contribute to the distribution and prevalence of parasites. Coinfection with trematodes in snail intermediate hosts is rarely observed in nature, partly due to varying competitive abilities among parasite taxa. Using a freshwater snail host (Biomphalaria glabrata), we studied the ability of a competitively dominant trematode, Echinostoma caproni, to establish and reproduce in a host previously infected with a less competitive trematode species, Schistosoma mansoni. Snails were exposed to S. mansoni and co-exposed to E. caproni either simultaneously or 1 week, 4 weeks, or 6 weeks post S. mansoni exposure. Over the course of infection, we monitored the competitive success of the dominant trematode through infection prevalence, parasite development time, and parasite reproductive output. Infection prevalence of E. caproni did not differ among co-exposed groups or between co-exposed and single exposed groups. However, E. caproni infections in co-exposed hosts took longer to reach maturity when the timing between co-exposures increased. All co-exposed groups had higher E. caproni reproductive output than single exposures. We show that although timing of co-exposure affects the development time of parasite transmission stages, it is not important for successful establishment. Additionally, co-exposure, but not priority effects, increases the reproductive output of the dominant parasite.  相似文献   

3.
Organisms are exposed to strong selective pressures from several sources, including predators and pathogens. Response to such interacting selective pressures may vary among species that differ in life history and ecology in predictable ways. We consider the impact of multiple enemies (fish predators and trematode parasites) on the behavior of larvae of three anuran species (Lithobates ( = Rana) sylvaticus, L. clamitans and L. catesbeianus). We show that the three ranid species differ in response to the trade-off imposed by the simultaneous presence of fish predators and trematode parasites in the environment. Two more permanent pond breeders (L. clamitans and L. catesbeianus), which commonly encounter parasites and fish, increased activity when in the combined presence of parasites and a fish predator, resulting in a relatively lower parasite encystment rate. In contrast, the temporary pond breeder (L. sylvaticus), which does not commonly encounter fish in the wild, decreased activity in the combined presence of a fish predator and parasites similar to when only the predator was present. For L. sylvaticus, this suggests that the presence of an unknown predator poses a greater threat than parasites. Further, the presence of fish along with parasites increased the susceptibility of both L. sylvaticus and L. clamitans to trematode infection, whereas parasite infection in L. catesbeianus was unaffected by the presence of fish. Unpalatability to fish may allow some species to respond more freely to attacking parasites in the presence of fish. The results from this study highlight the importance of considering multiple selective pressures faced by organisms and how this shapes their behavior.  相似文献   

4.

Background

Since free radical scavengers of parasite origin like glutathione-S-transferase and superoxide dismutase are being explored as prospective vaccine targets, availability of these molecules within the parasite infecting different hosts as well as different sites of infection is of considerable importance. Using Clinostomum complanatum, as a model helminth parasite, we analysed the effects of habitat of in vivo transformation on free radical scavengers of this trematode parasite.

Methods

Using three different animal models for in vivo transformation and markedly different sites of infection, progenetic metacercaria of C. complanatum were transformed to adult ovigerous worms. Whole worm homogenates were used to estimate the levels of lipid peroxidation, a marker of oxidative stress and free radical scavengers.

Results

Site of in vivo transformation was found to drastically affect the levels of free radical scavengers in this model trematode parasite. It was observed that oxygen availability at the site of infection probably influences levels of free radical scavengers in trematode parasites.

Conclusion

This is the first report showing that habitat of in vivo transformation affects levels of free radical scavengers in trematode parasites. Since free radical scavengers are prospective vaccine targets and parasite infection at ectopic sites is common, we propose that infections at different sites, may respond differently to free radical scavenger based vaccines.  相似文献   

5.
In contrast to the depth of knowledge on the pathological effects of parasitism in domestic animals, the impact of the vast majority of parasites on wildlife hosts is poorly understood and, besides, information from domestics is rarely usable to disclose the parasites’ impact on free-ranging populations’ dynamics. Here we use Toxoplasmosis as a study model since, until now, the infection process and the protozoan’s effects in natural conditions has received little attention. We analysed 81 sera from red deer (Cervus elaphus) sampled in Italian Alps and through generalized linear models we evaluated (1) the epidemiological factors influencing T. gondii infection dynamics; (2) its impact on female fertility. High seroprevalence of T. gondii infection was recorded in yearling (1 year-old; prevalence = 52.4%) and adult (>2 year-old; prevalence = 51.3%) red deer, while calves (<1 year-old) did not contract the infection suggesting horizontal transmission as the main route of infection. The stable prevalence between yearlings and adults and the higher serological titres of younger individuals lead to two alternative infection processes suggesting a difference between age classes or in acquiring the infection or in responding to the pathogen. No associations between T. gondii serological titres and pregnancy status was observed indicating no direct effect on the probability of being pregnant; nevertheless a relation between females’ higher serological titres and lower foetal development emerged, suggesting potential effects of the parasite infection on deer reproduction. The results demonstrate high seroprevalence of T. gondii infection in free-ranging red deer and, furthermore, the effect on foetal development suggests the potential impact of the parasite on red deer fertility and thus on its population dynamics.  相似文献   

6.
The worldwide spread of diseases is considered a major threat to biodiversity and a possible driver of the decline of pollinator populations, particularly when novel species or strains of parasites emerge. Previous studies have suggested that populations of introduced European honeybee (Apis mellifera) and bumblebee species (Bombus terrestris and Bombus ruderatus) in Argentina share the neogregarine parasite Apicystis bombi with the native bumblebee (Bombus dahlbomii). In this study we investigated whether A. bombi is acting as an emergent parasite in the non-native populations. Specifically, we asked whether A. bombi, recently identified in Argentina, was introduced by European, non-native bees. Using ITS1 and ITS2 to assess the parasite’s intraspecific genetic variation in bees from Argentina and Europe, we found a largely unstructured parasite population, with only 15% of the genetic variation being explained by geographic location. The most abundant haplotype in Argentina (found in all 9 specimens of non-native species) was identical to the most abundant haplotype in Europe (found in 6 out of 8 specimens). Similarly, there was no evidence of structuring by host species, with this factor explaining only 17% of the genetic variation. Interestingly, parasites in native Bombus ephippiatus from Mexico were genetically distant from the Argentine and European samples, suggesting that sufficient variability does exist in the ITS region to identify continent-level genetic structure in the parasite. Thus, the data suggest that A. bombi from Argentina and Europe share a common, relatively recent origin. Although our data did not provide information on the direction of transfer, the absence of genetic structure across space and host species suggests that A. bombi may be acting as an emergent infectious disease across bee taxa and continents.  相似文献   

7.
Trypanosoma rangeli is a non-pathogenic protozoan parasite that infects mammals, including humans, in Chagas disease-endemic areas of South and Central America. The parasite is transmitted to a mammalian host when an infected triatomine injects metacyclic trypomastigotes into the host′s skin during a bloodmeal. Infected mammals behave as parasite reservoirs for several months and despite intensive research, some major aspects of T. rangeli-vertebrate interactions are still poorly understood. In particular, many questions still remain unanswered, e.g. parasite survival and development inside vertebrates, as no parasite multiplication sites have yet been identified. The present study used an insect bite transmission strategy to investigate whether the vector inoculation spot in the skin behave as a parasite-replication site. Histological data from the skin identified extracellular parasites in the dermis and hypodermis of infected mice in the first 24 hours post-infection, as well as the presence of inflammatory infiltrates in a period of up to 7 days. However, qPCR analyses demonstrated that T. rangeli is eliminated from the skin after 7 days of infection despite being still consistently found on circulating blood and secondary lymphoid tissues for up to 30 days post-infection. Interestingly, significant numbers of parasites were found in the spleen and mesenteric lymph nodes of infected mice during different periods of infection and steady basal numbers of flagellates are maintained in the host′s bloodstream, which might behave as a transmission source to insect vectors. The presence of parasites in the spleen was confirmed by fluorescent photomicrography of free and cell-associated T. rangeli forms. Altogether our results suggest that this organ could possibly behave as a T. rangeli maintenance hotspot in vertebrates.  相似文献   

8.
Footpad infection of C3HeB/FeJ mice with Leishmania amazonensis leads to chronic lesions accompanied by large parasite loads. Co-infecting these animals with L. major leads to induction of an effective Th1 immune response that can resolve these lesions. This cross-protection can be recapitulated in vitro by using immune cells from L. major-infected animals to effectively activate L. amazonensis-infected macrophages to kill the parasite. We have shown previously that the B cell population and their IgG2a antibodies are required for effective cross-protection. Here we demonstrate that, in contrast to L. major, killing L. amazonensis parasites is dependent upon FcRγ common-chain and NADPH oxidase-generated superoxide from infected macrophages. Superoxide production coincided with killing of L. amazonensis at five days post-activation, suggesting that opsonization of the parasites was not a likely mechanism of the antibody response. Therefore we tested the hypothesis that non-specific immune complexes could provide a mechanism of FcRγ common-chain/NADPH oxidase dependent parasite killing. Macrophage activation in response to soluble IgG2a immune complexes, IFN-γ and parasite antigen was effective in significantly reducing the percentage of macrophages infected with L. amazonensis. These results define a host protection mechanism effective during Leishmania infection and demonstrate for the first time a novel means by which IgG antibodies can enhance killing of an intracellular pathogen.  相似文献   

9.
In nature, hosts are exposed to an assemblage of parasite species that collectively form a complex community within the host. To date, however, our understanding of how within-host–parasite communities assemble and interact remains limited. Using a larval amphibian host (Pacific chorus frog, Pseudacris regilla) and two common trematode parasites (Ribeiroia ondatrae and Echinostoma trivolvis), we experimentally examined how the sequence of host exposure influenced parasite interactions within hosts. While there was no evidence that the parasites interacted when hosts were exposed to both parasites simultaneously, we detected evidence of both intraspecific and interspecific competition when exposures were temporally staggered. However, the strength and outcome of these priority effects depended on the sequence of addition, even after accounting for the fact that parasites added early in host development were more likely to encyst compared to parasites added later. Ribeiroia infection success was reduced by 14 % when Echinostoma was added prior to Ribeiroia, whereas no such effect was noted for Echinostoma when Ribeiroia was added first. Using a novel fluorescent-labeling technique that allowed us to track Ribeiroia infections from different exposure events, we also discovered that, similar to the interspecific interactions, early encysting parasites reduced the encystment success of later arriving parasites by 41 %, which could be mediated by host immune responses and/or competition for space. These results suggest that parasite identity interacts with host immune responses to mediate parasite interactions within the host, such that priority effects may play an important role in structuring parasite communities within hosts. This knowledge can be used to assess host–parasite interactions within natural communities in which environmental conditions can lead to heterogeneity in the timing and composition of host exposure to parasites.  相似文献   

10.
Toxoplasma gondii, a common brain-tropic parasite, is capable of infecting most nucleated cells, including astrocytes and neurons, in vitro. Yet, in vivo, Toxoplasma is primarily found in neurons. In vitro data showing that interferon-γ-stimulated astrocytes, but not neurons, clear intracellular parasites suggest that neurons alone are persistently infected in vivo because they lack the ability to clear intracellular parasites. Here we test this theory by using a novel Toxoplasma-mouse model capable of marking and tracking host cells that directly interact with parasites, even if the interaction is transient. Remarkably, we find that Toxoplasma shows a strong predilection for interacting with neurons throughout CNS infection. This predilection remains in the setting of IFN-γ depletion; infection with parasites resistant to the major mechanism by which murine astrocytes clear parasites; or when directly injecting parasites into the brain. These findings, in combination with prior work, strongly suggest that neurons are not incidentally infected, but rather they are Toxoplasma’s primary in vivo target.  相似文献   

11.
Manipulative parasites often alter the phenotype of their hosts along multiple dimensions. ‘Multidimensionality’ in host manipulation could consist in the simultaneous alteration of several physiological pathways independently of one another, or proceed from the disruption of some key physiological parameter, followed by a cascade of effects. We compared multidimensionality in ‘host manipulation’ between two closely related amphipods, Gammarus fossarum and Gammarus pulex, naturally and experimentally infected with Pomphorhynchus laevis (Acanthocephala), respectively. To that end, we calculated in each host–parasite association the effect size of the difference between infected and uninfected individuals for six different traits (activity, phototaxis, geotaxis, attraction to conspecifics, refuge use and metabolic rate). The effects sizes were highly correlated between host–parasite associations, providing evidence for a relatively constant ‘infection syndrome’. Using the same methodology, we compared the extent of phenotypic alterations induced by an experimental injection of serotonin (5-HT) in uninfected G. pulex to that induced by experimental or natural infection with P. laevis. We observed a significant correlation between effect sizes across the six traits, indicating that injection with 5-HT can faithfully mimic the ‘infection syndrome’. This is, to our knowledge, the first experimental evidence that multidimensionality in host manipulation can proceed, at least partly, from the disruption of some major physiological mechanism.  相似文献   

12.

Background

While CD40L is typically a membrane glycoprotein expressed on activated T cells and platelets that binds and activates CD40 on the surface on antigen presenting cells, a soluble derivative (sCD40L) that appears to retain its biological activity after cleavage from cell membrane also exists. We recently reported that sCD40L is associated with clinical resolution of visceral leishmaniasis and protection against the disease. In the present study we investigated if this sCD40L is functional and exerts anti-parasitic effect in L. infantum-infected macrophages.

Methodology/Principal Findings

Macrophages from normal human donors were infected with L. infantum promastigotes and incubated with either sera from subjects exposed to L. infantum infection, monoclonal antibodies against human CD40L, or an isotype control antibody. We then evaluated infection by counting the number of infected cells and the number of parasites in each cell. We also measured a variety of immune modulatory cytokines in these macrophage culture supernatants by Luminex assay. The addition of sCD40L, either recombinant or from infected individuals’ serum, decreased both the number of infected macrophages and number of intracellular parasites. Moreover, this treatment increased the production of IL-12, IL-23, IL-27, IL-15, and IL1β such that negative correlations between the levels of these cytokines with both the infection ratio and number of intracellular parasites were observed.

Conclusions/Significance

sCD40L from sera of subjects exposed to L. infantum is functional and improves both the control of parasite and production of inflamatory cytokines of infected macrophages. Although the mechanisms involved in parasite killing are still unclear and require further exploration, these findings indicate a protective role of sCD40L in visceral leishmaniasis.  相似文献   

13.
14.

Background

HIV infection has been modifying both the epidemiology and outcome of parasite infections. Hence, this study was undertaken to determine the prevalence of Cryptosporidium and other intestinal parasite infections among HIV positives with and without Antiretroviral Treatment(ART) and its association with CD4+ T-cell count.

Methods

A cross-sectional study was conducted at Fitche hospital focusing on HIV positives who came to hospital for follow-ups. A total of 378 HIV positive persons with and without ART participated in the study. Data on socio-demographic factors and diarrhoea status were obtained by interviewing all 214 with ART and 164 without ART. Stool samples were collected from all patients and examined for intestinal parasites using direct, formol-ether and modified acid-fast staining techniques.

Results

The prevalence of intestinal parasite infections in this study was significantly higher among HIV positive persons not on ART. Specifically, the rate of infection with Cryptosporidium species, Blastocystis spp., Giardia lamblia, and Entamoeba histolytica/E. dispar were higher, particularly in those with CD4+ T-cell counts less than 200 cells/µL. Fifty seven percent of the study participants were on ART. Out of these 164/378 (43%) of the non-ART study participants were infected with at least one intestinal parasite species. Significant association was observed between lower CD4+ T-cell count (<200 cells/µL) and the prevalence of Cryptosporidium spp. and Blastocystis spp. The two parasites were significantly more prevalent in HIV positive non-ART patients.

Conclusion

HIV infection increased the risk of having Cryptosporidium and other intestinal parasites and diarrhoea. Therefore, raising HIV positive’s immune status and screening for intestinal parasites is important. This study showed that patients who are taking ART had a lower prevalence of diarrhoea causing parasites and Cryptosporidium suggesting that ART through improvement of immune status of the patients may have contributed to controlling diarrhoea-causing parasites in HIV positive patients.  相似文献   

15.
16.
The genus Phytomonas includes parasites that are etiological agents of important plant diseases, especially in Central and South America. These parasites are transmitted to plants via the bite of an infected phytophagous hemipteran. Despite the economic impact of these parasites, many basic questions regarding the genus Phytomonas remain unanswered, such as the mechanism by which the parasites cope with the immune response of the insect vector. In this report, using a model of systemic infection, we describe the function of Oncopeltus fasciatus hemocytes in the immune response towards the tomato parasite Phytomonas serpens. Hemocytes respond to infection by trapping parasites in nodular structures and phagocytizing the parasites. In electron microscopy of hemocytes, parasites were located inside vacuoles, which appear fused with lysosomes. The parasites reached the O. fasciatus salivary glands at least six hours post-infection. After 72 hours post-infection, many parasites were attached to the salivary gland outer surface. Thus, the cellular responses did not kill all the parasites.  相似文献   

17.
Malaria, caused by infection with Plasmodium parasites, remains a significant global health concern. For decades, genetic intractability and limited tools hindered our ability to study essential proteins and pathways in Plasmodium falciparum, the parasite associated with the most severe malaria cases. However, recent years have seen major leaps forward in the ability to genetically manipulate P. falciparum parasites and conditionally control protein expression/function. The conditional knockdown systems used in P. falciparum target all 3 components of the central dogma, allowing researchers to conditionally control gene expression, translation, and protein function. Here, we review some of the common knockdown systems that have been adapted or developed for use in P. falciparum. Much of the work done using conditional knockdown approaches has been performed in asexual, blood-stage parasites, but we also highlight their uses in other parts of the life cycle and discuss new ways of applying these systems outside of the intraerythrocytic stages. With the use of these tools, the field’s understanding of parasite biology is ever increasing, and promising new pathways for antimalarial drug development are being discovered.  相似文献   

18.
19.
Melanin, a black-brown pigment found throughout all kingdoms of life, has diverse biological functions including UV protection, thermoregulation, oxidant scavenging, arthropod immunity, and microbial virulence. Given melanin’s broad roles in the biosphere, particularly in insect immune defenses, it is important to understand how exposure to ubiquitous environmental contaminants affects melanization. Glyphosate—the most widely used herbicide globally—inhibits melanin production, which could have wide-ranging implications in the health of many organisms, including insects. Here, we demonstrate that glyphosate has deleterious effects on insect health in 2 evolutionary distant species, Galleria mellonella (Lepidoptera: Pyralidae) and Anopheles gambiae (Diptera: Culicidae), suggesting a broad effect in insects. Glyphosate reduced survival of G. mellonella caterpillars following infection with the fungus Cryptococcus neoformans and decreased the size of melanized nodules formed in hemolymph, which normally help eliminate infection. Glyphosate also increased the burden of the malaria-causing parasite Plasmodium falciparum in A. gambiae mosquitoes, altered uninfected mosquito survival, and perturbed the microbial composition of adult mosquito midguts. Our results show that glyphosate’s mechanism of melanin inhibition involves antioxidant synergy and disruption of the reaction oxidation–reduction balance. Overall, these findings suggest that glyphosate’s environmental accumulation could render insects more susceptible to microbial pathogens due to melanin inhibition, immune impairment, and perturbations in microbiota composition, potentially contributing to declines in insect populations.

Glyphosate, the most commonly used herbicide in the world, inhibits the production of melanin. Melanin is an important pigment and a key component of the insect immune system; this study shows that glyphosate weakens insects’ melanin-based immune system and makes them more vulnerable to infections, including with the human malaria parasite Plasmodium falciparum.  相似文献   

20.
Social insects have evolved a suite of sophisticated defences against parasites. In addition to the individual physiological immune response, social insects also express ‘social immunity’ consisting of group-level defences and behaviours that include allogrooming. Here we investigate whether the social immune response of the leaf-cutting ant Acromyrmex echinatior reacts adaptively to the virulent fungal parasite, Metarhizium anisopliae. We ‘immunized’ mini-nests of the ants by exposing them twice to the parasite and then compared their social immune response with that of naive mini-nests that had not been experimentally exposed to the parasite. Ants allogroomed individuals exposed to the parasite, doing this both for those freshly treated with the parasite, which were infectious but not yet infected, and for those treated 2 days previously, which were already infected but no longer infectious. We found that ants exposed to the parasite received more allogrooming in immunized mini-nests than in naive mini-nests. This increased the survival of the freshly treated ants, but not those that were already infected. The results thus indicate that the social immune response of this leaf-cutting ant is adaptive, with the group exhibiting a greater and more effective response to a parasite that it has previously been exposed to.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号