首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Industrial ecosystems are fruitful sites for examining ecosystem management. Sewage treatment plants, breweries, biotechnology reactors, and ethanol production plants are all ecosystems—complex biophysical systems in which communities of bacteria, yeast, fungi, and other organisms are maintained to extract services or resources. The industrial analog to ecosystem management is “process control”, where the industrial operator is the ecosystem manager. Process control is the management of a production process through the careful measurement and adjustment of its physical and chemical conditions. By analyzing the history of process control in activated sludge sewage treatment plants, I show the importance of craft knowledge in ecosystem management. Sewage treatment plant workers, through their experience in operating the plants, developed means of evaluating process conditions based on sight and smell rather than laboratory analysis. These craft techniques developed and persisted in spite of concerted efforts on the part of sanitary scientists to institute “scientific” control of the process based on laboratory analysis and models of microbial kinetics, suggesting that craft knowledge of ecosystem function can contribute to successful management. The craft knowledge of sewage plant workers is a kind of adaptive management, in which workers constantly adjust ecosystem parameters and observe the results. This approach is contrasted to “command and control” approaches to treatment plant automation, which have met with uneven success.  相似文献   

2.
Characterization of soil water content (SWC) profiles at catchment scale has profound implications for understanding hydrological processes of the terrestrial water cycle, thereby contributing to sustainable water management and ecological restoration in arid and semi-arid regions. This study described the vertical profiles of SWC at the small catchment scale on the hilly and gully Loess Plateau in Northeast China, and evaluated the influences of selected environmental factors (land-use type, topography and landform) on average SWC within 300 cm depth. Soils were sampled from 101 points across a small catchment before and after the rainy season. Cluster analysis showed that soil profiles with high-level SWC in a stable trend (from top to bottom) were most commonly present in the catchment, especially in the gully related to terrace. Woodland soil profiles had low-level SWC with vertical variations in a descending or stable trend. Most abandoned farmland and grassland soil profiles had medium-level SWC with vertical variations in varying trends. No soil profiles had low-level SWC with vertical variations in an ascending trend. Multi-regression analysis showed that average SWC was significantly affected by land-use type in different soil layers (0–20, 20–160, and 160–300 cm), generally in descending order of terrace, abandoned farmland, grassland, and woodland. There was a significant negative correlation between average SWC and gradient along the whole profile (P<0.05). Landform significantly affected SWC in the surface soil layer (0–20 cm) before the rainy season but throughout the whole profile after the rainy season, with lower levels on the ridge than in the gully. Altitude only strongly affected SWC after the rainy season. The results indicated that land-use type, gradient, landform, and altitude should be considered in spatial SWC estimation and sustainable water management in these small catchments on the Loess Plateau as well as in other complex terrains with similar settings.  相似文献   

3.
The Rengen Grassland Experiment (RGE), set up on a Nardus grassland in 1941, consists of a control and five fertilizer treatments (Ca, CaN, CaNP, CaNP-KCl and CaNP-K2SO4). In 2005, soil chemical properties were analyzed to investigate the effect of soil variables on biomass production, plant species composition and species richness of vascular plants. Further, the effect of sampling scale (from 0.02 to 5.76 m2) on species richness was investigated. Soil properties (plant-available contents of K, P, C:N ratio, and pH) and biomass production were found to be strictly dependent on the fertilizers applied. Diversification of soil P content between treatments with and without P application is still in progress. Biomass production was most positively affected by P and K soil contents under N application. Furthermore, pH had a small positive effect on biomass production, and C:N ratio a moderately negative one. Two types of nutrient limitation were recognized: (1) limitation of total biomass production and (2) limitation of individual plant species. Long-term addition of a limiting nutrient affected the grassland ecosystem in three ways: (1) causing a change in plant species composition without significant increase in total biomass production, (2) causing no change in species composition but with significant increase in total biomass production, and (3) causing substantial change in plant species composition accompanied by significant increase in total biomass production. The explanatory power of all measured soil properties on plant species composition was almost the same as the power of the treatment effect (61.7% versus 62% of explained variability in RDA). The most powerful predictors of plant species composition were soil P, K and Mg contents, pH, and biomass production. The soil P content and biomass production were the only variables leading to a significant negative effect on species richness. An almost parallel increase in species richness with increasing sampling area was detected in all treatments. Constant differences among treatments were independent of sampling area.  相似文献   

4.
一株细菌儿茶酚型铁载体分泌的影响因素研究   总被引:3,自引:0,他引:3  
采用两种新的高分辨率的薄层层析(TLC)方法对一株土壤细菌S1在3种不同培养基上产生的儿茶酚型铁载体进行了分析。结果表明:不同培养基对铁载体的产生影响较大,在3种不同的培养基上菌株S1产生不同的儿茶酚铁载体,其中仅在1种培养基上S1能够分泌2,3-二羟基苯甲酸(2,3-DHBA)。同时,还分析了Al^3+对S1分泌的儿茶酚型铁载体总量的影响,结果表明:Al^3+能显著刺激铁载体的分泌,并且能抵消一定浓度范围内的Fe^2+对铁载体分泌的抑制作用,KMB培养液中产生的4种儿茶酚铁载体中有3种和Al^3+有较强的螯合力.  相似文献   

5.
Russian Journal of Bioorganic Chemistry - An Erratum to this paper has been published: https://doi.org/10.1134/S106816202134001X  相似文献   

6.
Bacterial communities are important not only in the cycling of organic compounds but also in maintaining ecosystems. Specific bacterial groups can be affected as a result of changes in environmental conditions caused by human activities, such as agricultural practices. The aim of this study was to analyze the effects of different forms of tillage and residue management on soil bacterial communities by using phylogenetic and multivariate analyses. Treatments involving zero tillage (ZT) and conventional tillage (CT) with their respective combinations of residue management, i.e., removed residue (−R) and kept residue (+R), and maize/wheat rotation, were selected from a long-term field trial started in 1991. Analysis of bacterial diversity showed that soils under zero tillage and crop residue retention (ZT/+R) had the highest levels of diversity and richness. Multivariate analysis showed that beneficial bacterial groups such as fluorescent Pseudomonas spp. and Burkholderiales were favored by residue retention (ZT/+R and CT/+R) and negatively affected by residue removal (ZT/−R). Zero-tillage treatments (ZT/+R and ZT/−R) had a positive effect on the Rhizobiales group, with its main representatives related to Methylosinus spp. known as methane-oxidizing bacteria. It can be concluded that practices that include reduced tillage and crop residue retention can be adopted as safer agricultural practices to preserve and improve the diversity of soil bacterial communities.Agricultural sustainability is linked to soil management and efficient use of natural and economic resources (25, 53). Sustainable handling of resources can be obtained by applying conservation agricultural practices, i.e., reduced tillage, crop residue retention, and crop rotation (26). Reduced tillage and crop residue retention have been proposed, as they facilitate water infiltration, reduce erosion, improve soil structure, increase soil organic matter and carbon content, and moderate soil temperatures (13, 16, 30, 33, 56). Compared with conventional tillage and crop residue removal, these practices can also decrease production costs by reducing the use of heavy machinery, fuels, water, and fertilizers (19, 23). The positive effect of these practices seems to be correlated with the improvement of soil structure and a higher availability of organic substrates for microorganisms (3, 30). Improved soil structure allows better soil aeration and diffusion of water and nutrients through the soil profile, while the retention of crop residues enhances microbial activity and the soil microbial biomass content (12, 28). These improvements in soil quality can also increase soil microbial diversity, thus protecting crops against pests and diseases through competition for soil nutrients (8).Until now, most research has focused on microbial communities affected by agricultural practices, i.e., tillage and residue management, by using indicators such as plate counting and microbial biomass or by analyzing denaturing gradient gel bacterial banding patterns (21, 22, 37). Salles et al. (46) reported the use of canonical correspondence analysis on denaturing gradient gel electrophoresis banding pattern data to understand the effect of crop and land history on Burkholderia communities. However, few studies have applied phylogenetic and multivariate analyses to understand the effect of soil management practices, i.e., tillage and residue management, on microbial communities.It is necessary to interpret the changes in microbial communities as a function of contextual environmental parameters to analyze the effect of anthropogenic activities on microbial communities (42). Once modifications in microbial communities are interpreted as a function of contextual environments, it becomes possible to determine the kind of organisms that dominate such environments and to establish whether specific practices could lead to changes in beneficial or nonbeneficial microorganisms for agro-ecosystems. Changes in microbial communities can then be related to food production, soil quality, and greenhouse gas emissions (19, 20, 36).Govaerts et al. (19, 20, 21, 22) had previously characterized the soils used in this study. They showed that soils under zero tillage (ZT) and crop residue retention (+R) have better soil quality, crop yields, and catabolic diversity and a higher diversity of microflora groups than do soils under conventional tillage (CT) with or without crop residue retention (−R). The aim of this study was to complement the results of Govaerts et al. (19, 20, 21, 22) by using phylogenetic approaches and the additive main effect and multiplicative interactions (AMMI) model (18, 60) to analyze the effect of the above treatments on soil bacterial communities.  相似文献   

7.
As the second essential enzyme of the folate biosynthetic pathway, the potential antimicrobial target, HPPK (6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase), catalyzes the Mg2+-dependant transfer of pyrophosphate from the cofactor (ATP) to the substrate, 6-hydroxymethyl-7,8-dihydropterin. Recently, we showed that 8-mercaptoguanine (8-MG) bound at the substrate site (KD ∼13 µM), inhibited the S. aureus enzyme (SaHPPK) (IC50 ∼ 41 µM), and determined the structure of the SaHPPK/8-MG complex. Here we present the synthesis of a series of guanine derivatives, together with their HPPK binding affinities, as determined by SPR and ITC analysis. The binding mode of the most potent was investigated using 2D NMR spectroscopy and X-ray crystallography. The results indicate, firstly, that the SH group of 8-MG makes a significant contribution to the free energy of binding. Secondly, direct N 9 substitution, or tautomerization arising from N 7 substitution in some cases, leads to a dramatic reduction in affinity due to loss of a critical N 9-H···Val46 hydrogen bond, combined with the limited space available around the N 9 position. The water-filled pocket under the N 7 position is significantly more tolerant of substitution, with a hydroxyl ethyl 8-MG derivative attached to N 7 (compound 21a) exhibiting an affinity for the apo enzyme comparable to the parent compound (KD ∼ 12 µM). In contrast to 8-MG, however, 21a displays competitive binding with the ATP cofactor, as judged by NMR and SPR analysis. The 1.85 Å X-ray structure of the SaHPPK/21a complex confirms that extension from the N 7 position towards the Mg2+-binding site, which affords the only tractable route out from the pterin-binding pocket. Promising strategies for the creation of more potent binders might therefore include the introduction of groups capable of interacting with the Mg2+ centres or Mg2+ -binding residues, as well as the development of bitopic inhibitors featuring 8-MG linked to a moiety targeting the ATP cofactor binding site.  相似文献   

8.
Russian Journal of Bioorganic Chemistry - A quantum chemical study was done on two compounds of proquazone and proquazone type calcilytics (6-methoxy-1-(propan-2-yl)-4-[4-(propan-2-yl)phenyl]-1,2...  相似文献   

9.
The relation of seasonal bud activity to the periodicity of rooting in Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco, stem cuttings was studied in combination with auxin and cold storage treatments. Cuttings were collected in all months except April and May, for 3 years. Rooting was least in September and October when bud dormancy was most pronounced, greatest in December and January if exogenous auxin was applied, or in February and March if no auxin was used. The buds contributed significantly to rooting from January to April, and were responsible for differences in rooting of terminal and lateral cuttings during this period. Auxin did not enhance rooting in September and October, but at other times it replaced or supplemented the role of vegetative buds in promoting rooting. Auxin also removed the differences in rooting between lateral and terminal cuttings. Cold treatment in October and November removed bud dormancy and enhanced rooting. After November the need for auxin or cold treatment diminished and rooting without either treatment reached a maximum in February and March. Auxin did not change the seasonal pattern of rooting but broadened and enhanced the rooting response in favor of earliness. These results are discussed in relation to the effect of bud activity on auxin response and root initiation. The hypotheses are proposed that cambial dormancy or auxin deficiency is not the limiting factor during bud dormancy, and that cold treatments have the effect of bringing inhibitors and promoters into proper balance for optimum rooting response.  相似文献   

10.

The rapidly growing world population, water shortage, and food security are promising problems for sustainable agriculture. Farmers adopt higher irrigation and fertilizer applications to increase crop production resulting in environmental pollution. This study aimed to identify the long-term effects of intelligent water and fertilizers used in corn yield and soil nutrient status. A series of field experiments were conducted for six years with treatments as: farmer accustomed to fertilization used as control (CON), fertilizer decrement (KF), fertilizer decrement + water-saving irrigation (BMP1); combined application of organic and inorganic fertilizer + water-saving irrigation (BMP2), and combined application of controlled-release fertilizer (BMP3). A significant improvement was observed in soil organic matter (14.9%), nitrate nitrogen (106.7%), total phosphorus (23.9%), available phosphorus (26.2%), straw yield (44.8%), and grain yield (54.7%) with BMP2 treatment as compared to CON. The study concludes that integrating chemical and organic fertilizers with water-saving irrigation (BMP2) is a good approach to increasing corn productivity, ensuring water safety and improving soil health. The limitations of the current study include the identification of fertilizer type and its optimum dose, irrigation water type, and geographical position.

  相似文献   

11.
Intestinal tracts of broilers and turkeys from 10 conventional broiler farms and 10 conventional turkey farms, where antimicrobials were routinely used, and from 5 organic broiler farms and 5 organic turkey farms, where antimicrobials had never been used, were collected and cultured for Campylobacter species. A total of 694 Campylobacter isolates from the conventional and organic poultry operations were tested for antimicrobial resistance to nine antimicrobial agents by the agar dilution method. Although Campylobacter species were highly prevalent in both the conventional and organic poultry operations, the antimicrobial resistance rates were significantly different between the organic operations and the conventional operations. Less than 2% of Campylobacter strains isolated from organically raised poultry were resistant to fluoroquinolones, while 46% and 67% of Campylobacter isolates from conventionally raised broilers and conventionally raised turkeys, respectively, were resistant to these antimicrobials. In addition, a high frequency of resistance to erythromycin (80%), clindamycin (64%), kanamycin (76%), and ampicillin (31%) was observed among Campylobacter isolates from conventionally raised turkeys. None of the Campylobacter isolates obtained in this study was resistant to gentamicin, while a large number of the isolates from both conventional and organic poultry operations were resistant to tetracycline. Multidrug resistance was observed mainly among Campylobacter strains isolated from the conventional turkey operation (81%). Findings from this study clearly indicate the influence of conventional and organic poultry production practices on antimicrobial resistance of Campylobacter on poultry farms.  相似文献   

12.
Responses of the soil microflora to the herbicide dalapon have been examined using three different soil treatments. The parameters examined were bacterial numbers and dehydrogenase activity. The effects of dalapon were less marked in soil cores sprayed with dalapon than in disturbed soil samples with herbicide incorporated throughout. Air-drying of soil reduced the rate of disappearance of dalapon. The implications of these results are discussed in relation to the problems of designing sensitive tests which avoid exaggerated or abnormal effects of the agricultural chemical under test.  相似文献   

13.
In the framework of an extraterrestrial origin of biological homochirality, universal mechanisms are of particular interest. In this sense we consider the weak parity-violating neutrino-electron interaction through weak charged currents W ± between the relic flux of cosmological neutrinos and the electrons of a chiral molecule. We use the known theoretical result of the split in energy of the two helicity sates of an electron in the cosmic neutrino bath, due to weak charged currents. In the case that electrons of a chiral molecule are submitted to a helicoidal potential due to the nuclear conformation, these electrons have opposite helicities for the two enantiomers of the molecule and consequently the mentioned neutrino-electron interaction would produce a splitting in energy between the two enantiomers. An estimation of this energy for the case of a single electron yields a small value of the order of 10−26 eV. This value results amplified by the contribution of all the molecular electrons having helicity and other possible mechanisms.  相似文献   

14.
The roots of tomato plants (Lycopersicon esculentum Mill., cv.Moneymaker) were exposed to low concentrations of oxygen bywaterlogging the soil or by growing the plants in nutrient solutionflushed with nitrogen gas. After 24 h, the rate of ethyleneproduction by the petioles, main stem, and shoot apex was increasedby 4–6-fold and the petioles developed epinastic curvatures.Removing the roots did not reproduce these responses. The amountsof ethylene produced by shoot tissues in response to physicalwounding was greatly increased by waterlogging the soil. The production of ethylene by roots was suppressed by the absenceof oxygen. When the roots were transferred back to an aerobicenvironment ethylene production quickly exceeded that observedin roots maintained continuously in aerobic conditions. The enhanced rate of ethylene production in the shoots occurredin the absence of increased water stress as measured with aleaf pressure chamber; leaf water potentials were increasedrather than decreased by waterlogging for 30 h or more. Thiswas associated with stomatal closure and reduced transpiration.Resistance to water flow through the plant increased as transpirationdecreased in response to waterlogging. However, at similar ratesof transpiration, resistance was normally lower in waterloggedplants than in controls.  相似文献   

15.
The ability of spores of Bacillus subtilis to germinate at 50° in sublethal concentrations of chlorocresol is related to sporulation temperature as is the resistance of the subsequent outgrowth at 50° to this substance. The degree of germination, age of spores and amount of outgrowth produced are of minor importance in determining resistance of the outgrowth.  相似文献   

16.
Olive fruit characteristics (weight, pulp/stone ratio, and oil and moisture content) and the iodine value (IV) of 31 new olive progenies (Olea europaea L.) were determined. To evaluate the effect of the genetic variability on these parameters, the new olive progenies, obtained through cross‐pollination between Tunisian and Mediterranean olive cultivars, were planted in a selected grove guaranteeing the homogeneity of the pedologic and climatic conditions. A strong genetic effect and significant differences between genotypes were obtained for the IV and the fruit characteristics evaluated. Discriminant analysis was used to classify the new progenies as distinct from each other, based on their IV, and their pulp and stone weight. An almost full discrimination of the olives from different genotypes was only achieved when the fruit characteristics (pulp and stone weight) and the IV data were analyzed together.  相似文献   

17.
Over the past six decades, coastal wetlands in China have experienced rapid and extensive agricultural reclamation. In the context of saline conditions, long-term effect of cultivation after reclamation on soil chemical properties has not been well understood. We studied this issue using a case of approximately 60-years cultivation of a coastal saline marsh in Bohai Rim, northern China. The results showed that long-term reclamation significantly decreased soil organic carbon (SOC) (−42.2%) and total nitrogen (TN) (−25.8%) at surface layer (0–30 cm) as well as their stratification ratios (SRs) (0–5 cm:50–70 cm and 5–10 cm:50–70 cm). However, there was no significant change in total phosphorus (TP) as well as its SRs under cultivation. Cultivation markedly reduced ratios of SOC to TN, SOC to TP and TN to TP at surface layer (0–30 cm) and their SRs (0–5 cm:50–70 cm). After cultivation, electrical conductivity and salinity significantly decreased by 60.1% and 55.3% at 0–100 cm layer, respectively, suggesting a great desalinization. In contrast, soil pH at 20–70 cm horizons notably increased as an effect of reclamation. Cultivation also changed compositions of cations at 0–10 cm layer and anions at 5–100 cm layer, mainly decreasing the proportion of Na+, Cl and SO4 2−. Furthermore, cultivation significantly reduced the sodium adsorption ratio and exchangeable sodium percentage in plow-layer (0–20 cm) but not residual sodium carbonate, suggesting a reduction in sodium harm.  相似文献   

18.
Menaquinones with seven isoprene units were the major isoprenoid quinones detected in the chloroform-methanol extracts of representative strains of the genera Bacillus and Sporolactobacillus. Neither menaquinones nor ubiquinones were detected in similar extracts of strains of the genus Lactobacillus.  相似文献   

19.
脱硫石膏改良强度苏打盐渍土效果的研究   总被引:67,自引:0,他引:67  
石膏改良盐碱土在我国已是成功的经验,但是,由于受到资源条件的限制及其价格昂贵等原因,影响着大面积的推广应用。目前,利用煤炭作为能源的工厂,在其煤炭燃烧过程中产生着大量的污染物质硫氧化物,而日本国旨在消除此类污染物所研究的除硫装置新工艺中的副产物脱硫石...  相似文献   

20.
桃冷藏期间3?Cl2处理的效果最好,呼吸速率、乙烯释放量、过氧化物酶(POD)和多酚氧化酶(PPO)活性均显著下降(P≤0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号