首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
三种粪便总DNA提取方法的比较   总被引:2,自引:1,他引:2  
目的比较不同粪便总DNA提取方法对肠道菌群多样性研究的影响。方法采用Bead beating法、化学裂解法和QIAamp DNA Stool Mini Kit提取同一份人粪便样品的总DNA,对比3种方法的DNA得率和16S rRNA基因V3区的变性梯度凝胶电泳(DGGE)图谱。结果Bead beating法的DNA得率约是其他2种方法的2倍;3种方法得到的DGGE图谱的Dice相似性为60%~70%,2条优势条带只出现在Bead beating法图谱中。在2~5min的Bead beating法击打时间里,DNA得率随击打时间的延长有一定的增加,但DGGE图谱无显著变化。结论不同的DNA提取方法会影响菌群的多样性分析。比较其他2种方法,Bead beating的裂解效率更高,能够检测到更多种类的细菌,更合适肠道菌群组成的分子研究。  相似文献   

2.
The effect of oral amoxicillin treatment on fecal microbiota of seven healthy adult dogs was determined with a focus on the prevalence of bacterial antibiotic resistance and changes in predominant bacterial populations. After 4–7 days of exposure to amoxicillin, fecal Escherichia coli expressed resistance to multiple antibiotics when compared with the pre-exposure situation. Two weeks postexposure, the susceptibility pattern had returned to pre-exposure levels in most dogs. A shift in bacterial populations was confirmed by molecular fingerprinting of fecal bacterial populations using denaturing gradient gel electrophoresis (PCR-DGGE) of the 16S V3 rRNA gene region. Much of the variation in DGGE profiles could be attributed to dog-specific factors. However, permutation tests indicated that amoxicillin exposure significantly affected the DGGE profiles after controlling for the dog effect ( P =0.02), and pre-exposure samples were clearly separated from postexposure samples. Sequence analysis of DGGE bands and real-time PCR quantification indicated that amoxicillin exposure caused a shift in the intestinal ecological balance toward a Gram-negative microbiota including resistant species in the family Enterobacteriaceae .  相似文献   

3.
The diversity and stability of the fecal bacterial microbiota in weaning pigs was studied after introduction of an exogenous Lactobacillus reuteri strain, MM53, using a combination of cultivation and techniques based on genes encoding 16S rRNA (16S rDNA). Piglets (n = 9) were assigned to three treatment groups (control, daily dosed, and 4th-day dosed), and fresh fecal samples were collected daily. Dosed animals received 2.5 x 10(10) CFU of antibiotic-resistant L. reuteri MM53 daily or every 4th day. Mean Lactobacillus counts for the three groups ranged from 1 x 10(9) to 4 x 10(9) CFU/g of feces. Enumeration of strain L. reuteri MM53 on MRS agar (Difco) plates containing streptomycin and rifampin showed that the introduced strain fluctuated between 8 x 10(3) and 5 x 10(6) CFU/g of feces in the two dosed groups. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA fragments, with primers specific for variable regions 1 and 3 (V1 and V3), was used to profile complexity of fecal bacterial populations. Analysis of DGGE banding profiles indicated that each individual maintained a unique fecal bacterial population that was stable over time, suggesting a strong host influence. In addition, individual DGGE patterns could be separated into distinct time-dependent clusters. Primers designed specifically to restrict DGGE analysis to a select group of lactobacilli allowed examination of interspecies relationships and abundance. Based on relative band migration distance and sequence determination, L. reuteri was distinguishable within the V1 region 16S rDNA gene patterns. Daily fluctuations in specific bands within these profiles were observed, which revealed an antagonistic relationship between L. reuteri MM53 (band V1-3) and another indigenous Lactobacillus assemblage (band V1-6).  相似文献   

4.
16S rDNA技术研究新生腹泻仔猪粪样细菌区系的多样性变化   总被引:11,自引:2,他引:11  
用PCR/DGGE技术跟踪一窝5头新生腹泻仔猪自然康复、补饲、断奶过程中粪样细菌区系的演变,构建3头仔猪42日龄粪样的16S rDNA克隆库,分析匹配于DGGE优势谱带23个克隆的16S rDNA序列。结果表明,DGGE图谱由简单(2日龄)到复杂(10日龄),再回复简单(16日龄)到复杂(断奶),最后趋于稳定。2、16日龄DGGE图谱最简单、相似,最优势谱带为大肠杆菌;10日龄(补饲后3天)图谱复杂,大肠杆菌存在但不是最优势谱带,补饲前后图谱的相似性低,补饲导致了粪样细菌区系结构的显著变化;断奶前(27日龄)和后(35、42日龄)图谱复杂,优势谱带、图谱相似性均趋向稳定。序列分析表明,23个克隆中除5个与未知细菌最相似外,其余最相似菌分属于肠球菌(Enterococcus),链球菌(Streptococcus),梭菌(Clostridium),消化链球菌(Peptostreptococcus)和乳酸杆菌(Lactobacillus)。  相似文献   

5.
Yuan J  Zeng B  Niu R  Tang H  Li W  Zhang Z  Wei H 《Current microbiology》2011,62(4):1107-1112
Human flora-associated (HFA) mice are frequently applied in studying the ecology and metabolism of human gut microbiota. However, the development and stability of the genus Bacteriodes, a prominent bacteria group of human gut microbiota, in HFA mice have not yet fully been examined. In this study, PCR-denaturing gradient gel electrophoresis (DGGE) analysis was employed to monitor the Bacteriodes community in the fecal microbiota of six HFA Kunming mice during a period of 3 weeks. Based on the DGGE banding patterns, the majority of prominent bands in the HFA mice DGGE profile were also typical bands in the human DGGE profile, despite the absence of three bands (corresponding to two different B. thetaiotaomicron strains and one B. intestinalis strain) from the human DGGE profile. The Dice coefficient of similarity for the fecal microbiota of HFA mice in comparison to the human donor sample ranged between 74 ± 6% and 81 ± 7%. The phylogeny of bands in the DGGE profile showed that the dominant Bacteriodes species in the fecal microbiota of HFA mice were B. thetaiotaomicron, representing 66.7% of all bands. Our results indicate that the genus Bacteriodes in the fecal microbiota of HFA mice was selected from the human donor and could remain relatively stable over time.  相似文献   

6.
The investigation provides molecular analyses of the faecal microbiota in type 2 diabetic patients. In order to characterise the gut microbiota in diabetic patients and to assess whether there are changes in the diversity and similarity of gut microbiota in diabetic patients when compared with healthy individuals, bacterial DNAs from 16 type 2 diabetic patients and 12 healthy individuals were extracted from faecal samples and characterised by PCR-denaturing gradient gel electrophoresis (DGGE) with primers specifically targeting V3 region of the 16S rRNA gene, as well as been sequenced for excised gel bands. The counts of Bacteroides vulgatus, Clostridium leptum subgroup and Bifidobacterium genus were assessed using quantitative PCR. By comparing species diversity profiles of two groups, we observed that there were no significant differences between diabetic and healthy group, although a few diabetic individuals (D6, D8) exhibited a remarkable decrease in species profiles. As for the similarity index, it was lower in inter-group than that in intra-group, which showed that the composition of gut microbiota in diabetic group might be changed due to diabetes status. Sequencing results also revealed that bacterial composition of diabetic group was different from that of the healthy group. B. vulgatus and Bifidobacterium genus were low represented in the microbiota of diabetic group, and the significant decrease was observed for Bifidobacterium by real-time PCR. Taken together, in this work we observed the characterisation of gut microbiota in diabetic patients, which suggestes that the gut microbiota of diabetes patients have some changes associated with occurrence and development of diabetes.  相似文献   

7.
Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified ribosomal RNA gene amplicons was used to study the stool microbiota of hospitalized patients and to examine the effect of antibiotic therapy. For one patient, 16 anaerobic species identified by random cloning and sequencing of PCR-amplified rRNA genes from stool were represented by bands on the DGGE gel. DGGE analysis and similarity index comparisons demonstrated that the anaerobic microbiota of this individual remained stable in the absence of antibiotic therapy, was minimally affected by ciprofloxacin but markedly reduced by clindamycin therapy, and recovery of some organisms was evident within days after discontinuation of clindamycin. DGGE analysis of additional patients demonstrated similar disruptions of the intestinal microbiota associated with antibiotic therapy. The DGGE banding patterns of nine patients showed considerable variability, but several bands were shared among patients. Thus, our findings are consistent with previous studies that utilized culture techniques, and suggest that DGGE is a useful technique for analysis of the stool microbiota of hospitalized patients.  相似文献   

8.
The diversity and stability of the fecal bacterial microbiota in weaning pigs was studied after introduction of an exogenous Lactobacillus reuteri strain, MM53, using a combination of cultivation and techniques based on genes encoding 16S rRNA (16S rDNA). Piglets (n = 9) were assigned to three treatment groups (control, daily dosed, and 4th-day dosed), and fresh fecal samples were collected daily. Dosed animals received 2.5 × 1010 CFU of antibiotic-resistant L. reuteri MM53 daily or every 4th day. Mean Lactobacillus counts for the three groups ranged from 1 × 109 to 4 × 109 CFU/g of feces. Enumeration of strain L. reuteri MM53 on MRS agar (Difco) plates containing streptomycin and rifampin showed that the introduced strain fluctuated between 8 × 103 and 5 × 106 CFU/g of feces in the two dosed groups. Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA fragments, with primers specific for variable regions 1 and 3 (V1 and V3), was used to profile complexity of fecal bacterial populations. Analysis of DGGE banding profiles indicated that each individual maintained a unique fecal bacterial population that was stable over time, suggesting a strong host influence. In addition, individual DGGE patterns could be separated into distinct time-dependent clusters. Primers designed specifically to restrict DGGE analysis to a select group of lactobacilli allowed examination of interspecies relationships and abundance. Based on relative band migration distance and sequence determination, L. reuteri was distinguishable within the V1 region 16S rDNA gene patterns. Daily fluctuations in specific bands within these profiles were observed, which revealed an antagonistic relationship between L. reuteri MM53 (band V1-3) and another indigenous Lactobacillus assemblage (band V1-6).  相似文献   

9.
BBn (BioBreeding) rats were fed casein-based diets supplemented with barley flour, oatmeal flour, cellulose, or barley beta-glucans of high [HV] or low viscosity [LV] in order to measure the prebiotic effects of these different sources of dietary fiber. The dietary impact on the composition of the cecal microbiota was determined by the generation of denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified 16S rRNA gene sequences. The DGGE profiles produced from the cecal microbiota of rats within each dietary group were similar, but consensus profiles generated from pooled bacterial DNAs showed differences between rat groups. Animals fed HV glucans (HV-fed rats) had DGGE consensus profiles that were 30% dissimilar from those of the other rat groups. A 16S rRNA gene fragment that was more conspicuous in the profiles of HV-fed animals than in those of cellulose-fed rats had sequence identity with Lactobacillus acidophilus. Measurements of L. acidophilus rRNA abundance (DNA-RNA hybridization), the preparation of cloned 16S rRNA gene libraries, and the enumeration of Lactobacillus cells (fluorescent in situ hybridization) showed that lactobacilli formed a greater proportion of the cecal microbiota in HV-fed rats. In vitro experiments confirmed that some lactobacilli utilize oligosaccharides (degree of polymerization, 3 or 4) present in beta-glucan hydrolysates. The results of this study have relevance to the use of purified beta-glucan products as dietary supplements for human consumption.  相似文献   

10.
Analysis of the large bowel microbiota of colitic mice using PCR/DGGE   总被引:1,自引:0,他引:1  
AIM: To test combined polymerase chain reaction amplification of 16S rRNA gene sequences and denaturing gradient gel electrophoresis (PCR/DGGE) as an analytical method to investigate the composition of the large bowel microbiota of mice during the development of colitis. METHODS AND RESULTS: The colonic microbiota of formerly germfree interleukin 10 (IL-10)-deficient mice that had been exposed to the faecal microbiota of specific pathogen-free animals was screened using PCR/DGGE. The composition of the large bowel microbiota of IL-10-deficient mice changed as colitis progressed. DNA fragments originating from four bacterial populations ('Bacteroides sp.', Bifidobacterium animalis, Clostridium cocleatum, enterococci) were more apparent in PCR/DGGE profiles of colitic mice relative to non-colitic animals, whereas two populations were less apparent (Eubacterium ventriosum, Acidophilus group lactobacilli). Specific DNA:RNA dot blot analysis showed that bifidobacterial ribosomal RNA (rRNA) abundance increased as colitis developed. CONCLUSIONS: PCR/DGGE was shown to be an effective method to demonstrate changes in the composition of the large bowel microbiota of mice in relation to progression of inflammatory disease. The intensity of staining of DNA fragments in DGGE profiles reflected increased abundance of bifidobacterial rRNA in the microbiota of colitic animals. As bifidobacterial fragments in PCR/DGGE profiles generated from microbiota DNA showed increased intensity of fragment staining, an increase in bifidobacterial numbers in colitic mice was indicated. SIGNIFICANCE AND IMPACT OF THE STUDY: PCR/DGGE analysis demonstrated an altered composition of the large bowel microbiota of colitic mice. This work will allow specific groups of bacteria to be targeted in future research concerning the pathogenesis of colitis.  相似文献   

11.
We investigated the microbial genetic diversity and ciliate community in coastal soil from five sites with an environmental gradient using denaturing gradient gel electrophoresis (DGGE), gene sequencing and the Ludox–QPS method. The analyses of both the 16S ribosomal RNA (rRNA) gene and 18S rRNA gene DGGE resulted in equal or even a higher number of bands found in the samples taken from the high-salinity sites IV and V than in those taken from the low-to-moderate-salinity sites I–III. Cluster analysis of both DGGE profiles classified the five sites into three main groups (sites I, II and III and IV and V), which corresponded well to the analysis of environmental factors. There were 13 species observed at site I, three species at site II and nine species at site III, while no active ciliates were observed at the high-salinity sites IV and V. By contrast, the ciliate-specific DGGE revealed a higher number of bands in the samples taken from the high-salinity soil. Furthermore, gene sequencing suggested that the ciliates in the high-salinity soil comprised forms originating not only from soil but also from marine environments. The data indicate that saline soil may maintain a high diversity of ciliates and soil salinity might be the most influential factor regulating the community structure of ciliates.  相似文献   

12.
Liu J  Wu D  Ahmed A  Li X  Ma Y  Tang L  Mo D  Ma Y  Xin Y 《Current microbiology》2012,65(1):7-13
Human liver was closely associated with gut through various biological mechanisms, such as bacterium-gut interactions. Alterations of gut microbiota seemed to play an important role in induction and promotion of liver damage progression. The aim of this study was to characterize the gut microbiota in liver cirrhosis patients and assess whether there are alterations in the diversity and similarity of intestinal flora in cirrhotic patients when compared with healthy individuals. PCR-denaturing gradient gel electrophoresis (DGGE) with universal primers targeting V3 region of the 16S rRNA gene was employed to characterize the overall intestinal microbiota composition, and some excised gel bands were cloned for sequencing. Real-time PCR was further utilized to quantitatively analyze the subpopulation of microbiota using group-specific primers targeting the Enterobacteriaceae, Enterococcus and Bifidobacterium genus. The DGGE profiles of two groups demonstrated significant differences between cirrhotic and healthy groups (P?相似文献   

13.
Although only poorly documented, it can be assumed that intensive antibiotic treatments of chronic lung infections in patients with cystic fibrosis (CF) also affect the diversity and metabolic functioning of the gastrointestinal microbiota and potentially lead to a state of dysbiosis. A better knowledge of the differences in gut microbiota composition and stability between patients with CF and healthy subjects could lead to optimization of current antibiotic therapies and/or development of add-on therapies. Using conventional culturing and population fingerprinting by denaturing gradient gel electrophoresis (DGGE) of 16S rRNA amplicons, we compared the predominant fecal microbiota of 21 patients with CF and 24 healthy siblings in a cross-sectional study. General medium counts, as well as counts on media specific for lactic acid bacteria, clostridia, Bifidobacterium spp., Veillonella spp., and Bacteroides-Prevotella spp., were consistently higher in sibling samples than in CF samples, whereas the reverse was found for enterobacterial counts. DGGE fingerprinting uncovered large intersubject variations in both study groups. On the other hand, the cross-sectional data indicated that the predominant fecal microbiota of patients and siblings had comparable species richness. In addition, a longitudinal study was performed on 7 or 8 consecutive samples collected over a 2-year period from two patients and their respective siblings. For these samples, DGGE profiling indicated an overall trend toward lower temporal stability and lower species richness in the predominant fecal CF microbiota. The observed compositional and dynamic perturbations provide the first evidence of a general dysbiosis in children with CF compared to their siblings.  相似文献   

14.
传统分离培养结合DGGE法检测榨菜腌制过程的细菌多样性   总被引:6,自引:0,他引:6  
采用传统分离培养和基于16S rRNA 作为分子标记的变性梯度凝胶电泳(Denaturing gradient gel electrophoresis, DGGE)的方法, 分析榨菜腌制过程中不同时期的可培养细菌数量、多样性及其群落结构。结果表明, 用传统分离与分子鉴定方法获得7个属的细菌类群, 其中乳杆菌属(Acidobacterium)是优势菌群, 明串珠菌属(Leuconostoc)是次优势菌群。对通过DGGE方法得到的11条16S rRNA优势条带序列进行了比对, 结果表明明串珠菌属(Leucon  相似文献   

15.
AIMS: To determine the phylogenetic composition of the colonic microbiota of transgenic (TG) HLA-B27 rats using 16S ribosomal RNA (rRNA) gene sequences obtained from denaturing gradient gel electrophoresis (DGGE) gels and sequences from a 16S rRNA gene library. METHODS AND RESULTS: Colonic microbiota of TG and nontransgenic (NT) rats harboured by 10-week-old and 6-month-old animals was screened using PCR/DGGE. Six months old TG rats had marked inflammation of the colon compared with 10-week-old TG and NT rats. The DGGE profiles of rats with inflamed colon were similar from rat to rat (Dice's Similarity Coefficient proximal colon 73%, distal colon 83%) whereas profiles from animals without inflammation were dissimilar (52-64%). Identifications of bacterial origins of 16S rRNA gene sequences obtained from DGGE gels (200 bp) and from 16S rRNA clones (450 bp) of the colonic microbiota of diseased rats gave sequences most closely phylogenetically affiliated with uncultured or unknown bacteria. CONCLUSIONS: PCR/DGGE was shown to be an effective method to compare the colonic microbiota composition of TG and NT rats relative to the progression of inflammatory disease. Sequencing of 16S rRNA gene fragments from DGGE gels or 16S rRNA gene clones from a random library showed that uncultured or unknown bacteria were most commonly detected by both methods. It can be concluded that it would be better in future studies to search for the antigens produced by the gut microbiota against which the dysfunctional immune system reacts rather than seek phylogenetic associations. SIGNIFICANCE AND IMPACT OF THE STUDY: PCR/DGGE can be used as a rapid initial screening method to compare the composition of bacterial communities of initially unknown composition that are associated with the development of intestinal disease.  相似文献   

16.
A group-specific PCR-based denaturing gradient gel electrophoresis (DGGE) method was developed and combined with group-specific clone library analysis to investigate the diversity of the Clostridium leptum subgroup in human feces. PCR products (length, 239 bp) were amplified using C. leptum cluster-specific primers and were well separated by DGGE. The DGGE patterns of fecal amplicons from 11 human individuals revealed host-specific profiles; the patterns for fecal samples collected from a child for 3 years demonstrated the structural succession of the population in the first 2 years and its stability in the third year. A clone library was constructed with 100 clones consisting of 1,143-bp inserts of 16S rRNA gene fragments that were amplified from one adult fecal DNA with one forward universal bacterial primer and one reverse group-specific primer. Eighty-six of the clones produced the 239-bp C. leptum cluster-specific amplicons, and the remaining 14 clones did not produce these amplicons but still phylogenetically belong to the subgroup. Sixty-four percent of the clones were related to Faecalibacterium prausnitzii (similarity, 97 to 99%), 6% were related to Subdoligranulum variabile (similarity, approximately 99%), 2% were related to butyrate-producing bacterium A2-207 (similarity, 99%), and 28% were not identified at the species level. The identities of most bands in the DGGE profiles for the same adult were determined by comigration analysis with the 86 clones that harbored the 239-bp group-specific fragments. Our results suggest that DGGE combined with clone library analysis is an effective technique for monitoring and analyzing the composition of this important population in the human gut flora.  相似文献   

17.
BBn (BioBreeding) rats were fed casein-based diets supplemented with barley flour, oatmeal flour, cellulose, or barley β-glucans of high [HV] or low viscosity [LV] in order to measure the prebiotic effects of these different sources of dietary fiber. The dietary impact on the composition of the cecal microbiota was determined by the generation of denaturing gradient gel electrophoresis (DGGE) profiles of PCR-amplified 16S rRNA gene sequences. The DGGE profiles produced from the cecal microbiota of rats within each dietary group were similar, but consensus profiles generated from pooled bacterial DNAs showed differences between rat groups. Animals fed HV glucans (HV-fed rats) had DGGE consensus profiles that were 30% dissimilar from those of the other rat groups. A 16S rRNA gene fragment that was more conspicuous in the profiles of HV-fed animals than in those of cellulose-fed rats had sequence identity with Lactobacillus acidophilus. Measurements of L. acidophilus rRNA abundance (DNA-RNA hybridization), the preparation of cloned 16S rRNA gene libraries, and the enumeration of Lactobacillus cells (fluorescent in situ hybridization) showed that lactobacilli formed a greater proportion of the cecal microbiota in HV-fed rats. In vitro experiments confirmed that some lactobacilli utilize oligosaccharides (degree of polymerization, 3 or 4) present in β-glucan hydrolysates. The results of this study have relevance to the use of purified β-glucan products as dietary supplements for human consumption.  相似文献   

18.
采用免培养的rpoB和16S rDNA基因的变性梯度凝胶电泳技术(DGGE)对3种山羊(波尔山羊,内蒙古绒山羊,四川南江黄羊)瘤胃细菌优势菌群结构进行了比较分析。研究结果显示rpoBDGGE图谱中条带数目少于16S rDNA图谱,并且条带分离效果明显,更有利于分析瘤胃细菌群落组成。从两种DGGE图谱中均可以发现3种山羊瘤胃细菌具有一定的相似性,种内个体间相似性明显高于种间相似性,这说明寄主品种是影响瘤胃细菌种群构成的一个重要因素。同时进行了部分优势细菌16S rDNA基因V6-V8区序列的系统发育分析。基因序列分析表明,DGGE图谱中优势条带的16S rDNA基因序列中有4条克隆的序列与基因库最相似菌的相似性大于97%,余下的克隆序列相似性在89%~96%之间,其中13条序列的与之相似性最高的序列均来自于未被鉴定的瘤胃细菌。  相似文献   

19.
20.
AIMS: To study large intestinal mucosal bacterial communities by Denaturing Gradient Gel Electrophoresis (DGGE) profiling and sequencing of 16S rRNA gene polymerase chain reaction (PCR) products amplified from DNA extracted from colorectal biopsies taken from healthy individuals. The specific aims were to determine how similar the mucosa-associated bacterial communities are within and between individuals and also to characterize the phylogenetic origin of isolated DGGE bands. METHODS AND RESULTS: Human colorectal biopsies were taken at routine colonoscopy from 33 patients with normal looking mucosa. The DNA was extracted directly from single biopsies and the bacterial 16S rDNA PCR amplified. The PCR products were profiled using DGGE to generate a fingerprint of the dominant members of the bacterial community associated with the biopsy. The reproducibility of this method was high (>98%). Washed and unwashed biopsies gave similar DGGE banding patterns (Median Similarity Coefficient - MSC 96%, InterQuartile Range - IQR 3.0%, n = 5). Adjacent biopsies sampled from the same patient using different forceps gave similar DGGE profiles (MSC 94%, n = 2). Two colorectal biopsies sampled at locations 2-5 cm apart, from each of 18 patients, resulted in very similar profiles (MSC 100%, IQR 2.8%). Biopsies sampled from different locations within the large intestine of the same patient also gave similar DGGE profiles (MSC 98% IQR 3.3%n = 6). Although all patients (n = 33) gave different DGGE profiles, some similarity (c. 34%) was observed between profiles obtained from 15 patients arbitrarily selected. 35 DGGE bands were excised and sequenced. Many were found to be most closely related to uncultured bacterial sequence entries in the Genbank database. Others belonged to typical gut bacterial genera including Bacteroides, Ruminococcus, Faecalibacterium and Clostridium. CONCLUSIONS: Bacterial communities adherent to colorectal mucosa within a normal patient show little variation; in contrast, mucosal bacterial communities sampled from different patients with normal colorectal mucosa show a high degree of variation. SIGNIFICANCE AND IMPACT OF THE STUDY: This research demonstrates that DGGE profiling of 16S rRNA gene PCR products amplified from DNA extracted directly from mucosal samples offers fresh insight into the bacterial communities that are adherent to colorectal mucosa. These findings are important with respect to further studies on the gastrointestinal tract in health and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号