首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified a group of nutrients that can directly or indirectly protect mitochondria from oxidative damage and improve mitochondrial function and named them “mitochondrial nutrients”. The direct protection includes preventing the generation of oxidants, scavenging free radicals or inhibiting oxidant reactivity, and elevating cofactors of defective mitochondrial enzymes with increased Michaelis–Menten constant to stimulate enzyme activity, and also protect enzymes from further oxidation, and the indirect protection includes repairing oxidative damage by enhancing antioxidant defense systems either through activation of phase 2 enzymes or through increase in mitochondrial biogenesis. In this review, we take α-lipoic acid (LA) as an example of mitochondrial nutrients by summarizing the protective effects and possible mechanisms of LA and its derivatives on age-associated cognitive and mitochondrial dysfunction of the brain. LA and its derivatives improve the age-associated decline of memory, improve mitochondrial structure and function, inhibit the age-associated increase of oxidative damage, elevate the levels of antioxidants, and restore the activity of key enzymes. In addition, co-administration of LA with other mitochondrial nutrients, such as acetyl-l-carnitine and coenzyme Q10, appears more effective in improving cognitive dysfunction and reducing oxidative mitochondrial dysfunction. Therefore, administrating mitochondrial nutrients, such as LA and its derivatives in combination with other mitochondrial nutrients to aged people and patients suffering from neurodegenerative diseases, may be an effective strategy for improving mitochondrial and cognitive dysfunction.  相似文献   

2.
alpha-Lipoic acid (LA) has been widely studied as an agent for preventing and treating various diseases associated with oxidative disruption of mitochondrial functions. To investigate a related mitochondrial antioxidant, we compared the effects of lipoamide (LM), the neutral amide of LA, with LA for measures of oxidative damage and mitochondrial dysfunction in a human retinal pigment epithelial (RPE) cell line. Acrolein, a major component of cigarette smoke and a product of lipid peroxidation, was used to induce oxidative mitochondrial damage in RPE cells. Overall, using comparable concentrations, LM was more effective than LA at preventing acrolein-induced mitochondrial dysfunction and oxidative stress. Relative to LA, LM improved ATP levels, membrane potentials, and activities of mitochondrial complexes I, II, and V and dehydrogenases that had been decreased by acrolein exposure. LM reduced acrolein-induced oxidant generation, calcium levels, protein oxidation, and DNA damage to a greater degree than LA. And, total antioxidant capacity, glutathione content, glutathione S-transferase, and superoxide dismutase activities and expression of nuclear factor-E2-related factor 2 were increased by LM relative to LA. These results suggest that LM is a more potent mitochondrial-protective agent and antioxidant than LA in protecting RPE from oxidative damage.  相似文献   

3.
4.
&#102 -Lipoic acid (LA), an antioxidant with broad neuroprotective capacity, is thought to act by scavenging reactive oxygen species and stimulation of glutathione synthesis. LA shows structural resemblance to dithiolethiones, like anethole dithiolethione (ADT). ADT protects against oxidative damage, primarily by induction of phase II detoxication enzymes, in particular NAD(P)H:quinone oxidoreductase (NQO1) and glutathione- S -transferase (GST). Therefore, we investigated whether LA, like ADT, is capable also of inducing these protective enzymes. Our data show that LA, like ADT, induces a highly significant, time- and concentration dependent, increase in the activity of NQO1 and GST in C6 astroglial cells. The LA or ADT mediated induction of NQO1 was further confirmed by quantitative PCR and western blot analysis. This work for the first time unequivocally demonstrates LA mediated upregulation of phase II detoxication enzymes, which may highly contribute to the compounds' neuroprotective potential. Moreover, the data support the notion of a common mechanism of action of LA and ADT.  相似文献   

5.
Prenatal stress induces cognitive functional impairment in offspring, an eventuality in which mitochondrial dysfunction and oxidative stress are believed to be closely involved. In this study, the involvement of the AMP-activated protein kinase (AMPK) pathway was investigated. A well-known activator, resveratrol (Res), was used to induce AMPK activation in SH-SY-5Y cells. Significant mitochondrial biogenesis and phase II enzyme activation, accompanied by decreased protein oxidation and GSSG content, were observed after Res treatment, and inhibition of AMPK with Compound c abolished the induction effects of Res. Further study utilizing a prenatal restraint stress (PRS) animal model indicated that maternal supplementation of Res may activate AMPK in the hippocampi of both male and female offspring, and that PRS-induced mitochondrial loss in the offspring hippocampus was inhibited by Res maternal supplementation. In addition, Res activated Nrf2-mediated phase II enzymes and reduced PRS-induced oxidative damage in both male and female offspring. Moreover, PRS markedly decreased mRNA levels of various neuron markers, as well as resultant offspring cognitive function, based on spontaneous alternation performance and Morris water maze tests, the results of which were significantly improved by maternal Res supplementation. Our results provide evidence indicating that AMPK may modulate mitochondrial content and phase II enzymes in neuronal cells, a process which may play an essential role in preventing PRS-induced cognitive impairment. Through the coupling of mitochondrial biogenesis and the Nrf2 pathway, AMPK may modulate oxidative stress and be a promising target against neurological disorders.  相似文献   

6.
-Lipoic acid (LA), an antioxidant with broad neuroprotective capacity, is thought to act by scavenging reactive oxygen species and stimulation of glutathione synthesis. LA shows structural resemblance to dithiolethiones, like anethole dithiolethione (ADT). ADT protects against oxidative damage, primarily by induction of phase II detoxication enzymes, in particular NAD(P)H:quinone oxidoreductase (NQO1) and glutathione- S -transferase (GST). Therefore, we investigated whether LA, like ADT, is capable also of inducing these protective enzymes. Our data show that LA, like ADT, induces a highly significant, time- and concentration dependent, increase in the activity of NQO1 and GST in C6 astroglial cells. The LA or ADT mediated induction of NQO1 was further confirmed by quantitative PCR and western blot analysis. This work for the first time unequivocally demonstrates LA mediated upregulation of phase II detoxication enzymes, which may highly contribute to the compounds' neuroprotective potential. Moreover, the data support the notion of a common mechanism of action of LA and ADT.  相似文献   

7.
Vitamin E has long been identified as a major lipid-soluble chain-breaking antioxidant in mammals. α-Tocopherol is a vitamin E component and the major form in the human body. We propose that, besides its direct chain-breaking antioxidant activity, α-tocopherol may exert an indirect antioxidant activity by enhancing the cell's antioxidant system as a Phase II enzyme inducer. We investigated α-tocopherol's inducing effect on Phase II enzymes and its protective effect on acrolein-induced toxicity in a human retinal pigment epithelial (RPE) cell line, ARPE-19. Acrolein, a major component of cigarette smoke and also a product of lipid peroxidation, at 75 μmol/L over 24 h, caused significant loss of ARPE-19 cell viability, increased oxidative damage, decreased antioxidant defense, inactivation of the Keap1/Nrf2 pathway, and mitochondrial dysfunction. ARPE-19 cells have been used as a model of smoking- and age-related macular degeneration. Pretreatment with α-tocopherol activated the Keap1/Nrf2 pathway by increasing Nrf2 expression and inducing its translocation to the nucleus. Consequently, the expression and/or activity of the following Phase II enzymes increased: glutamate cysteine ligase, NAD(P)H:quinone oxidoreductase 1, heme-oxygenase 1, glutathione S-transferase and superoxide dismutase; total antioxidant capacity and glutathione also increased. This antioxidant defense enhancement protected ARPE-19 cells from an acrolein-induced decrease in cell viability, lowered reactive oxygen species and protein oxidation levels, and improved mitochondrial function. These results suggest that α-tocopherol protects ARPE-19 cells from acrolein-induced cellular toxicity, not only as a chain-breaking antioxidant, but also as a Phase II enzyme inducer.  相似文献   

8.
Mitochondrial dysfunction and oxidative damage are highly involved in the pathogenesis of Parkinson's disease (PD). Some mitochondrial antioxidants/nutrients that can improve mitochondrial function and/or attenuate oxidative damage have been implicated in PD therapy. However, few studies have evaluated the preventative effects of a combination of mitochondrial antioxidants/nutrients against PD, and even fewer have sought to optimize the doses of the combined agents. The present study examined the preventative effects of two mitochondrial antioxidant/nutrients, R-α–lipoic acid (LA) and acetyl-L-carnitine (ALC), in a chronic rotenone-induced cellular model of PD. We demonstrated that 4-week pretreatment with LA and/or ALC effectively protected SK-N-MC human neuroblastoma cells against rotenone-induced mitochondrial dysfunction, oxidative damage and accumulation of α-synuclein and ubiquitin. Most notably, we found that when combined, LA and ALC worked at 100–1000-fold lower concentrations than they did individually. We also found that pretreatment with combined LA and ALC increased mitochondrial biogenesis and decreased production of reactive oxygen species through the up-regulation of the peroxisome proliferator-activated receptor-γ coactivator 1α as a possible underlying mechanism. This study provides important evidence that combining mitochondrial antioxidant/nutrients at optimal doses might be an effective and safe prevention strategy for PD.  相似文献   

9.
10.
《Free radical research》2013,47(10):1179-1189
Abstract

Aim of the present study was to test, by vitamin E treatment, the hypothesis that muscle adaptive responses to training are mediated by free radicals produced during the single exercise sessions. Therefore, we determined aerobic capacity of tissue homogenates and mitochondrial fractions, tissue content of mitochondrial proteins and expression of factors (PGC-1, NRF-1, and NRF-2) involved in mitochondrial biogenesis. Moreover, we determined the oxidative damage extent, antioxidant enzyme activities, and glutathione content in both tissue preparations, mitochondrial ROS production rate. Finally we tested mitochondrial ROS production rate and muscle susceptibility to oxidative stress. The metabolic adaptations to training, consisting in increased muscle oxidative capacity coupled with the proliferation of a mitochondrial population with decreased oxidative capacity, were generally prevented by antioxidant supplementation. Accordingly, the expression of the factors involved in mitochondrial biogenesis, which were increased by training, was restored to the control level by the antioxidant treatment. Even the training-induced increase in antioxidant enzyme activities, glutathione level and tissue capacity to oppose to an oxidative attach were prevented by vitamin E treatment. Our results support the idea that the stimulus for training-induced adaptive responses derives from the increased production, during the training sessions, of reactive oxygen species that stimulates the expression of PGC-1, which is involved in mitochondrial biogenesis and antioxidant enzymes expression. On the other hand, the observation that changes induced by training in some parameters are only attenuated by vitamin E treatment suggests that other signaling pathways, which are activated during exercise and impinge on PGC-1, can modify the response to the antioxidant integration.  相似文献   

11.
The effects of 17beta‐estradiol (E2) are mediated through activation of estrogen receptors (ER): ERalpha and ERbeta. It is known that ERalpha/ERbeta ratio is higher in breast tumors than in normal tissue. Since antioxidant enzymes and uncoupling proteins (UCPs) are reactive oxygen species (ROS) production and mitochondrial biogenesis regulators, our aim was to study the E2‐effect on oxidative stress, antioxidant enzyme expression, and UCPs in breast cancer cell lines with different ERalpha/ERbeta ratios. The lower ERalpha/ERbeta ratio T47D cell line showed low ROS production and high UCP5 levels. However, the higher ERalpha/ERbeta ratio MCF‐7 cell line showed an up‐regulation of antioxidant enzymes and UCPs, yet exhibited high oxidative stress. As a result, a decrease in antioxidant enzyme activities and UCP2 protein levels, coupled with an increase in oxidative damage was found. On the whole, these results show different E2‐effects on oxidative stress regulation, modulating UCPs, and antioxidant enzymes, which were ERalpha/ERbeta ratio dependent in breast cancer cell lines. J. Cell. Biochem. 113: 3178–3185, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
13.
In the present study, we evaluated the beneficial effect of mulberry extracts (ME), which are rich in phenolics and anthocyanins, on the induction of antioxidant enzymes and on the promotion of cognition in senescence-accelerated mice (SAMP). Six-month old SAMP8 and SAMR1 mice were fed a basal diet supplemented with 0.18% and 0.9% ME for consecutive 12 weeks. The results showed that the mice fed the ME supplement demonstrated significantly less amyloid β protein and showed improved learning and memory ability in avoidance response tests. ME-treated mice showed a higher antioxidant enzyme activity and less lipid oxidation in both the brain and liver, as compared to the control mice. Furthermore, treatment with ME decreased the levels of serum aspartate aminotransferase, alanine aminotransferase, triglyceride and total cholesterol that increase with ageing. The hepatoprotective effect of ME appeared to occur through a mechanism related to regulation of the mitogen-activated protein kinases and activation of the nuclear factor-erythroid 2 related factor 2, where the latter regulates the induction of phase 2 antioxidant enzymes and reduction of oxidative damage. Overall, supplementation of ME might be advantageous to the induction of an antioxidant defense system and for the improvement of memory deterioration in ageing animals.  相似文献   

14.
The activities of antioxidant defence enzymes — total, manganese and copper zinc containing superoxide dismutase (Tot SOD, Mn SOD, CuZn SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR) and biotransformation phase II enzyme glutathione-S-transferase (GST) — in the liver of longfin gurnard (Chelidonichthys obscurus) from the Montenegrin coastline (Adriatic sea) were investigated. The specimens were collected in winter (February) and late spring (May) at two localities: Platamuni (PL, potentially unpolluted) and the Estuary of the River Bojana (EB, potentially polluted). The obtained results show that the activities of Mn SOD, CAT, GSH-Px and GST in winter were significantly lower at EB than at PL. In spring, the activities of CAT and GST were decreased, while GR activity was increased at EB in comparison to PL. The activities of Mn SOD and GST at PL were decreased and GSH-Px, GR and GST activities at EB were increased in spring compared to winter. Our work represents the first study of liver antioxidant enzymes of longfin gurnard from the Montenegrin coastline and reveals that locality, as a variable, has a greater influence on antioxidant enzymes and biotransformation phase II enzyme GST activities compared to season.  相似文献   

15.
Mitogen-activated protein kinase (MAPK) cascades are activated by diverse extracellular signals and participate in the regulation of an array of cellular programs. In this study, we investigated the roles of MAPKs in the induction of phase II detoxifying enzymes by chemicals. Treatment of human hepatoma (HepG2) and murine hepatoma (Hepa1c1c7) cells with tert-butylhydroquinone (tBHQ) or sulforaphane (SUL), two potent phase II enzyme inducers, stimulated the activity of extracellular signal-regulated protein kinase 2 (ERK2) but not c-Jun N-terminal kinase 1. tBHQ and SUL also activated MAPK kinase. Inhibition of MAPK kinase with its inhibitor, PD98059, abolished ERK2 activation and impaired the induction of quinone reductase, a phase II detoxifying enzyme, and antioxidant response element (ARE)-linked reporter gene by tBHQ and SUL. Overexpression of a dominant-negative mutant of ERK2 also attenuated tBHQ and SUL induction of ARE reporter gene activity. Interestingly, although expression of Ras and its mutant forms showed distinct effects on basal ARE reporter gene activity, they did not affect the activation of reporter gene by the inducers. Furthermore, a dominant-negative mutant of Ras had little effect on ERK2 activation by tBHQ and SUL, implicating a Ras-independent mechanism. Indeed, both tBHQ and SUL were able to stimulate Raf-1 kinase activity in vivo as well as in vitro. Thus, our results indicate that the induction of ARE-dependent phase II detoxifying enzymes is mediated by a MAPK pathway, which may involve direct activation of Raf-1 by the inducers.  相似文献   

16.
X Zou  J Gao  Y Zheng  X Wang  C Chen  K Cao  J Xu  Y Li  W Lu  J Liu  Z Feng 《Cell death & disease》2014,5(5):e1218
Zeaxanthin (Zea) is a major carotenoid pigment contained in human retina, and its daily supplementation associated with lower risk of age-related macular degeneration. Despite known property of Zea as an antioxidant, its underlying molecular mechanisms of action remain poorly understood. In this study, we aim to study the regulation mechanism of Zea on phase II detoxification enzymes. In normal human retinal pigment epithelium cells, Zea promoted the nuclear translocation of NF-E2-related factor 2 (Nrf2) and induced mRNA and protein expression of phase II enzymes, the induction was suppressed by specific knockdown of Nrf2. Zea also effectively protected against tert-butyl hydroperoxide-induced mitochondrial dysfunction and apoptosis. Glutathione (GSH) as the most important antioxidant was also induced by Zea through Nrf2 activation in a time- and dose-dependent manner, whereas the protective effects of Zea were decimated by inhibition of GSH synthesis. Finally, Zea activated the PI3K/Akt and MAPK/ERK pathway, whereas only PI3K/Akt activation correlated with phase II enzymes induction and Zea protection. In further in vivo analyses, Zea showed effects of inducing phase II enzymes and increased GSH content, which contributed to the reduced lipid and protein peroxidation in the retina as well as the liver, heart, and serum of the Sprague–Dawley rats. For the first time, Zea is presented as a phase II enzymes inducer instead of being an antioxidant. By activating Nrf2-mediated phase II enzymes, Zea could enhance anti-oxidative capacity and prevent cell death both in vivo and in vitro.  相似文献   

17.
Abstract

-Lipoic acid (LA) and its corresponding derivative, -lipoamide (LM), have been described as antioxidants, but the mechanisms of their putative antioxidant effects remain largely uncharacterised. The vicinal thiols present in the reduced forms of these compounds suggest that they might possess metal chelating properties. We have shown previously that cell death caused by oxidants may be initiated by lysosomal rupture and that this latter event may involve intralysosomal iron which catalyzes Fenton-type chemistry and resultant peroxidative damage to lysosomal membranes. Here, using cultured J774 cells as a model, we show that both LA and LM stabilize lysosomes against oxidative stress, probably by chelating intralysosomal iron and, consequently, preventing intralysosomal Fenton reactions. In preventing oxidant-mediated apoptosis, LM is significantly more effective than LA, as would be expected from their differing capacities to enter cells and concentrate within the acidic lysosomal compartment. As previously reported, the powerful iron-chelator, desferrioxamine (Des) (which also locates within the lysosomal compartment), also provides protection against oxidant-mediated cell death. Interestingly, although Des enhances the partial protection afforded by LA, it confers no additional protection when added with LM. Therefore, the antioxidant actions of LA and LM may arise from intralysosomal iron chelation, with LM being more effective in this regard.  相似文献   

18.
Antioxidant response of wheat roots to drought acclimation   总被引:1,自引:0,他引:1  
Wheat (Triticum aestivum L.) seedlings of a drought-resistant cv. C306 were subjected to severe water deficit directly or through stress cycles of increasing intensity with intermittent recovery periods. The antioxidant defense in terms of redox metabolites and enzymes in root cells and mitochondria was examined in relation to membrane damage. Acclimated seedlings exhibited higher relative water content and were able to limit the accumulation of H2O2 and membrane damage during subsequent severe water stress conditions. This was due to systematic up-regulation of superoxide dismutase, ascorbate peroxidase (APX), catalase, peroxidases, and ascorbate–glutathione cycle components at both the whole cell level as well as in mitochondria. In contrast, direct exposure of severe water stress to non-acclimated seedlings caused greater water loss, excessive accumulation of H2O2 followed by elevated lipid peroxidation due to the poor antioxidant enzyme response particularly of APX, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and ascorbate–glutathione redox balance. Mitochondrial antioxidant defense was found to be better than the cellular defense in non-acclimated roots. Termination of stress followed by rewatering leads to a rapid enhancement in all the antioxidant defense components in non-acclimated roots, which suggested that the excess levels of H2O2 during severe water stress conditions might have inhibited or down-regulated the antioxidant enzymes. Hence, drought acclimation conferred enhanced tolerance toward oxidative stress in the root tissue of wheat seedlings due to both reactive oxygen species restriction and well-coordinated induction of antioxidant defense.  相似文献   

19.
Ischemic preconditioning is a complex cardioprotective phenomenon that involves adaptive changes in cells and molecules and occurs in a biphasic pattern: an early phase after 1-2 h and a late phase after 12-24 h. While it is widely accepted that reactive oxygen species are strongly involved in triggering ischemic preconditiong, it is not clear if they play a major role in the early or late phase of preconditioning and which are the mechanisms involved. The present study was designed to investigate the mechanisms behind H(2)O(2)-induced cardioprotection in rat neonatal cardiomyocytes. We focused on antioxidant and phase II enzymes and their modulation by protein kinase signaling pathways and nuclear-factor-E(2)-related factor-1 (Nrf1) and Nrf2. H(2)O(2) preconditioning was able to counteract oxidative stress more effectively in the late than in the early phase of adaptation. In particular, H(2)O(2) preconditioning counteracted oxidative stress-induced apoptosis by decreasing caspase-3 activity, increasing Bcl2 expression and selectively increasing the expression and activity of antioxidant and phase II enzymes through Nrf1 and Nrf2 translocation to the nucleus. The downregulation of Nrf1 and Nrf2 by small interfering RNA reduced the expression level of phase II enzymes. Specific inhibitors of phosphatidylinositol 3-kinase/Akt and p38 MAPK activation partially reduced the cardioprotection elicited by H(2)O(2) preconditioning and the induction and activity of phase II enzymes. These findings demonstrate, for the first time, a key role for Nrf1, and not only for Nrf2, in the induction of phase II enzymes triggered by H(2)O(2) preconditioning.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号