首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
2.
3.
4.
5.
Sexual reproduction allows transposable elements (TEs) to proliferate, leading to rapid divergence between populations and species. A significant outcome of divergence in the TE landscape is evident in hybrid dysgenic syndromes, a strong form of genomic incompatibility that can arise when (TE) family abundance differs between two parents. When TEs inherited from the father are absent in the mother''s genome, TEs can become activated in the progeny, causing germline damage and sterility. Studies in Drosophila indicate that dysgenesis can occur when TEs inherited paternally are not matched with a pool of corresponding TE silencing PIWI-interacting RNAs (piRNAs) provisioned by the female germline. Using the D. virilis syndrome of hybrid dysgenesis as a model, we characterize the effects that divergence in TE profile between parents has on offspring. Overall, we show that divergence in the TE landscape is associated with persisting differences in germline TE expression when comparing genetically identical females of reciprocal crosses and these differences are transmitted to the next generation. Moreover, chronic and persisting TE expression coincides with increased levels of genic piRNAs associated with reduced gene expression. Combined with these effects, we further demonstrate that gene expression is idiosyncratically influenced by differences in the genic piRNA profile of the parents that arise though polymorphic TE insertions. Overall, these results support a model in which early germline events in dysgenesis establish a chronic, stable state of both TE and gene expression in the germline that is maintained through adulthood and transmitted to the next generation. This work demonstrates that divergence in the TE profile is associated with diverse piRNA-mediated transgenerational effects on gene expression within populations.  相似文献   

6.
7.
8.
9.
The Piwi-interacting RNA (piRNA) pathway defends the germline of animals from the deleterious activity of selfish transposable elements (TEs) through small-RNA mediated silencing. Adaptation to novel invasive TEs is proposed to occur by incorporating their sequences into the piRNA pool that females produce and deposit into their eggs, which then propagates immunity against specific TEs to future generations. In support of this model, the F1 offspring of crosses between strains of the same Drosophila species sometimes suffer from germline derepression of paternally inherited TE families, caused by a failure of the maternal strain to produce the piRNAs necessary for their regulation. However, many protein components of the Drosophila piRNA pathway exhibit signatures of positive selection, suggesting that they also contribute to the evolution of host genome defense. Here we investigate piRNA pathway function and TE regulation in the F1 hybrids of interspecific crosses between D. melanogaster and D. simulans and compare them with intraspecific control crosses of D. melanogaster. We confirm previous reports showing that intraspecific crosses are characterized by derepression of paternally inherited TE families that are rare or absent from the maternal genome and piRNA pool, consistent with the role of maternally deposited piRNAs in shaping TE silencing. In contrast to the intraspecific cross, we discover that interspecific hybrids are characterized by widespread derepression of both maternally and paternally inherited TE families. Furthermore, the pattern of derepression of TE families in interspecific hybrids cannot be attributed to their paucity or absence from the piRNA pool of the maternal species. Rather, we demonstrate that interspecific hybrids closely resemble piRNA effector-protein mutants in both TE misregulation and aberrant piRNA production. We suggest that TE derepression in interspecific hybrids largely reflects adaptive divergence of piRNA pathway genes rather than species-specific differences in TE-derived piRNAs.  相似文献   

10.
PIWI subfamily Argonaute proteins and small RNAs bound to them (PIWI interacting RNA, piRNA) control mobilization of transposable elements (TE) in the animal germline. piRNAs are generated by distinct genomic regions termed piRNA clusters. piRNA clusters are often extensive loci enriched in damaged fragments of TEs. New TE integration into piRNA clusters causes production of TE-specific piRNAs and repression of cognate sequences. piRNAs are thought to be generated from long single-stranded precursors encoded by piRNA clusters. Special chromatin structures might be essential to distinguish these genomic loci as a source for piRNAs. In this review, we present recent findings on the structural organization of piRNA clusters and piRNA biogenesis in Drosophila and other organisms, which are important for understanding a key epigenetic mechanism that provides defense against TE expansion.  相似文献   

11.
12.
Piwi-interacting RNAs (piRNAs) are a novel class of small regulatory RNAs that are expressed specifically and abundantly in germ cells. Mammalian piRNAs are 26-31 nucleotides in length and bind to Piwi proteins, but their function and biogenesis remain elusive. We previously showed that mammalian piRNAs are 2'-O-methylated at their 3' termini. The biosynthetic mechanism and function of this modification is unknown. Here, we report that the mouse homolog (mHEN1) of HEN1, a plant microRNA (miRNA) 2'-O-methyltransferase, is expressed specifically in testis and methylates 3' termini of piRNAs in vitro. These findings provide insight into the biogenesis of piRNAs.  相似文献   

13.
14.
In Drosophila, three types of endogenous small RNAs—microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), and endogenous small-interfering RNAs (endo-siRNAs or esiRNAs)—function as triggers in RNA silencing. Although piRNAs are produced independently of Dicer, miRNA and esiRNA biogenesis pathways require Dicer1 and Dicer2, respectively. Recent studies have shown that among the four isoforms of Loquacious (Loqs), Loqs-PB and Loqs-PD are involved in miRNA and esiRNA processing pathways, respectively. However, how these Loqs isoforms function in their respective small RNA biogenesis pathways remains elusive. Here, we show that Loqs-PD associates specifically with Dicer2 through its C-terminal domain. The Dicer2–Loqs-PD complex contains R2D2, another known Dicer2 partner, and excises both exogenous siRNAs and esiRNAs from their corresponding precursors in vitro. However, Loqs-PD, but not R2D2, enhanced Dicer2 activity. The Dicer2–Loqs-PD complex processes esiRNA precursor hairpins with long stems, which results in the production of AGO2-associated small RNAs. Interestingly, however, small RNAs derived from terminal hairpins of esiRNA precursors are loaded onto AGO1; thus, they are classified as a new subset of miRNAs. These results suggest that the precursor RNA structure determines the biogenesis mechanism of esiRNAs and miRNAs, thereby implicating hairpin structures with long stems as intermediates in the evolution of Drosophila miRNA.  相似文献   

15.
16.
17.
18.
19.
In many cancers, including neuroblastoma, microRNA (miRNA) expression profiling of peripheral blood (PB) and bone marrow (BM) may increase understanding of the metastatic process and lead to the identification of clinically informative biomarkers. The quality of miRNAs in PB and BM samples archived in PAXgene? blood RNA tubes from large-scale clinical studies and the identity of reference miRNAs for standard reporting of data are to date unknown. In this study, we evaluated the reliability of expression profiling of 377 miRNAs using quantitative polymerase chain reaction (qPCR) in PB and BM samples (n = 90) stored at ?80 °C for up to 5 years in PAXgene? blood RNA tubes. There was no correlation with storage time and variation of expression for any single miRNA (r < 0.50). The profile of miRNAs isolated as small RNAs or co-isolated with small/large RNAs was highly correlated (r = 0.96). The mean expression of all miRNAs and the geNorm program identified miR-26a, miR-28-5p, and miR-24 as the most stable reference miRNAs. This study describes detailed methodologies for reliable miRNA isolation and profiling of PB and BM, including reference miRNAs for qPCR normalization, and demonstrates the suitability of clinical samples archived at ?80 °C into PAXgene? blood RNA tubes for miRNA expression studies.  相似文献   

20.
Drosophila melanogaster expresses three classes of small RNAs, which are classified according to their mechanisms of biogenesis. MicroRNAs are ∼22–23 nucleotides (nt), ubiquitously expressed small RNAs that are sequentially processed from hairpin-like precursors by Drosha/Pasha and Dcr-1/Loquacious complexes. MicroRNAs usually associate with AGO1 and regulate the expression of protein-coding genes. Piwi-interacting RNAs (piRNAs) of ∼24–28 nt associate with Piwi-family proteins and can arise from single-stranded precursors. piRNAs function in transposon silencing and are mainly restricted to gonadal tissues. Endo-siRNAs are found in both germline and somatic tissues. These ∼21-nt RNAs are produced by a distinct Dicer, Dcr-2, and do not depend on Drosha/Pasha complexes. They predominantly bind to AGO2 and target both mobile elements and protein-coding genes. Surprisingly, a subset of endo-siRNAs strongly depend for their production on the dsRNA-binding protein Loquacious (Loqs), thought generally to be a partner for Dcr-1 and a cofactor for miRNA biogenesis. Endo-siRNA production depends on a specific Loqs isoform, Loqs-PD, which is distinct from the one, Loqs-PB, required for the production of microRNAs. Paralleling their roles in the biogenesis of distinct small RNA classes, Loqs-PD and Loqs-PB bind to different Dicer proteins, with Dcr-1/Loqs-PB complexes and Dcr-2/Loqs-PD complexes driving microRNA and endo-siRNA biogenesis, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号