首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The circulatory and metabolic effects of inhalation of oxygen in high concentration were investigated in 50 patients with acute myocardial infarction. The heart rate, arterial blood pressure, cardiac out-put, blood gas tensions, pH, and lactate and pyruvate levels were measured. In general, oxygen inhalation produced a fall in cardiac output and stroke volume and a rise in blood pressure and systemic vascular resistance. In a small number of patients with very low cardiac out-puts there was a rise in output. A substantial rise in arterial oxygen tension was obtained even in patients with low initial values. The raised arterial blood lactate levels which were frequently present were reduced after oxygen. The therapeutic implications of these effects are discussed.  相似文献   

5.
6.
Decreases in Amino Acid and Acetylcholine Metabolism During Hypoxia   总被引:5,自引:4,他引:1  
Abstract: Hypoxia impairs brain function by incompletely defined mechanisms. Mild hypoxia, which impairs memory and judgment, decreases acetylcholine (ACh) synthesis, but not the levels of ATP or the adenylate energy charge. However, the effects of mild hypoxia on the synthesis of the glucosederived amino acids [alanine, aspartate, γ-amino butyric acid (GABA), glutamate, glutamine, and serine] have not been characterized. Thus, we examined the incorporation of [U-14C]glucose into these amino acids and ACh during anemic hypoxia (injection of NaNO2), hypoxic hypoxia (15 or 10% O2), and hypoxic hypoxia plus hypercarbia (15 or 10% O2 with 5% CO2). In general, the synthesis of the amino acids and of ACh declined in parallel with each type of hypoxia we studied. For example, anemic hypoxia (75 mg/kg of NaNO2) decreased the incorporation of [U-14C]glucose into the amino acids and into ACh similarly. [Percent inhibition: ACh (57.4), alanine (34.4), aspartate (49.2), GABA (61.9). glutamine (59.2), glutamate (51.0), and serine (36.7)]. A comparison of several levels (37.5, 75, 150, 225 mg/kg of NaNO2) of anemic hypoxia showed a parallel decrease in the flux of glucose into ACh and into the amino acids whose synthesis depends on mitochondrial oxidation: GABA (r= 0.98), glutamate (r= 0.99), aspartate (r= 0.96), and glutamine (r= 0.97). The synthesis of the amino acids not dependent on mitochondrial oxidation did not correlate as well with changes in ACh metabolism: serine (r= 0.68) and alanine (r= 0.76). The decreases in glucose incorporation into ACh and into the amino acids with hypoxic hypoxia (15% or 10% O2) or hypoxic hypoxia with 5% CO2 were very similar to those with the two lowest levels of anemic hypoxia. Thus, any explanation of the brain's sensitivity to a decrease in oxygen availability must include the alterations in the metabolism of the amino acid neurotransmitters as well as ACh.  相似文献   

7.
Myocardial infarction (MI) is one of the leading causes of death worldwide and Mesenchymal Stem Cells (MSCs) transplantation has been considered a promising therapy. Recently, it was reported that the therapeutic effectiveness of MSCs is dependent on the age of the donor, yet the underlying mechanism has not been thoroughly investigated. This study was designed to investigate whether this impaired therapeutic potency is caused by an increased susceptivity of MSCs from old donors to reactive oxygen species (ROS). The MSCs were isolated from the subcutaneous inguinal region of young (8–10 weeks) and old (18 months) Sprague–Dawley (SD) rats. By exposing these MSCs to H2O2, we found that the adhesion of MSCs from old donors was damaged more severely. Specifically, decreased expression of integrin and reduced phosphorylation of focal adhesion kinase Src and FAK were observed. Furthemore, H2O2 triggered an increased apoptosis of MSCs from old donors. To study the viability and therapeutic potency of MSCs from young and old donors in vivo, these MSCs were transplanted into acute MI model rats. We observed a more rapidly decreased survival rate of the old MSCs in the infarct region, which may be caused by their increased susceptivity to the micro-environmental ROS, as transplantation of the old MSCs with N-acetyl-L-cysteine (NAC), a ROS scavenger, protected them. The low viability of engrafted old MSCs consequently impaired their therapeutic effectiveness, judging by the histology and function of heart. Our study may help to understand the mechanism of MSCs-host interaction during MI, as well as shed light on the design of therapeutic strategy in clinic.  相似文献   

8.
Epidemiological studies have demonstrated that offspring born to mothers preeclampsia (PE) are at increased risk for developing cardiovascular diseases after birth, but the underlying mechanism is unknown. Angiotensin II receptor type 1 autoantibody (AT1-AA), an agonist acting via activation of the AT1 receptor, is believed to be involved in the pathogenesis of both PE and fetal growth restriction. The aim of the present study was to confirm the hypothesis that prenatal AT1-AA exposure increases the heart susceptibility to ischemia/reperfusion injury (IRI) in the offspring in an AT1-AA-induced animal model of PE, and determine whether or not the increase of maternal AT1-AA level is a factor contributing to sustained abnormalities of the heart structure during infancy. The hearts of 45-day-old offspring rats were studied using Langendorff preparation to determine the susceptibility of the heart to IRI. The results showed that the body weight of the maternal rats was not significantly different between the study and control groups, but the body weight of their offspring in AT1-AA group was decreased slightly at day 21 of gestational age, and at day 3 after birth. Although the heart weight index was not significantly affected at all ages examined, AT1-AA significantly increased the size of myocardial cells of the left ventricle (LV) at the age of 45 days. AT1-AA gained access to fetal circulation via the placenta and induced apoptosis of fetal myocardial cells. AT1-AA also significantly delayed recovery from IRI and affected the LV function of 45-day-old offspring. This was associated with a significant increase in IRI-induced LV myocardial infarct size. These results suggest that AT1-AA induced abnormal apoptosis of fetal myocardial cells during the fetal period and increased the cardiac susceptibility to IRI in adult offspring.  相似文献   

9.
10.
11.
To investigate the astrocyte response to hypoxia/reoxygenation, as a model relevant to the pathogenesis of ischemic injury, cultured rat astrocytes were exposed to hypoxia. On restoration of astrocytes to normoxia, there was a dramatic increase in protein synthesis within 3 h, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis of metabolically labeled astrocyte lysates showed multiple induced bands on fluorograms. Levels of cellular ATP declined during the first 3 h of reoxygenation and the concentration of AMP increased to ± 3.6 nmol/mg of protein within 1 h of reoxygenation. Reoxygenated astrocytes generated oxygen free radicals early after replacement into ambient air, and addition of diphenyliodonium, an NADPH oxidase inhibitor, diminished the generation of free radicals as well as the induction of several bands on fluorogram. Although addition of cycloheximide on reoxygenation resulted in inhibition of both astrocyte protein synthesis and accumulation of cellular AMP, it caused cell death within 6 h, suggesting the importance of protein synthesis in adaptation of hypoxic astrocytes to reoxygenation. Potential physiologic significance of biosynthetic products of astrocytes in hypoxia/reoxygenation was suggested by the recovery of glutamate uptake. These results indicate that the astrocyte response to hypoxia/reoxygenation includes generation of oxygen free radicals and de novo synthesis of products that influence cell viability and function in ischemia.  相似文献   

12.
BackgroundLeft ventricular assist device (LVAD) mechanically unloads the left ventricle (LV). Theoretical analysis indicates that partial LVAD support (p-LVAD), where LV remains ejecting, reduces LV preload while increases afterload resulting from the elevation of total cardiac output and mean aortic pressure, and consequently does not markedly decrease myocardial oxygen consumption (MVO2). In contrast, total LVAD support (t-LVAD), where LV no longer ejects, markedly decreases LV preload volume and afterload pressure, thereby strikingly reduces MVO2. Since an imbalance in oxygen supply and demand is the fundamental pathophysiology of myocardial infarction (MI), we hypothesized that t-LVAD minimizes MVO2 and reduces infarct size in MI. The purpose of this study was to evaluate the differential impact of the support level of LVAD on MVO2 and infarct size in a canine model of ischemia-reperfusion.MethodsIn 5 normal mongrel dogs, we examined the impact of LVAD on MVO2 at 3 support levels: Control (no LVAD support), p-LVAD and t-LVAD. In another 16 dogs, ischemia was induced by occluding major branches of the left anterior descending coronary artery (90 min) followed by reperfusion (300 min). We activated LVAD from the beginning of ischemia until 300 min of reperfusion, and compared the infarct size among 3 different levels of LVAD support.Resultst-LVAD markedly reduced MVO2 (% reduction against Control: -56 ± 9%, p<0.01) whereas p-LVAD did less (-21 ± 14%, p<0.05). t-LVAD markedly reduced infarct size compared to p-LVAD (infarct area/area at risk: Control; 41.8 ± 6.4, p-LVAD; 29.1 ± 5.6 and t-LVAD; 5.0 ± 3.1%, p<0.01). Changes in creatine kinase-MB paralleled those in infarct size.ConclusionsTotal LVAD support that minimizes metabolic demand maximizes the benefit of LVAD in the treatment of acute myocardial infarction.  相似文献   

13.
14.
The synthesis of methylmercury by Desulfovibrio desulfuricans LS was investigated on the basis of 14C incorporation from precursors and the measurement of relevant enzyme activities in cell extracts. The previously observed incorporation of C-3 from serine into methylmercury was confirmed by measurement of relatively high activities of serine hydroxymethyltransferase and other enzymes of this pathway. High rates of label incorporation into methylmercury from H14COO- and H14CO3- prompted the assay of enzymes of the acetyl coenzyme A (CoA) synthase pathway. These enzymes were found to be present but at activity levels much lower than those reported for acetogens. Propyl iodide inhibited methylmercury and acetyl-CoA syntheses to similar extents, and methylmercury synthesis was found to compete with acetyl-CoA synthesis for methyl groups. On the basis of these findings, we propose that in methylmercury synthesis by D. desulfuricans LS the methyl group is transferred from CH3-tetrahydrofolate via methylcobalamin. The methyl group may originate from C-3 of serine or from formate via the acetyl-CoA synthase pathway. These pathways are not unique to D. desulfuricans LS, and thus the ability of this bacterium to methylate mercury is most likely associated with the substrate specificity of its enzymes.  相似文献   

15.
16.

Background

Maternal smoking has been associated with elevated risk of type 2 diabetes among the offspring in adulthood. The mechanisms underlying this fetal “programming” effect remain unclear. The present study sought to explore whether maternal smoking affects metabolic health biomarkers in fetuses/newborns.

Methods

In a prospective singleton pregnancy cohort (n = 248), we compared metabolic health biomarkers in the newborns of smoking and non-smoking mothers. Outcomes included cord plasma insulin, proinsulin, insulin-like growth factor I (IGF-I), IGF-II, leptin and adiponectin concentrations, glucose-to-insulin ratio (an indicator of insulin sensitivity) and proinsulin-to-insulin ratio (an indicator of β-cell function).

Results

Independent of maternal (glucose tolerance, age, ethnicity, parity, education, body mass index, alcohol use) and infant (sex, gestational age, birth weight z score, mode of delivery, cord blood glucose concentration) characteristics, the newborns of smoking mothers had lower IGF-I concentrations (mean: 6.7 vs. 8.4 nmol/L, adjusted p = 0.006), and marginally higher proinsulin-to-insulin ratios (0.94 vs. 0.72, adjusted p = 0.06) than the newborns of non-smoking mothers. Cord plasma insulin, proinsulin, IGF-II, leptin and adiponectin concentrations and glucose-to-insulin ratios were similar in the newborns of smoking and non-smoking mothers.

Conclusions

Maternal smoking was associated with decreased fetal IGF-I levels, and borderline lower fetal β-cell function. Larger cohort studies are required to confirm the latter finding. The preliminary findings prompt the hypothesis that these early life metabolic changes may be involved in the impact of maternal smoking on future risk of metabolic syndrome related disorders in the offspring.  相似文献   

17.
Cell cycle-arrested cancer cells are resistant to conventional chemotherapy that acts on the mitotic phases of the cell cycle, although the molecular mechanisms involved in halting cell cycle progression remain unclear. Here, we demonstrated that RFPL4A, an uncharacterized ubiquitin ligase, induced G1 retention and thus conferred decreased sensitivity to chemotherapy in the human colorectal cancer cell line, HCT116. Long term time lapse observations in HCT116 cells bearing a “fluorescence ubiquitin-based cell cycle indicator” identified a characteristic population that is viable but remains in the G1 phase for an extended period of time (up to 56 h). Microarray analyses showed that expression of RFPL4A was significantly up-regulated in these G1-arrested cells, not only in HCT116 cells but also in other cancer cell lines, and overexpression of RFPL4A increased the G1 population and decreased sensitivity to chemotherapy. However, knockdown of RFPL4A expression caused the cells to resume mitosis and induced their susceptibility to anti-cancer drugs in vitro and in vivo. These results indicate that RFPL4A is a novel factor that increases the G1 population and decreases sensitivity to chemotherapy and thus may be a promising therapeutic target for refractory tumor conditions.  相似文献   

18.

Background and Purpose

Squalene, the main hydrocarbon in the unsaponifiable fraction of virgin olive oil, is involved in cholesterol synthesis and it has been reported to own antiatherosclerotic and antiesteatosic effects. However, the squalene''s role on lipid plasma parameters and the influence of genotype on this effect need to be addressed.

Experimental Approaches

Three male mouse models (wild-type, Apoa1- and Apoe- deficient) were fed chow semisynthetic diets enriched in squalene to provide a dose of 1 g/kg during 11 weeks. After this period, their plasma parameters and lipoprotein profiles were analyzed.

Key Results

Squalene administration at a dose of 1 g/kg showed decreased reactive oxygen species in lipoprotein fractions independently of the animal background and caused an specific increase in high density lipoprotein (HDL)-cholesterol levels, accompanied by an increase in phosphatidylcholine and paraoxonase 1 and no changes in apolipoproteins A1 and A4 in wild-type mice. In these mice, the cholesterol increase was due to its esterified form and associated with an increased hepatic expression of Lcat. These effects were not observed in absence of apolipoprotein A1. The increases in HDL- paraoxonase 1 were translated into decreased plasma malondialdehyde levels depending on the presence of Apolipoprotein A1.

Conclusions and Implications

Dietary squalene promotes changes in HDL- cholesterol and paraoxonase 1 and decreases reactive oxygen species in lipoproteins and plasma malondialdehyde levels, providing new benefits of its intake that might contribute to explain the properties of virgin olive oil, although the phenotype related to apolipoproteins A1 and E may be particularly relevant.  相似文献   

19.
Inadequate magnesium (Mg) intake is a widespread problem, with over 50% of women of reproductive age consuming less than the Recommended Dietary Allowance (RDA). Because pregnancy increases the requirement for Mg and the beneficial effects of magnesium sulfate for preeclampsia/eclampsia and fetal neuroprotection are well described, we examined the outcomes of Mg deficiency during pregnancy. Briefly, pregnant Swiss Webster mice were fed either control or Mg-deficient diets starting on gestational day (GD) 6 through euthanasia on GD17. Mg-deficient dams had significantly reduced weight gain and higher plasma adipokines, in the absence of inflammation. Livers of Mg-deficient dams had significantly higher saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs) and lower polyunsaturated fatty acids (PUFAs), including docosahexaenoic acid (DHA) (P < 0.0001) and arachidonic acid (AA) (P < 0.0001). Mechanistically, Mg deficiency was accompanied by enhanced desaturase and elongase mRNA expression in maternal livers along with higher circulating insulin and glucose concentrations (P < 0.05) and increased mRNA expression of Srebf1 and Chrebp, regulators of fatty acid synthesis (P < 0.05). Fetal pups exposed to Mg deficiency were growth-restricted and exhibited reduced survival. Mg-deficient fetal livers showed lower MUFAs and higher PUFAs, with lower desaturase and elongase mRNA expression than controls. In addition, DHA concentrations were lower in Mg-deficient fetal brains (P < 0.05). These results indicate that Mg deficiency during pregnancy influences both maternal and fetal fatty acid metabolism, fetal growth and fetal survival, and support better understanding maternal Mg status before and during pregnancy.  相似文献   

20.
Maternal responsiveness in primates has long been considered emancipated from endocrine factors and entirely dependent on experience and cognition. Here we report that group-living pigtail macaque females increased their rate of interaction with infants in the last weeks of pregnancy in correspondence with an increase in plasma levels of estradiol and progesterone. Estrogen treatment increased the rate at which ovariectomized rhesus females interacted with infants. This is the first evidence that steroid hormones influence maternal responsiveness in anthropoid primates. All untreated ovariectomized females and nonpregnant females interacted with infants, indicating that although estrogen can enhance responsiveness to infants, ovarian or pregnancy hormones are not necessary for the expression of infant-directed behavior in female macaques. The findings of this study suggest fundamental similarities, rather than differences, in the endocrine modulation of maternal responsiveness in primates and other mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号