首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Marine Spirulina platensis may potentially influence the metabolic process in animal cells, and the effect of marine Spirulina platensis in normal and alloxan-induced diabetic rats was therefore investigated. Normal and diabetic rats (albino Wistar strain) were orally administered marine Spirulina platensis for 30 days and their blood levels of glucose and insulin and body weight changes were determined. Pancreatic histopathology was also noted. Treatment with marine Spirulina platensis caused significant alterations in the content of these indicators and therefore in the antidiabetic capacity of the treated animals compared to control rats.  相似文献   

2.
Gentamicin is an effective widely used antibiotic, but the risk of nephrotoxicity and oxidative damage limit its long-term use. Hence, the current study aims to elucidate such hazardous effects. To achieve the study aim male Wistar albino rats (Rattus norvegicus) were exposed to gentamicin to investigate the resultant blood chemical changes and renal histological alterations. In comparison with control rats, gentamicin produced outstanding tubular, glomerular and interstitial alterations that included degeneration, necrosis, cytolysis and cortical tubular desquamation together with mesangial hypercellularity, endothelial cell proliferation and blood capillary congestion. Compared with control animals significant blood chemical changes (P < 0.05) including free radicals, ALT, AST, ALP, serum creatinine and serum urea were recorded in gentamicin-injected animals. The findings revealed that exposure to gentamicin can induce significant histological alterations in the kidney as well as remarkable blood chemical changes that might indicate marked renal failure.  相似文献   

3.
The functional changes in the rat kidney 24 h after administration of 2-bromoethanamine hydrobromide (BEA) have been extensively described. There is, however, little information regarding earlier alterations. The present study was designed to measure early changes in renal function in order to clarify further pathomechanisms of the BEA-induced lesion. Experiments were performed in two groups of Wistar rats with different infusion rates during the first 3 h following injection of 100 mg/kg BW BEA compared to sham-injected rats. Analysis included measuring urine flow, osmolality, urea, sodium and potassium as well as inulin and para-aminohippuric acid clearance. Our studies show a tubular as well as a glomerular involvement in BEA-induced nephropathy. A significantly higher urine flow occurred already in the first 30 min following injection of BEA. Urine osmolality began to decrease after 90 min, Na excretion was elevated at 3 h, K excretion was not significantly different from the control group, urea excretion was increased after 30 min. Contrary to other studies we found a continuously decreasing glomerular filtration rate and PAH clearance during the first 3 h. Our results suggest an early effect of BEA on tubular function (increasing sodium excretion), papillary concentration capacity (increasing urine flow combined with decreasing osmolality) and glomerular function (decreasing glomerular filtration rate).  相似文献   

4.

Background

Accidents caused by Loxosceles spider may cause severe systemic reactions, including acute kidney injury (AKI). There are few experimental studies assessing Loxosceles venom effects on kidney function in vivo.

Methodology/Principal Findings

In order to test Loxosceles gaucho venom (LV) nephrotoxicity and to assess some of the possible mechanisms of renal injury, rats were studied up to 60 minutes after LV 0.24 mg/kg or saline IV injection (control). LV caused a sharp and significant drop in glomerular filtration rate, renal blood flow and urinary output and increased renal vascular resistance, without changing blood pressure. Venom infusion increased significantly serum creatine kinase and aspartate aminotransferase. In the LV group renal histology analysis found acute epithelial tubular cells degenerative changes, presence of cell debris and detached epithelial cells in tubular lumen without glomerular or vascular changes. Immunohistochemistry disclosed renal deposition of myoglobin and hemoglobin. LV did not cause injury to a suspension of fresh proximal tubules isolated from rats.

Conclusions/Significance

Loxosceles gaucho venom injection caused early AKI, which occurred without blood pressure variation. Changes in glomerular function occurred likely due to renal vasoconstriction and rhabdomyolysis. Direct nephrotoxicity could not be demonstrated in vitro. The development of a consistent model of Loxosceles venom-induced AKI and a better understanding of the mechanisms involved in the renal injury may allow more efficient ways to prevent or attenuate the systemic injury after Loxosceles bite.  相似文献   

5.
The purpose of this investigation was to determine the morphological, physiological and biochemical effects of gentamicin upon the rat kidney following prolonged administration of the antibiotic. Sprague-Dawley and Fischer 344 strain rats were given 3, 10, 20 or 40 mg gentamicin per kg body weight per day for 28 days. Morphologic alterations were evaluated by light and electron microscopy. Functional parameters included glomerular filtration rate, PAH secretion, renal plasma flow, sodium reabsorption, potassium excretion, urine volume and protein, and serum urea nitrogen. Oxidative metabolism of mitochondrial fractions from renal cortical homogenates was evaluated by oxygen uptake and P:O ratios. The results indicate focal proximal tubular injury, decreased tubular maximum secretion of PAH, and altered oxidative metabolism at the higher dose levels of gentamicin. Neither elevations of serum urea nitrogen nor alterations in glomerular filtration rate, renal plasma flow, or sodium or potassium excretion were observed. Thus, it appears that high dose levels (40 mg per kg per day) alter the structure and function of some proximal tubular segments when administered over prolonged periods. The alterations appear reversible. Although nephro-toxicity is identified under these conditions in rats, extrapolation to human patients usually receiving much lower doses must be guarded.  相似文献   

6.
The Han:SRPD-cy rat is a well-recognized model of human autosomal-dominant polycystic kidney disease. The disease is characterized by the development of progressive renal cysts, leading to declining renal function. Disease progression typically is monitored by measurement of plasma urea concentration. Although plasma urea may be an adequate measure of overall renal function, urinary biomarkers capable of accurately monitoring disease progression may be equally useful. The goal of this study was to assess several urinary biomarkers as potential markers of disease progression in male and female Han:SPRD-cy rats. These biomarkers were compared with changes in plasma urea concentration and morphometric changes as the disease progressed. Urinary activity of N-acetyl-β-D-glucosaminidase and concentration of α-glutathione S-transferase were measured as markers of proximal tubular dysfunction, glutathione S-transferase Yb1 as a distal tubular marker, and collagen IV as a biomarker for glomerular lesions. Urinary albumin was used as biomarker of glomerular or proximal tubular lesions. Albuminuria increased in male rats as the disease progressed, correlating with increasing plasma urea and morphologic changes. Urine concentrations of α-glutathione S-transferase decreased significantly in the male heterozygotic compared with wildtype rats in the later stages of the disease. Urinary concentrations of glutathione S-transferase Yb1 and collagen IV and activity of N-acetyl-β-D-glucosaminidase did not change during disease progression. Measurement of urinary albumin and concentrations of α-glutathione S-transferase may be useful for monitoring disease progression in the male Han:SPRD-cy rat model in future experiments.  相似文献   

7.
Doxorubicin (DOX) is an anthracycline drug used for cancer treatment. However, its treatment is contiguous with toxic effects. We examined the nephroprotective potential of A. hydaspica polyphenol-rich ethyl acetate extract (AHE) against DOX persuaded nephrotoxicity. 36 male Sprague Dawley rats were randomly assorted into 6 groups. Control group received saline; DOX group: 3 mg/kg b.w. dosage of DOX intraperitoneally for 6 weeks (single dose/week). In co-treatment groups, 200 and 400 mg/kg b.w AHE was given orally for 6 weeks in concomitant with DOX (3 mg/kg b.w, i.p. injection per week) respectively. Standard group received silymarin 400 mg/kg b.w daily + DOX (single dose/week). Biochemical kidney function tests, oxidative stress markers, genotoxicity, antioxidant enzyme status, and histopathological changes were examined. DOX caused significant body weight loss and decrease kidney weight. DOX-induced marked deterioration in renal function indicators in both urine and serum, i.e., PH, specific gravity, total protein, albumin, urea, creatinine, uric acid, globulin, blood urea nitrogen, etc. Also, DOX treatment increases renal tissue oxidative stress markers, while lower antioxidant enzymes in tissue along with degenerative alterations in the renal tissue compared to control rats. AHE co-treatment ameliorates DOX-prompted changes in serum and urine chemistry. Likewise, AHE treatment decreases sensitive markers of oxidative stress and prevented DNA damages by enhancing antioxidant enzyme levels. DOX induction in rats also caused DNA fragmentation which was restored by AHE co-treatment. Moreover, the histological observations evidenced that AHE effectively rescued the kidney tissue from DOX interceded oxidative damage. Our results suggest that co-treatment of AHE markedly improve DOX-induced deleterious effects in a dose-dependent manner. The potency of AHE co-treatment at 400 mg/kg dose is similar to silymarin. These outcomes revealed that A. hydaspica AHE extract might serve as a potential adjuvant that avoids DOX-induced nephrotoxicity.  相似文献   

8.
The role of the tubulointerstitium in radiation-induced renal fibrosis   总被引:2,自引:0,他引:2  
The functional and morphological response of the remaining hypertrophied kidney in unilaterally nephrectomized rats to single doses of 0-20 Gy X rays was investigated. Functional and histological end points were assessed serially 4-24 weeks postirradiation. Renal irradiation led to time- and dose-dependent reductions in renal function, seen in terms of a decreased glomerular filtration rate, increased blood urea nitrogen, and reduced hematocrit. These changes were accompanied by morphological changes in the glomerular, tubular and interstitial portions of the kidney. However, dose-dependent changes were observed only in terms of tubulointerstitial lesions. Significant increases in the degree of interstitial staining for collagen type III and fibronectin were observed 24 weeks postirradiation. These increases in extracellular matrix components were accompanied by a significant increase in interstitial alpha smooth muscle actin, suggesting activation of interstitial fibroblasts into myofibroblasts. There was no evidence of glomerular Tgfb after renal irradiation. A significant increase in tubular Tgfb staining was only seen 8 weeks postirradiation. In contrast, there was a shift of staining to the interstitium such that by 24 weeks postirradiation interstitial Tgfb staining was significantly greater than that seen in controls. These findings suggest that the tubule epithelial cell and the interstitial fibroblast are both active participants in the development and/or progression of radiation-induced renal fibrosis.  相似文献   

9.
Acute kidney injury (AKI) contributes to the high morbidity and mortality of multi-system organ failure in sepsis. However, recovery of renal function after sepsis-induced AKI suggests active repair of energy-producing pathways. Here, we tested the hypothesis in mice that Staphyloccocus aureus sepsis damages mitochondrial DNA (mtDNA) in the kidney and activates mtDNA repair and mitochondrial biogenesis. Sepsis was induced in wild-type C57Bl/6J and Cox-8 Gfp-tagged mitochondrial-reporter mice via intraperitoneal fibrin clots embedded with S. aureus. Kidneys from surviving mice were harvested at time zero (control), 24, or 48 hours after infection and evaluated for renal inflammation, oxidative stress markers, mtDNA content, and mitochondrial biogenesis markers, and OGG1 and UDG mitochondrial DNA repair enzymes. We examined the kidneys of the mitochondrial reporter mice for changes in staining density and distribution. S. aureus sepsis induced sharp amplification of renal Tnf, Il-10, and Ngal mRNAs with decreased renal mtDNA content and increased tubular and glomerular cell death and accumulation of protein carbonyls and 8-OHdG. Subsequently, mtDNA repair and mitochondrial biogenesis was evidenced by elevated OGG1 levels and significant increases in NRF-1, NRF-2, and mtTFA expression. Overall, renal mitochondrial mass, tracked by citrate synthase mRNA and protein, increased in parallel with changes in mitochondrial GFP-fluorescence especially in proximal tubules in the renal cortex and medulla. Sub-lethal S. aureus sepsis thus induces widespread renal mitochondrial damage that triggers the induction of the renal mtDNA repair protein, OGG1, and mitochondrial biogenesis as a conspicuous resolution mechanism after systemic bacterial infection.  相似文献   

10.
One of the first structural changes in diabetic nephropathy (DN) is the renal enlargement. These changes resulted in renal hypertrophy in both glomerular and tubular cells. Shrink in the kidney size, which described as kidney atrophy resulted from the loss of nephrons or abnormal nephron function and lead to loss of the kidney function. On the other hand, increase in kidney size, which described as hypertrophy resulted from increase in proximal tubular epithelial and glomerular cells size. However overtime, tubular atrophy and tubulointerstitial fibrosis occurs as subsequent changes in tubular cell hypertrophy, which is associated with the infiltration of fibroblast cells into the tubulointerstitial space. The rate of deterioration of kidney function shows a strong correlation with the degree of tubulointerstitial fibrosis. A consequence of long-standing diabetes/hyperglycemia may lead to major changes in renal structure that occur but not specific only to nephropathy. Identifying type of cells that involves in renal atrophy and hypertrophy may help to find a therapeutic target to treat diabetic nephropathy. In summary, the early changes in diabetic kidney are mainly includes the increase in tubular basement membrane thickening which lead to renal hypertrophy. On the other hand, only renal tubule is subjected to apoptosis, which is one of the characteristic morphologic changes in diabetic kidney to form tubular atrophy at the late stage of diabetes.  相似文献   

11.
The effects of renal injury on the urinary excretion and tissue distribution of a 20-mer phosphorothioate oligonucleotide were investigated in male Sprague-Dawley rats. Renal injury was produced by treating the rats with either 5.0 mg/kg cisplatin or 2.5 mg/kg of a monoclonal antibody (mAb) directed toward Thy1.1. Controls received saline. Three days after cisplatin treatment or 2 days after anti- Thy1.1 treatment, the rats received 10 mg/kg ISIS 3521. Blood was collected at various times to assess the plasma concentrations of ISIS 3521, and rats were killed at various times from 6 to 48 hours after intravenous (i.v.) infusion of oligonucleotide to assess tissue concentrations by capillary gel electrophoresis (CGE). Cisplatin and anti-Thy1.1 antibody produced histologic and biochemical changes consistent with proximal tubular damage and glomerular damage, respectively. Urinary excretion of oligonucleotides was increased 2- to 4-fold of control; however, this amount accounted for only 1% to 2% of dose compared to 0.5% in controls. Proximal tubular damage reduced renal accumulations of ISIS 3521 and other oligonucleotide metabolites, but there were no obvious compensatory increases in concentrations in other organs except for a slight increase in spleen levels of total oligonucleotide. Glomerular damage was not associated with any change in oligonucleotide disposition. Immunohistochemical studies showed no evidence of alterations in the pattern of distribution within the injured kidney. The data suggest that acute renal dysfunction, either renal tubular or glomerular, does not markedly alter the urinary elimination and tissue deposition of a phosphorothioate oligonucleotide.  相似文献   

12.
This study was undertaken to determine whether hyperfiltration exists at the single nephron level and whether albumin excretion is increased early in the course of diabetes in Biobreeding rats. Diabetic rats were studied at 8-12 weeks after the onset of diabetes. Control animals were age-matched, diabetes-resistant rats. Urinary and tubular fluid albumin concentrations were measured by polyacrylamide gel electrophoresis. Clearance and micropuncture techniques were used to determine whole kidney and single nephron glomerular filtration rate, renal blood flow, and glomerular capillary pressure. The urinary albumin excretion rate (1.3 +/- 0.1 mg/24 hr) and the tubular fluid albumin concentration (4.7 +/- 0.7 mg/dl) in the diabetic group were significantly elevated when compared with urinary albumin excretion (0.9 +/- 0.1 mg/24 hr) and tubular fluid albumin concentration (2.5 +/- 0.5 mg/dl) in the control group. There were no significant differences in glomerular hemodynamics (whole kidney or single nephron glomerular filtration rate or glomerular capillary pressure) between diabetic and control rats. The kidney weight and kidney weight to body weight ratio were significantly higher in diabetic rats when compared with control rats. Early diabetes in Biobreeding rats is characterized by mild albuminuria and increased kidney size, but not glomerular hyperfiltration.  相似文献   

13.
Spirulina platensis has been advocated as safe food for human use by several investigators. In this study its beneficial dietary effect against liver injuries caused by d-galactosamine (d-GalN) was studied ensuring safety to human health using animal model. Acute hepatotoxicity was induced in Wister rats with d-GalN followed by treatment with butylated hydroxytoluene (BHT) and with Spirulina aqueous extract at various concentrations. The effect of Spirulina at different concentrations were tried and compared with BHT treatment. The animals treated with d-GalN on subsequent treatment by supplementation with Spirulina (6, 9%) in the diets, led to significant reversal in the levels of the antioxidant enzymes through hepatocytes by suppression of negative effect. Spirulina aqueous extract at 9% resulted in a significant decrease in the levels of alkaline phosphatase and infalmatory markers TNFα, IL6 and IL1β and also decreased TBARS, while it showed an increase in oxidative stress marker such as GR, GSH, GST, SOD, GPX and CAT and total protein when compared to the levels recorded with that group treated with d-GalN. Results also indicated that Spirulina aqueous extract at 9% concentration was equally effective in protecting liver damage as it was observed with BHT. Histological studies on liver treated with d-GalN, BHT and Spirulina aqueous extract showed that S. platensis is effective as diet in providing beneficial protective effect. The results obtained in the present study very clearly indicated the positive beneficial protective effect of Spirulina, when used as diet, on the safety and protection of liver from injuries caused by toxicants.  相似文献   

14.
单侧输尿管梗阻法制作大鼠肾间质纤维化模型的改进   总被引:9,自引:0,他引:9  
目的建立改良的大鼠肾间质纤维化模型。方法用单侧输尿管结扎术建立大鼠肾纤维化模型,动态观察4周。治疗的第12、、3周末检测血肌酐、尿素氮含量等指标,观察肾功能变化;4周末采用HE染色、六胺银(periodic acid-silver methenamine,PASM)染色和丽春红染色观察肾组织病理变化。结果模型组大鼠血肌酐、尿素氮均有明显上升;模型组大鼠大部分肾小球呈玻璃样变,硬化的肾小球周围所属肾小管萎缩、基底膜增厚,部分肾小管消失;少数残存的肾小球肥大并周围肾小管扩张严重;肾间质胶原纤维增生和大量炎细胞浸润。结论该模型有明显的肾间质纤维化特征,且死亡率低,适合肾间质纤维化的实验研究。  相似文献   

15.
Enhanced renin-angiotensin-aldosterone system (RAAS) activation contributes to proteinuria and chronic kidney disease by increasing glomerular and tubulointerstitial oxidative stress, promotion of fibrosis. Renin activation is the rate limiting step in angiotensin (Ang II) and aldosterone generation, and recent work suggests direct renin inhibition improves proteinuria comparable to that seen with Ang type 1 receptor (AT(1)R) blockade. This is important as, even with contemporary use of AT(1)R blockade, the burden of kidney disease remains high. Thereby, we sought to determine if combination of direct renin inhibition with AT(1)R blockade in vivo, via greater attenuation of kidney oxidative stress, would attenuate glomerular and proximal tubule injury to a greater extent than either intervention alone. We utilized the transgenic Ren2 rat with increased tissue RAS activity and higher serum levels of aldosterone, which manifests hypertension and proteinuria. Ren2 rats were treated with renin inhibition (aliskiren), AT(1)R blockade (valsartan), the combination (aliskiren+valsartan), or vehicle for 21days. Compared to Sprague-Dawley controls, Ren2 rats displayed increased systolic pressure (SBP), circulating aldosterone, proteinuria and greater urine levels of the proximal tubule protein excretory marker beta-N-acetylglucosaminidase (β-NAG). These functional and biochemical alterations were accompanied by increases in kidney tissue NADPH oxidase subunit Rac1 and 3-nitrotyrosine (3-NT) content as well as fibronectin and collagen type III. These findings occurred in conjunction with reductions in the podocyte-specific protein podocin as well as the proximal tubule-specific megalin. Further, in transgenic animals there was increased tubulointerstitial fibrosis on light microscopy as well as ultrastructural findings of glomerular podocyte foot-process effacement and reduced tubular apical endosomal/lysosomal activity. Combination therapy led to greater reductions in SBP and serum aldosterone, but did not result in greater improvement in markers of glomerular and tubular injury (i.e. β-NAG) compared to either intervention alone. Further, combination therapy did not improve markers of oxidative stress and podocyte and proximal tubule integrity in this transgenic model of RAAS-mediated kidney damage despite greater reductions in serum aldosterone and BP levels.  相似文献   

16.
Diabetic nephropathy (DN) is the major cause of end-stage renal disease. The early changes in DN are characterized by an increased in kidney size, glomerular volume, and kidney function, followed by the accumulation of glomerular extracellular matrix, increased urinary albumin excretion (UAE), glomerular sclerosis, and tubular fibrosis. Resveratrol (RSV) has been shown to ameliorate hyperglycemia and hyperlipidemia in streptozotocin-induced diabetic rats. In the present study, we examined the beneficial effects of RSV on DN and explored the possible mechanism of RSV action.Male Sprague–Dawley rats were injected with streptozotocin at 65 mg/kg body weight. The induction of diabetes mellitus (DM) was confirmed by a fasting plasma glucose level ≥300 mg/dL and symptoms of polyphagia and polydipsia. The DM rats were treated with or without RSV at 0.75 mg/kg body weight 3 times a day for 8 weeks. Animals were sacrificed and kidney histology was examined by microscopy. Urinary albumin excretion, glomerular hypertrophy and expressions of fibronectin, collagen IV, and TGF-β in the glomeruli were alleviated in RSV-treated DM rats, but not in untreated DM rats. In addition, RSV treatment reduced the thickness of the glomerular basement membrane (GBM) to the original thickness and increased nephrin expressions to normal levels in DM rats. Moreover, RSV inhibited phosphorylation of smad2, smad3 and ERK1/2 in diabetic rat kidneys. This is the first report showing that RSV alleviates early glomerulosclerosis in DN through TGF-β/smad and ERK1/2 inhibition. In addition, podocyte injuries of diabetic kidneys are lessened by RSV.  相似文献   

17.
Under specific conditions non-steroidal anti-inflammatory drugs (NSAIDs) may be used to lower therapy-resistant proteinuria. The potentially beneficial anti-proteinuric, tubulo-protective, and anti-inflammatory effects of NSAIDs may be offset by an increased risk of (renal) side effects. We investigated the effect of indomethacin on urinary markers of glomerular and tubular damage and renal inflammation. We performed a post-hoc analysis of a prospective open-label crossover study in chronic kidney disease patients (n?=?12) with mild renal function impairment and stable residual proteinuria of 4.7±4.1 g/d. After a wash-out period of six wks without any RAAS blocking agents or other therapy to lower proteinuria (untreated proteinuria (UP)), patients subsequently received indomethacin 75 mg BID for 4 wks (NSAID). Healthy subjects (n?=?10) screened for kidney donation served as controls. Urine and plasma levels of total IgG, IgG4, KIM-1, beta-2-microglobulin, H-FABP, MCP-1 and NGAL were determined using ELISA. Following NSAID treatment, 24 h -urinary excretion of glomerular and proximal tubular damage markers was reduced in comparison with the period without anti-proteinuric treatment (total IgG: UP 131[38-513] vs NSAID 38[17-218] mg/24 h, p<0.01; IgG4: 50[16-68] vs 10[1-38] mg/24 h, p<0.001; beta-2-microglobulin: 200[55-404] vs 50[28-110] ug/24 h, p?=?0.03; KIM-1: 9[5]-[14] vs 5[2]-[9] ug/24 h, p?=?0.01). Fractional excretions of these damage markers were also reduced by NSAID. The distal tubular marker H-FABP showed a trend to reduction following NSAID treatment. Surprisingly, NSAID treatment did not reduce urinary excretion of the inflammation markers MCP-1 and NGAL, but did reduce plasma MCP-1 levels, resulting in an increased fractional MCP-1 excretion. In conclusion, the anti-proteinuric effect of indomethacin is associated with reduced urinary excretion of glomerular and tubular damage markers, but not with reduced excretion of renal inflammation markers. Future studies should address whether the short term glomerulo- and tubulo-protective effects as observed outweigh the possible side-effects of NSAID treatment on the long term.  相似文献   

18.
The present study was undertaken to investigate the protective effect of the filamentous cyanobacterium Spirulina platensis (S. platensis) on mercury (II) chloride (HgCl2)-induced oxidative damages and histopathological alterations in the testis of Wistar albino rats. The animals were divided into four equal groups, i ) control, ii ) HgCl2, iii ) S. platensis and iv ) combination of HgCl2+S. platensis. Oxidative stress, induced by a single dose of HgCl2 (5 mg/kg, bw; subcutaneously, s.c.), substantially decreased (P<0.01) the activity level of testicular key enzymatic antioxidant biomarkers (superoxide dismutase, SOD; catalase, CAT and glutathione peroxidase, GPx), oxidative stress makers (blood hydroperoxide; testicular reduced glutathione, GSH and malondialdehyde, MDA), and testicular mercury levels. Moreover, HgCl2 administration resulted in a significant (P<0.01) increase in the number of sperms with abnormal morphology and decrease in epididymal sperm count, motility, plasma testosterone level and testicular cholesterol. Furthermore, HgCl2 exposure induced histopathological changes to the testis including morphological alterations of the seminiferous tubules, and degeneration and dissociation of spermatogenic cells. Notably, oral pretreatment of animals with Spirulina (300 mg/kg, bw) lowered the extent of the observed HgCl2-mediated toxicity, whereby significantly reducing the resulting lipid peroxidation products, mercury accumulation in the testis, histopathological changes of the testes and spermatozoal abnormalities. In parallel, the pretreatment with Spirulina also completely reverted the observed Hg-Cl2-induced inhibition in enzymatic activities of antioxidant biomarkers (SOD, CAT and GPx) back to control levels. The pretreatment of rats with S. platensis significantly recovered the observed HgCl2-mediated decrease in the weight of accessory sex organs. Taken together, our findings clearly highlight the role of S. platensis as a protective modulator of HgCl2-induced testicular injuries and suggest some therapeutic potential in mammals. Further investigation of therapeutic strategies employing Spirulina against heavy metals toxicity in humans is therefore warranted.  相似文献   

19.
Head-down tilt (HDT) is utilized to simulate microgravity and produces a cephalad fluid shift, which results in alterations in fluid and electrolyte balance. These changes in volume homeostasis are due, in part, to alterations in multiple volume control mechanisms in which renal function is a major participant. We have previously demonstrated that glomerular filtration rate increases early in HDT and eventually returns to values not different from non-tilt measurements. This early increase in glomerular filtration rate was also demonstrated during days 2 and 8 of the SLS-1 mission. However, urine flow and electrolyte excretion does not parallel the alterations in glomerular filtration rate and the site of this change in nephron fluid reabsorption pattern has not been previously examined. Through determination of the location of alterations in tubular fluid reabsorption within the nephron, a more detailed hypothesis can be forwarded as to which specific neuro-humoral agents participating in control of renal function in microgravity conditions. The importance of this type of examination is that measurements in circulating neuro-humoral agents and urinary excretion patterns alone are not accurate predictors of how renal functional response may alter to head-down tilt or other models of simulated weightlessness. To examine this issue, renal micropuncture techniques were utilized in Munich-Wistar rats submitted 24 hours and 14 day head-down tilt, measuring all the determinants of glomerular ultrafiltration and obtaining data regarding segmental tubular fluid reabsorption. Following these measurements, the rats were returned to an orthostatic position and after 60 min, the measurements were repeated.  相似文献   

20.
Oxidative stress induced by long‐term cyclosporine A (CsA) administration is a major cause of chronic nephrotoxicity, which is characterized by tubular atrophy, tubular cell apoptosis, and interstitial fibrosis in the progression of organ transplantation. Although hydrogen‐rich water (HRW) has been used to prevent various oxidative stress‐related diseases, its underlying mechanisms remain unclear. This study investigated the effects of HRW on CsA‐induced nephrotoxicity and its potential mechanisms. After administration of CsA (25 mg/kg/day), rats were treated with or without HRW (12 mL/kg) for 4 weeks. Renal function and vascular activity were investigated. Histological changes in kidney tissues were analyzed using Masson's trichrome and terminal deoxynucleotidyl transferase dUTP nick‐end labeling stains. Oxidative stress markers and the activation of the Kelch‐like ECH‐associated protein 1 (Keap1)/nuclear factor erythroid 2‐related factor 2 (Nrf2) signaling pathway were also measured. We found that CsA increased the levels of reactive oxygen species (ROS) and malonaldehyde (MDA), but it reduced glutathione (GSH) and superoxide dismutase (SOD) levels. Such alterations induced vascular dysfunction, tubular atrophy, interstitial fibrosis, and tubular apoptosis. This was evident secondary to an increase in urinary protein, serum creatinine, and blood urea nitrogen, ultimately leading to renal dysfunction. Conversely, HRW decreased levels of ROS and MDA while increasing the activity of GSH and SOD. This was accompanied by an improvement in vascular and renal function. Moreover, HRW significantly decreased the level of Keap1 and increased the expression of Nrf2, NADPH dehydrogenase quinone 1, and heme oxygenase 1. In conclusion, HRW restored the balance of redox status, suppressed oxidative stress damage, and improved kidney function induced by CsA via activation of the Keap1/Nrf2 signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号