首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Research in obesity and metabolic disorders that involve intestinal microbiota demands reliable methods for the precise measurement of the short-chain fatty acids (SCFAs) and branched-chain amino acids (BCAAs) concentration. Here, we report a rapid method of simultaneously determining SCFAs and BCAAs in biological samples using propyl chloroformate (PCF) derivatization followed by gas chromatography–mass spectrometry (GC–MS) analysis. A one-step derivatization using 100 μL of PCF in a reaction system of water, propanol, and pyridine (v/v/v = 8:3:2) at pH 8 provided the optimal derivatization efficiency. The best extraction efficiency of the derivatized products was achieved by a two-step extraction with hexane. The method exhibited good derivatization efficiency and recovery for a wide range of concentrations with a low limit of detection for each compound. The relative standard deviations of all targeted compounds showed good intra- and inter-day (within 7 days) precision (<10 %), and good stability (<20 %) within 4 days at room temperature (23–25 °C), or 7 days when stored at ?20 °C. We applied our method to measure SCFA and BCAA levels in fecal samples from rats administrated with different diet. Both univariate and multivariate statistical analysis of the concentrations of these targeted metabolites could differentiate three groups with ethanol intervention and different oils in diet. This method was also successfully employed to determine SCFA and BCAA in the feces, plasma and urine from normal humans, providing important baseline information of the concentrations of these metabolites. This novel metabolic profile study has great potential for translational research.  相似文献   

2.
Oxidative stress (OS) plays an important role in the progression of chronic liver disease including organ injury and hypoalbuminemia. Long-term oral supplementation with branched-chain amino acids (BCAAs) can inhibit liver dysfunction but their role in the prevention of liver fibrosis and injury to the liver is unclear. The aim of this study was to assess how BCAAs preserve liver function from OS. To investigate how BCAAs specifically prevent OS, we evaluated the effect of oral supplementation with BCAAs on OS using a rat liver cirrhosis model. Liver cirrhosis was induced in ten male Sprague–Dawley rats by administering carbon tetrachloride for 12?weeks. Five of the ten carbon tetrachloride-treated rats were assigned to a control group and five to a BCAA group. BCAA-supplementation significantly preserved plasma albumin concentrations and significantly inhibited the occurrence of organ injury as determined by blood chemistry analysis. Hepatic expression of OGG1 mRNA was increased in the BCAA group compared to the control group. In the BCAA group, increased hepatic levels of OGG1 protein were found by western blot. On the other hand, the number of 8-OHdG-positive cells was significantly higher in liver sections taken 1?month after carbon tetrachloride treatment. Furthermore, OGG1-positive cells were significantly increased in the hepatocytes around the central vein. BCAA was found to reduce OS, which could possibly lead to a decrease in the occurrence of hypoalbuminemia and organ injury. Our results indicate that BCAA-enriched nutrients stimulate antioxidant DNA repair in a rat model of liver injury induced by carbon tetrachloride.  相似文献   

3.
Unlike other amino acids, the branched-chain amino acids (BCAAs) largely bypass first-pass liver degradation due to a lack of hepatocyte expression of the mitochondrial branched-chain aminotransferase (BCATm). This sets up interorgan shuttling of BCAAs and liver–skeletal muscle cooperation in BCAA catabolism. To explore whether complete liver catabolism of BCAAs may impact BCAA shuttling in peripheral tissues, the BCATm gene was stably introduced into mouse liver. Two transgenic mouse lines with low and high hepatocyte expression of the BCATm transgene (LivTg-LE and LivTg-HE) were created and used to measure liver and plasma amino acid concentrations and determine whether the first two BCAA enzymatic steps in liver, skeletal muscle, heart and kidney were impacted. Expression of the hepatic BCATm transgene lowered the concentrations of hepatic BCAAs while enhancing the concentrations of some nonessential amino acids. Extrahepatic BCAA metabolic enzymes and plasma amino acids were largely unaffected, and no growth rate or body composition differences were observed in the transgenic animals as compared to wild-type mice. Feeding the transgenic animals a high-fat diet did not reverse the effect of the BCATm transgene on the hepatic BCAA catabolism, nor did the high-fat diet cause elevation in plasma BCAAs. However, the high-fat-diet-fed BCATm transgenic animals experienced attenuation in the mammalian target of rapamycin (mTOR) pathway in the liver and had impaired blood glucose tolerance. These results suggest that complete liver BCAA metabolism influences the regulation of glucose utilization during diet-induced obesity.  相似文献   

4.
Dysregulation of glucagon is associated with the pathophysiology of type 2 diabetes. We previously reported that postprandial hyperglucagonemia is more obvious than fasting hyperglucagonemia in type 2 diabetes patients. However, which nutrient stimulates glucagon secretion in the diabetic state and the underlying mechanism after nutrient intake are unclear. To answer these questions, we measured plasma glucagon levels in diabetic mice after oral administration of various nutrients. The effects of nutrients on glucagon secretion were assessed using islets isolated from diabetic mice and palmitate-treated islets. In addition, we analyzed the expression levels of branched chain amino acid (BCAA) catabolism-related enzymes and their metabolites in diabetic islets. We found that protein, but not carbohydrate or lipid, increased plasma glucagon levels in diabetic mice. Among amino acids, BCAAs, but not the other essential or nonessential amino acids, increased plasma glucagon levels. BCAAs also directly increased the intracellular calcium concentration in α cells. When BCAAs transport was suppressed by an inhibitor of system L-amino acid transporters, glucagon secretion was reduced even in the presence of BCAAs. We also found that the expression levels of BCAA catabolism-related enzymes and their metabolite contents were altered in diabetic islets and palmitate-treated islets compared to control islets, indicating disordered BCAA catabolism in diabetic islets. Furthermore, BCKDK inhibitor BT2 suppressed BCAA-induced hypersecretion of glucagon in diabetic islets and palmitate-treated islets. Taken together, postprandial hypersecretion of glucagon in the diabetic state is attributable to disordered BCAA catabolism in pancreatic islet cells.  相似文献   

5.
Associating changes in protein levels with the onset of cancer has been widely investigated to identify clinically relevant diagnostic biomarkers. In the present study, we analyzed sera from 205 patients recruited in the United States and Egypt for biomarker discovery using label‐free proteomic analysis by LC‐MS/MS. We performed untargeted proteomic analysis of sera to identify candidate proteins with statistically significant differences between hepatocellular carcinoma (HCC) and patients with liver cirrhosis. We further evaluated the significance of 101 proteins in sera from the same 205 patients through targeted quantitation by MRM on a triple quadrupole mass spectrometer. This led to the identification of 21 candidate protein biomarkers that were significantly altered in both the United States and Egyptian cohorts. Among the 21 candidates, ten were previously reported as HCC‐associated proteins (eight exhibiting consistent trends with our observation), whereas 11 are new candidates discovered by this study. Pathway analysis based on the significant proteins reveals upregulation of the complement and coagulation cascades pathway and downregulation of the antigen processing and presentation pathway in HCC cases versus patients with liver cirrhosis. The results of this study demonstrate the power of combining untargeted and targeted quantitation methods for a comprehensive serum proteomic analysis, to evaluate changes in protein levels and discover novel diagnostic biomarkers. All MS data have been deposited in the ProteomeXchange with identifier PXD001171 ( http://proteomecentral.proteomexchange.org/dataset/PXD001171 ).  相似文献   

6.
Bed rest is associated with a loss of protein from the weight-bearing muscle. The objectives of this study are to determine whether increasing dietary branched-chain amino acids (BCAAs) during bed rest improves the anabolic response after bed rest. The study consisted of a 1-day ambulatory period, 14 days of bed rest, and a 4-day recovery period. During bed rest, dietary intake was supplemented with either 30 mmol/day each of glycine, serine, and alanine (group 1) or with 30 mmol/day each of the three BCAAs (group 2). Whole body protein synthesis was determined with U-(15)N-labeled amino acids, muscle, and selected plasma protein synthesis with l-[(2)H(5)]phenylalanine. Total glucose production and gluconeogenesis from alanine were determined with l-[U-(13)C(3)]alanine and [6,6-(2)H(2)]glucose. During bed rest, nitrogen (N) retention was greater with BCAA feeding (56 +/- 6 vs. 26 +/- 12 mg N. kg(-1). day(-1), P < 0.05). There was no effect of BCAA supplementation on either whole body, muscle, or plasma protein synthesis or the rate of 3-MeH excretion. Muscle tissue free amino acid concentrations were increased during bed rest with BCAA (0.214 +/- 0.066 vs. 0.088 +/- 0.12 nmol/mg protein, P < 0.05). Total glucose production and gluconeogenesis from alanine were unchanged with bed rest but were significantly reduced (P < 0.05) with the BCAA group in the recovery phase. In conclusion, the improved N retention during bed rest is due, at least in part, to accretion of amino acids in the tissue free amino acid pools. The amount accreted is not enough to impact protein kinetics in the recovery phase but does improve N retention by providing additional essential amino acids in the early recovery phase.  相似文献   

7.
Amino acids can serve as regulatory molecules that modulate numerous cellular functions. Branched chain amino acids (BCAAs) are known to exert influences on cellular metabolism, amino acid transport, protein turn over, and gene expression. However, the mechanisms involved in the specific effect of BCAAs have not been clarified. BCAA supplementation therapy is a current treatment for patients with liver cirrhosis, therefore, specific BCAA activities should be examined. Hepatocyte growth factor (HGF) is considered to be a pleiotropic factor, and is reported to modulate gene expression and to stimulate the proliferation and functions of many cell types, including hepatocytes. A potential application of HGF for several types of diseases has been postulated. Here, we describe the potential of BCAAs as a therapeutic agent that acts through the induction of HGF production in the liver.  相似文献   

8.
Hepatocellular carcinoma (HCC) is a common malignancy in the world with high morbidity and mortality rate. Identification of novel biomarkers in HCC remains impeded primarily because of the heterogeneity of the disease in clinical presentations as well as the pathophysiological variations derived from underlying conditions such as cirrhosis and steatohepatitis. The aim of this study is to search for potential metabolite biomarkers of human HCC using serum and urine metabolomics approach. Sera and urine samples were collected from patients with HCC (n = 82), benign liver tumor patients (n = 24), and healthy controls (n = 71). Metabolite profiling was performed by gas chromatography time-of-flight mass spectrometry and ultra performance liquid chromatography-quadrupole time of flight mass spectrometry in conjunction with univariate and multivariate statistical analyses. Forty three serum metabolites and 31 urinary metabolites were identified in HCC patients involving several key metabolic pathways such as bile acids, free fatty acids, glycolysis, urea cycle, and methionine metabolism. Differentially expressed metabolites in HCC subjects, such as bile acids, histidine, and inosine are of great statistical significance and high fold changes, which warrant further validation as potential biomarkers for HCC. However, alterations of several bile acids seem to be affected by the condition of liver cirrhosis and hepatitis. Quantitative measurement and comparison of seven bile acids among benign liver tumor patients with liver cirrhosis and hepatitis, HCC patients with liver cirrhosis and hepatitis, HCC patients without liver cirrhosis and hepatitis, and healthy controls revealed that the abnormal levels of glycochenodeoxycholic acid, glycocholic acid, taurocholic acid, and chenodeoxycholic acid are associated with liver cirrhosis and hepatitis. HCC patients with alpha fetoprotein values lower than 20 ng/ml was successfully differentiated from healthy controls with an accuracy of 100% using a panel of metabolite markers. Our work shows that metabolomic profiling approach is a promising screening tool for the diagnosis and stratification of HCC patients.  相似文献   

9.
To determine the l-methionine (l-Met) concentration in an extract from dried blood spots (DBSs) for newborn mass screening for homocystinuria (HCU) due to cystathionine β-synthase (CBS) deficiency, a new fluorometric microplate assay using a methionine-specific dehydrogenase (MetDH) and the diaphorase/reazusrin system was established. We created by directed mutagenesis an NAD(+)-dependent MetDH from phenylalanine dehydrogenase (PheDH) showing higher substrate specificity toward l-Met than l-phenylalanine (l-Phe). However, it also exhibited notable activity for branched-chain amino acids (BCAAs). BCAAs in blood clearly interfered with the determination of l-Met in the DBS specimens using a single application of MetDH. To measure l-Met selectively, we used a branched-chain amino acid transaminase (BCAT) to eliminate the BCAAs in the specimens and screened for a BCAT with low activity toward l-Met. In microplate assays using MetDH, pretreatment of specimens with the BCAT from Lactobacillus delbrueckii subsp. bulgaricus coupled with l-glutamate oxidase minimized the effects of BCAAs, and l-Met concentrations were determined with high accuracy even at elevated BCAA concentrations. This enzymatic end-point assay is suitable for determining l-Met concentrations in DBSs for neonatal screening for HCU due to CBS deficiency.  相似文献   

10.
An optimisation procedure for the supercritical fluid extraction (SFE) of cocaine from the leaves of Erythroxylum coca var. coca was investigated by means of experimental design. After preliminary experiments where the SFE rate-controlling mechanism was determined, a central composite design was applied to evaluate interactions between selected SFE factors such as pressure, temperature, nature and percentage of the polar modifier, as well as to optimise these factors. Predicted and experimental contents of cocaine were compared and robustness of the extraction method estimated by drawing response surfaces. The analysis of cocaine in crude extracts was carried out by capillary GC equipped with a flame ionisation detector (GC-FID), as well as by capillary GC coupled with a mass spectrometer (GC-MS) for peak identification.  相似文献   

11.
Elevations in branched-chain amino acids (BCAAs) in human obesity were first reported in the 1960s. Such reports are of interest because of the emerging role of BCAAs as potential regulators of satiety, leptin, glucose, cell signaling, adiposity, and body weight (mTOR and PKC). To explore loss of catabolic capacity as a potential contributor to the obesity-related rises in BCAAs, we assessed the first two enzymatic steps, catalyzed by mitochondrial branched chain amino acid aminotransferase (BCATm) or the branched chain alpha-keto acid dehydrogenase (BCKD E1alpha subunit) complex, in two rodent models of obesity (ob/ob mice and Zucker rats) and after surgical weight loss intervention in humans. Obese rodents exhibited hyperaminoacidemia including BCAAs. Whereas no obesity-related changes were observed in rodent skeletal muscle BCATm, pS293, or total BCKD E1alpha or BCKD kinase, in liver BCKD E1alpha was either unaltered or diminished by obesity, and pS293 (associated with the inactive state of BCKD) increased, along with BCKD kinase. In epididymal fat, obesity-related declines were observed in BCATm and BCKD E1alpha. Plasma BCAAs were diminished by an overnight fast coinciding with dissipation of the changes in adipose tissue but not in liver. BCAAs also were reduced by surgical weight loss intervention (Roux-en-Y gastric bypass) in human subjects studied longitudinally. These changes coincided with increased BCATm and BCKD E1alpha in omental and subcutaneous fat. Our results are consistent with the idea that tissue-specific alterations in BCAA metabolism, in liver and adipose tissue but not in muscle, may contribute to the rise in plasma BCAAs in obesity.  相似文献   

12.
The branched chain amino acids (BCAA) valine, leucine and isoleucine have been implicated in a number of diseases including obesity, insulin resistance, and type 2 diabetes mellitus, although the mechanisms are still poorly understood. Adipose tissue plays an important role in BCAA homeostasis by actively metabolizing circulating BCAA. In this work, we have investigated the link between BCAA catabolism and fatty acid synthesis in 3T3-L1 adipocytes using parallel 13C-labeling experiments, mass spectrometry and model-based isotopomer data analysis. Specifically, we performed parallel labeling experiments with four fully 13C-labeled tracers, [U-13C]valine, [U-13C]leucine, [U-13C]isoleucine and [U-13C]glutamine. We measured mass isotopomer distributions of fatty acids and intracellular metabolites by GC-MS and analyzed the data using the isotopomer spectral analysis (ISA) framework. We demonstrate that 3T3-L1 adipocytes accumulate significant amounts of even chain length (C14:0, C16:0 and C18:0) and odd chain length (C15:0 and C17:0) fatty acids under standard cell culture conditions. Using a novel GC-MS method, we demonstrate that propionyl-CoA acts as the primer on fatty acid synthase for the production of odd chain fatty acids. BCAA contributed significantly to the production of all fatty acids. Leucine and isoleucine contributed at least 25% to lipogenic acetyl-CoA pool, and valine and isoleucine contributed 100% to lipogenic propionyl-CoA pool. Our results further suggest that low activity of methylmalonyl-CoA mutase and mass action kinetics of propionyl-CoA on fatty acid synthase result in high rates of odd chain fatty acid synthesis in 3T3-L1 cells. Overall, this work provides important new insights into the connection between BCAA catabolism and fatty acid synthesis in adipocytes and underscores the high capacity of adipocytes for metabolizing BCAA.  相似文献   

13.
14.
Branched-chain amino acids (BCAAs) are circulating nutrient signals for protein accretion, however, they increase in obesity and elevations appear to be prognostic of diabetes. To understand the mechanisms whereby obesity affects BCAAs and protein metabolism, we employed metabolomics and measured rates of [1-14C]-leucine metabolism, tissue-specific protein synthesis and branched-chain keto-acid (BCKA) dehydrogenase complex (BCKDC) activities. Male obese Zucker rats (11-weeks old) had increased body weight (BW, 53%), liver (107%) and fat (∼300%), but lower plantaris and gastrocnemius masses (−21–24%). Plasma BCAAs and BCKAs were elevated 45–69% and ∼100%, respectively, in obese rats. Processes facilitating these rises appeared to include increased dietary intake (23%), leucine (Leu) turnover and proteolysis [35% per g fat free mass (FFM), urinary markers of proteolysis: 3-methylhistidine (183%) and 4-hydroxyproline (766%)] and decreased BCKDC per g kidney, heart, gastrocnemius and liver (−47–66%). A process disposing of circulating BCAAs, protein synthesis, was increased 23–29% by obesity in whole-body (FFM corrected), gastrocnemius and liver. Despite the observed decreases in BCKDC activities per gm tissue, rates of whole-body Leu oxidation in obese rats were 22% and 59% higher normalized to BW and FFM, respectively. Consistently, urinary concentrations of eight BCAA catabolism-derived acylcarnitines were also elevated. The unexpected increase in BCAA oxidation may be due to a substrate effect in liver. Supporting this idea, BCKAs were elevated more in liver (193–418%) than plasma or muscle, and per g losses of hepatic BCKDC activities were completely offset by increased liver mass, in contrast to other tissues. In summary, our results indicate that plasma BCKAs may represent a more sensitive metabolic signature for obesity than BCAAs. Processes supporting elevated BCAA]BCKAs in the obese Zucker rat include increased dietary intake, Leu and protein turnover along with impaired BCKDC activity. Elevated BCAAs/BCKAs may contribute to observed elevations in protein synthesis and BCAA oxidation.  相似文献   

15.
Plasma amino acid concentrations and plasma glucagon and serum insulin levels were studied in male patients with compensated alcoholic and nonalcoholic liver cirrhosis. Age, nutritional status, and liver function tests were similar in both groups; none of the patients presented hepatic encephalopathy. Plasma valine and leucine concentrations were lower, and tyrosine, higher in alcoholic than nonalcoholic liver cirrhosis. As a result, the molar ratios of branched-chain amino acids (BCAA) to aromatic amino acids (AAA) were reduced markedly in this group. Although correlation coefficients comparing BCAA/AAA ratios and KICG in alcoholic and nonalcoholic liver cirrhosis were similar, a steeper regression line was observed in alcoholics. Plasma glucagon and proline levels were significantly higher in alcoholic than nonalcoholic liver cirrhosis, the former correlated with AAA concentrations only in alcoholic liver cirrhosis, but not with BCAA levels. These results indicated that alcoholic liver cirrhosis presented a more deranged plasma amino acid pattern than nonalcoholic, and the amino acid imbalances, except for depressed BCAA and elevated proline, were derived, in part, from the hyperglucagonemia.  相似文献   

16.
Differentiation of cancer stem cells (CSCs) into cancer cells causes increased sensitivity to chemotherapeutic agents. Although inhibition of mammalian target of rapamycin (mTOR) leads to CSC survival, the effect of branched chain amino acids (BCAAs), an mTOR complex 1 (mTORC1) activator remains unknown. In this study, we examined the effects of BCAA on hepatocellular carcinoma (HCC) cells expressing a hepatic CSC marker, EpCAM. We examined the effects of BCAA and/or 5-fluorouracil (FU) on expression of EpCAM and other CSC-related markers, as well as cell proliferation in HCC cells and in a xenograft mouse model. We also characterized CSC-related and mTOR signal-related molecule expression and tumorigenicity in HCC cells with knockdown of Rictor or Raptor, or overexpression of constitutively active rheb (caRheb). mTOR signal-related molecule expression was also examined in BCAA-treated HCC cells. In-vitro BCAA reduced the frequency of EpCAM-positive cells and improved sensitivity to the anti-proliferative effect of 5-FU. Combined 5-FU and BCAA provided better antitumor efficacy than 5-FU alone in the xenograft model. Stimulation with high doses of BCAA activated mTORC1. Knockdown and overexpression experiments revealed that inhibition of mTOR complex 2 (mTORC2) or activation of mTORC1 led to decreased EpCAM expression and little or no tumorigenicity. BCAA may enhance the sensitivity to chemotherapy by reducing the population of cscs via the mTOR pathway. This result suggests the utility of BCAA in liver cancer therapy.  相似文献   

17.
The application of metabolomics in nutritional research may be a useful tool to analyse and predict the response to a dietary intervention. The aim of this study was to examine metabolic changes in serum samples following exposure to an energy-restricted diet (?15 % of daily energy requirements) over a period of 8 weeks in overweight and obese older adults (n?=?22) using a gas chromatography/mass spectrometry (GC/MS) metabolomic approach. After 8 weeks, there were significant reductions in weight (7 %) and metabolic improvement (glucose and lipid profiles). Metabolomic analysis found that total saturated fatty acids (SFAs), including palmitic acid (C16:0) and stearic acid (C18:0) and monounsaturated fatty acids (MUFAs), were significantly decreased after the 8-week intervention. Furthermore, palmitoleic acid (C16:1) was found to be a negative predictor of change in body fat loss. Both the total ω-6 and ω-3 polyunsaturated fatty acids (PUFAs) significantly decreased, although the overall total amounts of PUFAs did not. The branched chain amino acid (BCAA) isoleucine significantly decreased in the serum samples after the intervention. In conclusion, this study demonstrated that the weight loss intervention based on a hypocaloric diet identified changes in the metabolic profiles of serum in overweight and obese older adults, with a reduction in anthropometric and biochemical parameters also found.  相似文献   

18.
BCAAs (branched-chain amino acids) are indispensable (essential) amino acids that are required for body protein synthesis. Indispensable amino acids cannot be synthesized by the body and must be acquired from the diet. The BCAA leucine provides hormone-like signals to tissues such as skeletal muscle, indicating overall nutrient sufficiency. BCAA metabolism provides an important transport system to move nitrogen throughout the body for the synthesis of dispensable (non-essential) amino acids, including the neurotransmitter glutamate in the central nervous system. BCAA metabolism is tightly regulated to maintain levels high enough to support these important functions, but at the same time excesses are prevented via stimulation of irreversible disposal pathways. It is well known from inborn errors of BCAA metabolism that dysregulation of the BCAA catabolic pathways that leads to excess BCAAs and their alpha-keto acid metabolites results in neural dysfunction. In this issue of Biochemical Journal, Joshi and colleagues have disrupted the murine BDK (branched-chain alpha-keto acid dehydrogenase kinase) gene. This enzyme serves as the brake on BCAA catabolism. The impaired growth and neurological abnormalities observed in this animal show conclusively the importance of tight regulation of indispensable amino acid metabolism.  相似文献   

19.
The degree of oxidized cysteine (Cys) 34 in human serum albumin (HSA), as determined by high performance liquid chromatography (HPLC), is correlated with oxidative stress related pathological conditions. In order to further characterize the oxidation of Cys34-HSA at the molecular level and to develop a suitable analytical method for a rapid and sensitive clinical laboratory analysis, the use of electrospray ionization time-of-flight mass spectrometer (ESI-TOFMS) was evaluated. A marked increase in the cysteinylation of Cys34 occurs in chronic liver and kidney diseases and diabetes mellitus. A significant positive correlation was observed between the Cys-Cys34-HSA fraction of plasma samples obtained from 229 patients, as determined by ESI-TOFMS, and the degree of oxidized Cys34-HSA determined by HPLC. The Cys-Cys34-HSA fraction was significantly increased with the progression of liver cirrhosis, and was reduced by branched chain amino acids (BCAA) treatment. The changes in the Cys-Cys34-HSA fraction were significantly correlated with the alternations of the plasma levels of advanced oxidized protein products, an oxidative stress marker for proteins. The binding ability of endogenous substances (bilirubin and tryptophan) and drugs (warfarin and diazepam) to HSA purified from chronic liver disease patients were significantly suppressed but significantly improved by BCAA supplementation. Interestingly, the changes in this physiological function of HSA in chronic liver disease were correlated with the Cys-Cys34-HSA fraction. In conclusion, ESI-TOFMS is a suitable high throughput method for the rapid and sensitive quantification of Cys-Cys34-HSA in a large number of samples for evaluating oxidative stress related chronic disease progression or in response to a treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号