首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 698 毫秒
1.
To investigate whether sensorimotor control of the hand could be an outcome indicator after carpal tunnel release (CTR), this work examined changes in the results of patients’ manual tactile test (MTT), pinch-holding-up activity (PHUA), two-point discrimination (2PD) and Semmes-Weinstein monofilament (SWM) tests. Participants included 30 predominantly sensory neuropathy CTS patients, as confirmed by a nerve conduction study. The MTT, precision pinch performance in PHUA and traditional sensibility (2PD and SWM) tests were used to examine different aspects of sensory status at the time-points of two weeks before operation and one month post-operation, with a single-blind design. The results showed significant improvements in the sensory function as detected by the 2PD and SWM tests (p<0.001) and sensorimotor function as detected by the MTT (p<0.001) and PHUA test (p<0.05) for patients receiving CTR. The responsiveness of the SWM, MTT and PHUA tests (effect size>0.5, p<0.01) are better than that of two-point discrimination test (effect size<0.5, p<0.001). However, pinch strength saw a decline compared to baseline with a moderate effect sizes (effect size = 0.7, p<0.001). This cohort study found that the MTT and PHUA test can both meet all the statistical criteria with regard to assessing treatment outcomes for patients with CTS. In addition, the results of this work provide clinicians with the information that the sensorimotor functions of the hands, as assessed by MTT and PHUA, are responsive to clinical changes due to CTR.  相似文献   

2.
Oscillations in force output change in specific frequency bins and have important implications for understanding aging and pathological motor control. Although previous studies have demonstrated that oscillations from 0–1 Hz can be influenced by aging and visuomotor processing, these studies have averaged power within this bandwidth and not examined power in specific frequencies below 1 Hz. The purpose was to determine whether a differential modulation of force below 1 Hz contributes to changes in force control related to manipulation of visual feedback and aging. Ten young adults (25±4 yrs, 5 men) and ten older adults (71±5 yrs, 4 men) were instructed to accurately match a target force at 2% of their maximal isometric force for 35 s with abduction of the index finger. Visual feedback was manipulated by changing the visual angle (0.05°, 0.5°, 1.5°) or removing it after 15 s. Modulation of force below 1 Hz was quantified by examining the absolute and normalized power in seven frequency bins. Removal of visual feedback increased normalized power from 0–0.33 Hz and decreased normalized power from 0.66–1.0 Hz. In contrast, magnification of visual feedback (visual angles of 0.5° and 1.5°) decreased normalized power from 0–0.16 Hz and increased normalized power from 0.66–1.0 Hz. Older adults demonstrated a greater increase in the variability of force with magnification of visual feedback compared with young adults (P = 0.05). Furthermore, older adults exhibited differential force modulation of frequencies below 1 Hz compared with young adults (P<0.05). Specifically, older adults exhibited greater normalized power from 0–0.16 Hz and lesser normalized power from 0.66–0.83 Hz. The changes in force modulation predicted the changes in the variability of force with magnification of visual feedback (R2 = 0.80). Our findings indicate that force oscillations below 1 Hz are associated with force control and are modified by aging and visual feedback.  相似文献   

3.
Leber’s hereditary optic neuropathy (LHON) is characterized by retinal ganglion cell (RGC) degeneration with the preferential involvement of those forming the papillomacular bundle. The optic nerve is considered the main pathological target for LHON. Our aim was to investigate the possible involvement of the post-geniculate visual pathway in LHON patients. We used diffusion-weighted imaging for in vivo evaluation. Mean diffusivity maps from 22 LHON visually impaired, 11 unaffected LHON mutation carriers and 22 healthy subjects were generated and compared at level of optic radiation (OR). Prefrontal and cerebellar white matter were also analyzed as internal controls. Furthermore, we studied the optic nerve and the lateral geniculate nucleus (LGN) in post-mortem specimens obtained from a severe case of LHON compared to an age-matched control. Mean diffusivity values of affected patients were higher than unaffected mutation carriers (P<0.05) and healthy subjects (P<0.01) in OR and not in the other brain regions. Increased OR diffusivity was associated with both disease duration (B = 0.002; P<0.05) and lack of recovery of visual acuity (B = 0.060; P<0.01). Post-mortem investigation detected atrophy (41.9% decrease of neuron soma size in the magnocellular layers and 44.7% decrease in the parvocellular layers) and, to a lesser extent, degeneration (28.5% decrease of neuron density in the magnocellular layers and 28.7% decrease in the parvocellular layers) in the LHON LGN associated with extremely severe axonal loss (99%) in the optic nerve. The post-geniculate involvement in LHON patients is a downstream post-synaptic secondary phenomenon, reflecting de-afferentation rather than a primary neurodegeneration due to mitochondrial dysfunction of LGN neurons.  相似文献   

4.
We aimed to examine the rate of force development (RFD) of knee extensors on both sides in independently ambulant patients with acute stroke with mild paresis compared with that in age-matched healthy adults. A total 31 patients with acute stroke history (patient group: 67 ± 12 years) and 54 age-matched healthy, community-dwelling adults (control group: 67 ± 8 years) were included. Maximum voluntary contraction (MVC) and RFD were assessed <1 month post-stroke during isometric knee extension (sitting position; 90° knee flexion) using a hand-held dynamometer. RFD was measured as the average slope of the torque–time curve over time intervals of 0–50 ms and 0–200 ms from contraction onset. In the patient group, MVC and RFD for 0–50 ms were significantly lower on the affected side than on the unaffected side (p < 0.01). RFD was significantly decreased in the patient group, to 32%–38% and 62%–71% of that in the control group, over 0–50 ms and 0–200 ms, respectively, regardless of the affected side (p < 0.01). No significant differences in MVC between patient and control groups were observed for either side. RFD of the knee extensors significantly decreased without MVC reduction in patients with acute stroke history compared with that in age-matched healthy adults in both the affected and unaffected sides. These results suggest that decrease in RFD was initiated from the acute phase of stroke, even in patients with stroke who had good motor function.  相似文献   

5.
Poor balance control and increased fall risk have been reported in people with diabetic peripheral neuropathy (DPN). Traditional body sway measures are unable to describe underlying postural control mechanism. In the current study, we used stabilogram diffusion analysis to examine the mechanism under which balance is altered in DPN patients under local-control (postural muscle control) and central-control (postural control using sensory cueing). DPN patients and healthy age-matched adults over 55 years performed two 15-second Romberg balance trials. Center of gravity sway was measured using a motion tracker system based on wearable inertial sensors, and used to derive body sway and local/central control balance parameters. Eighteen DPN patients (age = 65.4±7.6 years; BMI = 29.3±5.3 kg/m2) and 18 age-matched healthy controls (age = 69.8±2.9; BMI = 27.0±4.1 kg/m2) with no major mobility disorder were recruited. The rate of sway within local-control was significantly higher in the DPN group by 49% (healthy local-controlslope = 1.23±1.06×10-2 cm2/sec, P<0.01), which suggests a compromised local-control balance behavior in DPN patients. Unlike local-control, the rate of sway within central-control was 60% smaller in the DPN group (healthy central-controlslope-Log = 0.39±0.23, P<0.02), which suggests an adaptation mechanism to reduce the overall body sway in DPN patients. Interestingly, significant negative correlations were observed between central-control rate of sway with neuropathy severity (r Pearson = 0.65-085, P<0.05) and the history of diabetes (r Pearson = 0.58-071, P<0.05). Results suggest that in the lack of sensory feedback cueing, DPN participants were highly unstable compared to controls. However, as soon as they perceived the magnitude of sway using sensory feedback, they chose a high rigid postural control strategy, probably due to high concerns for fall, which may increase the energy cost during extended period of standing; the adaptation mechanism using sensory feedback depends on the level of neuropathy and the history of diabetes.  相似文献   

6.
Human walking exhibits small variations in both step length and step width, some of which may be related to active balance control. Lateral balance is thought to require integrative sensorimotor control through adjustment of step width rather than length, contributing to greater variability in step width. Here we propose that step length variations are largely explained by the typical human preference for step length to increase with walking speed, which itself normally exhibits some slow and spontaneous fluctuation. In contrast, step width variations should have little relation to speed if they are produced more for lateral balance. As a test, we examined hundreds of overground walking steps by healthy young adults (N = 14, age < 40 yrs.). We found that slow fluctuations in self-selected walking speed (2.3% coefficient of variation) could explain most of the variance in step length (59%, P < 0.01). The residual variability not explained by speed was small (1.5% coefficient of variation), suggesting that step length is actually quite precise if not for the slow speed fluctuations. Step width varied over faster time scales and was independent of speed fluctuations, with variance 4.3 times greater than that for step length (P < 0.01) after accounting for the speed effect. That difference was further magnified by walking with eyes closed, which appears detrimental to control of lateral balance. Humans appear to modulate fore-aft foot placement in precise accordance with slow fluctuations in walking speed, whereas the variability of lateral foot placement appears more closely related to balance. Step variability is separable in both direction and time scale into balance- and speed-related components. The separation of factors not related to balance may reveal which aspects of walking are most critical for the nervous system to control.  相似文献   

7.

Background and Purpose

The most common strategy for treating patients with acute ischemic stroke is thrombolytic therapy, though only a few patients receive benefits because of the narrow time window. Inflammation occurring in the central nervous system (CNS) in association with ischemia is caused by immune cells including monocytes and involved in lesion expansion. If the specific roles of monocyte subsets in stroke can be revealed, they may become an effective target for new treatment strategies.

Methods

We performed immunological examinations of 36 consecutive ischemic stroke patients within 2 days of onset and compared the results with 24 age-matched patients with degenerative disorders. The stroke patients were repeatedly tested for the proportions of monocyte subsets in blood, and serum levels of pro- and anti-inflammatory cytokines immediately after admission, on days 3-7 and 12-16 after stroke onset, and on the day of discharge. In addition, immunological measurements were analyzed for relationships to stroke subtypes and complications, including progressive infarction (PI) and stroke-associated infection (SAI).

Results

Monocyte count was significantly increased from 0–16 days after stroke as compared to the controls (p<0.05). CD14highCD16- classical and CD14highCD16+ intermediate monocytes were significantly increased from 0-7 and 3-16 days after stroke, respectively (p<0.05), whereas CD14 dimCD16high non-classical monocytes were decreased from 0–7 days (p<0.05). Cardioembolic infarction was associated with a persistent increase in intermediate monocytes. Furthermore, intermediate monocytes were significantly increased in patients with PI (p<0.05), while non-classical monocytes were decreased in those with SAI (p<0.05). IL-17A levels were positively correlated with monocyte count (r=0.485, p=0.012) as well as the percentage of non-classical monocytes (r=0.423, p=0.028), and negatively with that of classical monocytes (r=-0.51, p=0.007) during days 12-16.

Conclusions

Our findings suggest that CD14highCD16+ intermediate monocytes have a role in CNS tissue damage during acute and subacute phases in ischemic stroke especially in relation to cardioembolism.  相似文献   

8.

Background

Successful object manipulation relies on the ability to form and retrieve sensorimotor memories of digit forces and positions used in previous object lifts. Past studies of patients affected by Parkinson''s disease (PD) have revealed that the basal ganglia play a crucial role in the acquisition and/or retrieval of sensorimotor memories for grasp control. Whereas it is known that PD impairs anticipatory control of digit forces during grasp, learning deficits associated with the planning of digit placement have yet to be explored. This question is motivated by recent work in healthy subjects revealing that anticipatory control of digit placement plays a crucial role for successful manipulation.

Methodology/Principal Findings

We asked ten PD patients off medication and ten age-matched controls to reach, grasp and lift an object whose center of mass (CM) was on the left, right or center. The only task requirement was to minimize object roll during lift. The CM remained the same across consecutive trials (blocked condition) or was altered from trial to trial (random condition). We hypothesized that impairment of the basal ganglia-thalamo-cortical circuits in PD patients would reduce their ability to anticipate digit placement appropriate to the CM location. Consequently, we predicted that PD patients would exhibit similar digit placement in the blocked vs. random conditions and produce larger peak object rolls than that of control subjects. In the blocked condition, PD patients exhibited significantly weaker modulation of fingertip contact points to CM location and larger object roll than controls (p<0.05 and p<0.01, respectively). Nevertheless, both controls and PD patients minimized object roll more in the blocked than in the random condition (p<0.01).

Conclusions/Significance

Our findings indicate that, even though PD patients may have a residual ability of anticipatory control of digit contact points and forces, they fail to implement a motor plan with the same degree of effectiveness as controls. We conclude that intact basal ganglia-thalamo-cortical circuits are necessary for successful sensorimotor learning of both grasp kinematics and kinetics required for dexterous hand-object interactions.  相似文献   

9.
To comprehend the sensorimotor control ability in diabetic hands, this study investigated the sensation, motor function and precision pinch performances derived from a pinch-holding-up activity (PHUA) test of the hands of diabetic patients and healthy subjects. The precision, sensitivity and specificity of the PHUA test in the measurements of diabetic patients were also analyzed. We hypothesized that the diabetic hands would have impacts on the sensorimotor functions of the hand performances under functionally quantitative measurements. One hundred and fifty-nine patients with clinically defined diabetes mellitus (DM) and 95 age- and gender-matched healthy controls were included. Semmes-Weinstein monofilament (SWM), static and moving two-point discrimination (S2PD and M2PD), maximal pinch strength and precision pinch performance tests were conducted to evaluate the sensation, motor and sensorimotor status of the recruited hands. The results showed that there were significant differences (all p<0.05) in SWM, S2PD, M2PD and maximum pinch strength between the DM and control groups. A higher force ratio in the DM patients than in the controls (p<0.001) revealed a poor ability of pinch force adjustment in the DM patients. The percentage of maximal pinch strength was also significantly different (p<0.001) between the DM and control groups. The sensitivity, specificity and area under the receiver operating characteristic curve were 0.85, 0.51, and 0.724, respectively, for the PHUA test. Statistically significant degradations in sensory and motor functions and sensorimotor control ability were observed in the hands of the diabetic patients. The PHUA test could be feasibly used as a clinical tool to determine the sensorimotor function of the hands of diabetic patients from a functional perspective.  相似文献   

10.

Purpose

We compared postural stability and subjective visual vertical performance in a group of very preterm-born children aged 3-4 years and in a group of age-matched full-term children.

Materials and Methods

A platform (from TechnoConcept) was used to measure postural control in children. Perception of subjective visual vertical was also recorded with posture while the child had to adjust the vertical in the dark or with visual perturbation. Two other conditions (control conditions) were also recorded while the child was on the platform: for a fixation of the vertical bar, and in eyes closed condition.

Results

Postural performance was poor in preterm-born children compared to that of age-matched full-term children: the surface area, the length in medio-lateral direction and the mean speed of the center of pressure (CoP) were significantly larger in the preterm-born children group (p < 0.04, p < 0.01, and p < 0.04, respectively). Dual task in both groups of children significantly affected postural control. The subjective visual vertical (SVV) values were more variable and less precise in preterm-born children.

Discussion-Conclusions

We suggest that poor postural control as well as perception of verticality observed in preterm-born children could be due to immaturity of the cortical processes involved in the motor control and in the treatment of perception and orientation of verticality.  相似文献   

11.
Motor evoked potentials (MEP) and cervicomedullary evoked potentials (CMEP) may help determine the corticospinal adaptations underlying chronic resistance training-induced increases in voluntary force production. The purpose of the study was to determine the effect of chronic resistance training on corticospinal excitability (CE) of the biceps brachii during elbow flexion contractions at various intensities and the CNS site (i.e. supraspinal or spinal) predominantly responsible for any training-induced differences in CE. Fifteen male subjects were divided into two groups: 1) chronic resistance-trained (RT), (n = 8) and 2) non-RT, (n = 7). Each group performed four sets of ∼5 s elbow flexion contractions of the dominant arm at 10 target forces (from 10%–100% MVC). During each contraction, subjects received 1) transcranial magnetic stimulation, 2) transmastoid electrical stimulation and 3) brachial plexus electrical stimulation, to determine MEP, CMEP and compound muscle action potential (Mmax) amplitudes, respectively, of the biceps brachii. All MEP and CMEP amplitudes were normalized to Mmax. MEP amplitudes were similar in both groups up to 50% MVC, however, beyond 50% MVC, MEP amplitudes were lower in the chronic RT group (p<0.05). CMEP amplitudes recorded from 10–100% MVC were similar for both groups. The ratio of MEP amplitude/absolute force and CMEP amplitude/absolute force were reduced (p<0.012) at all contraction intensities from 10–100% MVC in the chronic-RT compared to the non-RT group. In conclusion, chronic resistance training alters supraspinal and spinal excitability. However, adaptations in the spinal cord (i.e. motoneurone) seem to have a greater influence on the altered CE.  相似文献   

12.
Pay-for-performance programs are often aimed to improve the management of chronic diseases. We evaluate the impact of a local pay for performance programme (QOF+), which rewarded financially more ambitious quality targets (‘stretch targets’) than those used nationally in the Quality and Outcomes Framework (QOF). We focus on targets for intermediate outcomes in patients with cardiovascular disease and diabetes. A difference-in-difference approach is used to compare practice level achievements before and after the introduction of the local pay for performance program. In addition, we analysed patient-level data on exception reporting and intermediate outcomes utilizing an interrupted time series analysis. The local pay for performance program led to significantly higher target achievements (hypertension: p-value <0.001, coronary heart disease: p-values <0.001, diabetes: p-values <0.061, stroke: p-values <0.003). However, the increase was driven by higher rates of exception reporting (hypertension: p-value <0.001, coronary heart disease: p-values <0.03, diabetes: p-values <0.05) in patients with all conditions except for stroke. Exception reporting allows practitioners to exclude patients from target calculations if certain criteria are met, e.g. informed dissent of the patient for treatment. There were no statistically significant improvements in mean blood pressure, cholesterol or HbA1c levels. Thus, achievement of higher payment thresholds in the local pay for performance scheme was mainly attributed to increased exception reporting by practices with no discernable improvements in overall clinical quality. Hence, active monitoring of exception reporting should be considered when setting more ambitious quality targets. More generally, the study suggests a trade-off between additional incentive for better care and monitoring costs.  相似文献   

13.
We investigated the acute and chronic effects of low-intensity concentric or eccentric resistance training with blood flow restriction (BFR) on muscle size and strength. Ten young men performed 30% of concentric one repetition maximal dumbbell curl exercise (four sets, total 75 reps) 3 days/week for 6 weeks. One arm was randomly chosen for concentric BFR (CON-BFR) exercise only and the other arm performed eccentric BFR (ECC-BFR) exercise only at the same exercise load. During the exercise session, iEMG for biceps brachii muscles increased progressively during CON-BFR, which was greater (p<0.05) than that of the ECC-BFR. Immediately after the exercise, muscle thickness (MTH) of the elbow flexors acutely increased (p<0.01) with both CON-BFR and ECC-BFR, but was greater with CON-BFR (11.7%) (p<0.01) than ECC-BFR (3.9%) at 10-cm above the elbow joint. Following 6-weeks of training, MRI-measured muscle cross-sectional area (CSA) at 10-cm position and mid-upper arm (12.0% and 10.6%, respectively) as well as muscle volume (12.5%) of the elbow flexors were increased (p<0.01) with CON-BFR. Increases in muscle CSA and volume were lower in ECC-BFR (5.1%, 0.8% and 2.9%, respectively) than in the CON-BFR and only muscle CSA at 10-cm position increased significantly (p<0.05) after the training. Maximal voluntary isometric strength of elbow flexors was increased (p<0.05) in CON-BFR (8.6%), but not in ECC (3.8%). These results suggest that CON-BFR training leads to pronounced acute changes in muscle size, an index of muscle cell swelling, the response to which may be an important factor for promoting muscle hypertrophy with BFR resistance training.  相似文献   

14.
The strategies that humans use to control unsteady locomotion are not well understood. A “spring-mass” template comprised of a point mass bouncing on a sprung leg can approximate both center of mass movements and ground reaction forces during running in humans and other animals. Legged robots that operate as bouncing, “spring-mass” systems can maintain stable motion using relatively simple, distributed feedback rules. We tested whether the changes to sagittal-plane movements during five running tasks involving active changes to running height, speed, and orientation were consistent with the rules used by bouncing robots to maintain stability. Changes to running height were associated with changes to leg force but not stance duration. To change speed, humans primarily used a “pogo stick” strategy, where speed changes were associated with adjustments to fore-aft foot placement, and not a “unicycle” strategy involving systematic changes to stance leg hip moment. However, hip moments were related to changes to body orientation and angular speed. Hip moments could be described with first order proportional-derivative relationship to trunk pitch. Overall, the task-level strategies used for body control in humans were consistent with the strategies employed by bouncing robots. Identification of these behavioral strategies could lead to a better understanding of the sensorimotor mechanisms that allow for effective unsteady locomotion.  相似文献   

15.
16.
The aim of this study was to examine the dexterity of both lower extremities in patients with stroke. Twenty patients with stroke and 20 age-matched control subjects participated in this study. To determine the dexterity of the lower extremities, we examined the ability to control muscle force during submaximal contractions in the knee extensor muscles using a force tracking task. The root mean square errors were calculated from the difference between the target and response force. The root mean square error was significantly greater in the affected limb of patients with stroke compared with those of the unaffected limb and the control subjects, and in the unaffected limb compared with that of the control subjects. Furthermore, the root mean square error of the affected limb was related significantly to motor function as determined by Fugl-Myer assessment. These results demonstrate impairment of the dexterity of both the affected and the unaffected lower extremities in patients with stroke.  相似文献   

17.

Background

Downbeat nystagmus (DBN) is a common form of acquired fixation nystagmus with key symptoms of oscillopsia and gait disturbance. Gait disturbance could be a result of impaired visual feedback due to the involuntary ocular oscillations. Alternatively, a malfunction of cerebellar locomotor control might be involved, since DBN is considered a vestibulocerebellar disorder.

Methods

Investigation of walking in 50 DBN patients (age 72±11 years, 23 females) and 50 healthy controls (HS) (age 70±11 years, 23 females) using a pressure sensitive carpet (GAITRite). The patient cohort comprised subjects with only ocular motor signs (DBN) and subjects with an additional limb ataxia (DBNCA). Gait investigation comprised different walking speeds and walking with eyes closed.

Results

In DBN, gait velocity was reduced (p<0.001) with a reduced stride length (p<0.001), increased base of support (p<0.050), and increased double support (p<0.001). Walking with eyes closed led to significant gait changes in both HS and DBN. These changes were more pronounced in DBN patients (p<0.001). Speed-dependency of gait variability revealed significant differences between the subgroups of DBN and DBNCA (p<0.050).

Conclusions

(I) Impaired visual control caused by involuntary ocular oscillations cannot sufficiently explain the gait disorder. (II) The gait of patients with DBN is impaired in a speed dependent manner. (III) Analysis of gait variability allows distinguishing DBN from DBNCA: Patients with pure DBN show a speed dependency of gait variability similar to that of patients with afferent vestibular deficits. In DBNCA, gait variability resembles the pattern found in cerebellar ataxia.  相似文献   

18.
The left atrial appendage (LAA) is the typical origin for intracardiac thrombus formation. Whether LAA morphology is associated with increased stroke/TIA risk is controversial and, if it does, which morphological type most predisposes to thrombus formation. We assessed LAA morphology in stroke patients with cryptogenic or suspected cardiogenic etiology and in age- and gender-matched healthy controls. LAA morphology and volume were analyzed by cardiac computed tomography in 111 patients (74 males; mean age 60 ± 11 years) with acute ischemic stroke of cryptogenic or suspected cardiogenic etiology other than known atrial fibrillation (AF). A subgroup of 40 patients was compared to an age- and gender-matched control group of 40 healthy individuals (21 males in each; mean age 54 ± 9 years). LAA was classified into four morphology types (Cactus, ChickenWing, WindSock, CauliFlower) modified with a quantitative qualifier. The proportions of LAA morphology types in the main stroke group, matched stroke subgroup, and control group were as follows: Cactus (9.0%, 5.0%, 20.0%), ChickenWing (23.4%, 37.5%, 10.0%), WindSock (47.7%, 35.0%, 67.5%), and CauliFlower (19.8%, 22.5%, 2.5%). The distribution of morphology types differed significantly (P<0.001) between the matched stroke subgroup and control group. The proportion of single-lobed LAA was significantly higher (P<0.001) in the matched stroke subgroup (55%) than the control group (6%). LAA volumes were significantly larger (P<0.001) in both stroke study groups compared to controls patients. To conclude, LAA morphology differed significantly between stroke patients and controls, and single-lobed LAAs were overrepresented and LAA volume was larger in patients with acute ischemic stroke of cryptogenic or suspected cardiogenic etiology.  相似文献   

19.
Electrocorticography (ECoG) has drawn attention as an effective recording approach for brain-machine interfaces (BMI). Previous studies have succeeded in classifying movement intention and predicting hand trajectories from ECoG. Despite such successes, however, there still remains considerable work for the realization of ECoG-based BMIs as neuroprosthetics. We developed a method to predict multiple muscle activities from ECoG measurements. We also verified that ECoG signals are effective for predicting muscle activities in time varying series when performing sequential movements. ECoG signals were band-pass filtered into separate sensorimotor rhythm bands, z-score normalized, and smoothed with a Gaussian filter. We used sparse linear regression to find the best fit between frequency bands of ECoG and electromyographic activity. The best average correlation coefficient and the normalized root-mean-square error were 0.92±0.06 and 0.06±0.10, respectively, in the flexor digitorum profundus finger muscle. The δ (1.5∼4Hz) and γ2 (50∼90Hz) bands contributed significantly more strongly than other frequency bands (P<0.001). These results demonstrate the feasibility of predicting muscle activity from ECoG signals in an online fashion.  相似文献   

20.
This study investigated behavioral adaptability, which could be defined as a blend between stability and flexibility of the limbs movement and their inter-limb coordination, when individuals received informational constraints. Seven expert breaststroke swimmers performed three 200-m in breaststroke at constant submaximal intensity. Each trial was performed randomly in a different coordination pattern: ‘freely-chosen’, ‘maximal glide’ and ‘minimal glide’. Two underwater and four aerial cameras enabled 3D movement analysis in order to assess elbow and knee angles, elbow-knee pair coordination, intra-cyclic velocity variations of the center of mass, stroke rate and stroke length and inter-limb coordination. The energy cost of locomotion was calculated from gas exchanges and blood lactate concentration. The results showed significantly higher glide, intra-cyclic velocity variations and energy cost under ‘maximal glide’ compared to ‘freely-chosen’ instructional conditions, as well as higher reorganization of limb movement and inter-limb coordination (p<0.05). In the ‘minimal glide’ condition, the swimmers did not show significantly shorter glide and lower energy cost, but they exhibited significantly lower deceleration of the center of mass, as well as modified limb movement and inter-limb coordination (p<0.05). These results highlight that a variety of structural adaptations can functionally satisfy the task-goal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号