首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Mouse oocytes are reversibly inhibited from resuming meiotic maturation in vitro by cAMP phosphodiesterase inhibitors such as 3-isobutyl-1-methyl xanthine (IBMX) and cAMP analogs such as dibutyryl cAMP (dbcAMP). Oocytes cultured in IBMX-containing medium were transferred to and cultured in IBMX-free medium for various periods of time prior to their return to either IBMX- or dbcAMP-containing medium. Results from these experiments defined a period of time in which oocytes became committed to resuming meiosis. Forskolin, which elevated the intracellular oocyte cAMP concentration, transiently inhibited oocytes from resuming meiosis. Levels of cAMP were determined in oocytes incubated in medium that allows resumption of meiosis. The level of oocyte cAMP decreased significantly during the time in which oocytes become committed to resuming meiosis. This decrease in oocyte cAMP was not observed in oocytes inhibited from resuming meiosis by IBMX. In addition, cAMP levels were determined in preovulatory antral follicles, cumulus cell-oocyte complexes, and oocytes during gonadotropin-induced resumption of meiosis in vivo. A decrease in oocyte cAMP preceded resumption of meiosis as manifested by germinal vesicle breakdown (GVBD). This decrease apparently occurred before or during a period of time in which follicle and cumulus cell cAMP were increasing. Associated with commitment to resume meiosis was a characteristic set of changes in oocyte phosphoprotein metabolism that preceded GVBD. These changes are, to date, some of the first reported biochemical changes that precede GVBD. Results from these experiments are discussed in terms of a possible role cAMP may play in regulation of resumption of meiosis in mammals.  相似文献   

3.
4.
5.
Ovarian folliculogenesis has been studied as a model of hormonal regulation of development and differentiation, cell death, and cell-cell communication. In addition to gonadotropins from the pituitary and follicular paracrine factors, oocyte secreted factors have been shown to play critical roles in the regulation of follicular cell functions. Except for the well characterized BMP family proteins, including GDF9 and BMP15, oocytes are known to secrete oocyte secreted factors that are important for the regulation of cumulus cell survival and the maintenance of tertiary structure of cumulus cell-enclosed oocyte complexes (COCs). Based on genomic screening and studies of COCs cultured in vitro, we showed that intermedin (IMD)/adrenomedullin 2 (ADM2) is a novel oocyte-derived ligand important for the regulation of cell interactions in COCs that functions, in part, by suppressing cumulus cell apoptosis. Consistently, we showed that suppression of IMD/ADM2 signaling in growing rat ovaries in vivo leads to oocyte atresia and aberrant cell cycle progression in follicular cells. Together, our studies indicated that mammalian oocytes deploy a G protein-coupled receptor ligand to coordinate normal interactions of oocytes and cumulus cells and provided a better understanding of how the tertiary structure of a COC is maintained as follicles undergo exponential growth during the late stages of folliculogenesis.  相似文献   

6.
Regulation of amphibian oocyte maturation   总被引:14,自引:0,他引:14  
Xenopus oocyte maturation is a model system for studying the control of cell proliferation and the regulation of the cell cycle. Addition of progesterone or insulin to oocytes releases a G2 block and stimulates progression through meiosis to an unfertilized egg. The release of the G2 block is a consequence of a decrease in cAMP mediated entirely or in part by an inhibition of adenylate cyclase. The mechanism of cyclase inhibition involves a membrane steroid receptor controlling the rate of guanine nucleotide exchange. Subsequent events include an increase in intracellular pH and the phosphorylation of ribosomal protein S6. The latter event may play a role in translational control of maturation. Late events in maturation involve the appearance of the maturation-promoting factor (MPF), a cytoplasmic protein responsible for causing nuclear envelope breakdown, chromosome condensation, and spindle formation. MPF oscillates in meiotic and mitotic cell cycles. The events caused by MPF can now be obtained in crude extracts with retention of cell cycle control by calcium, providing a framework for rapid progress in characterizing MPF and its regulation.  相似文献   

7.
Yoshida N  Mizuno K 《Cytotechnology》2012,64(3):241-247
Phytoestrogens are a group of naturally occurring compounds that have weak estrogenic activity. Genistein and daidzein are major phytoestrogens produced by soybeans. It has been reported previously that at high concentration, some phytoestrogens inhibit cell cycle progression of mouse germinal vesicle (GV) oocytes, but the environmentally relevant level is much lower. Here we show the effects of low concentrations of the isoflavones genistein, daidzein and the daidzein metabolite, equol, on mouse oocyte maturation. GV oocytes denuded of cumulus cells were cultured in TaM medium containing low levels (5 μM) of genistein, daidzein. or equol. In all cases, the oocytes underwent normal GV break down, first polar body extrusion and became arrested at metaphase II (mII). As judged by fluorescence microscopy, the treated mII oocytes exhibited normal distributions of actin microfilaments, cortical granules and metaphase spindle formation with condensed metaphase chromatin. Moreover, mRNA expression levels of the cytostatic factors Emi2 and Mos were similar to those of their respective controls. These data suggest that exposure of maturing GV oocytes to environmental levels of genistein, daidzein or equol in vitro do not cause negative effects on maturation to produce mII oocytes.  相似文献   

8.
Spontaneous velocity sedimentation of B lymphocytes activated by intraperitoneal injection of ovalbumin into mice was used to obtain cell cycle synchronized cells, evidenced by differences in the incorporation of labeled precursors of protein and nucleic synthesis (14C-methionine and 3H-thymidine). The effects of acetylcholine and adrenaline, cAMP and cGMP on the intensity of 3H-thymidine incorporation into mouse B lymphocytes and on the amount of the cells entering mitosis were examined. It was shown that acetylcholine is capable of stimulating whereas adrenaline of inhibitin B lymphocyte entry into the stage of DNA synthesis and egress of these cells from the stage of DNA synthesis to the stage of mitosis. Adrenaline was found to have a reciprocal action. The acetylcholine effect could be mimetized by exogenous cGMP, that of adrenaline by cAMP. Stimulation of the G1/S transition was mediated by intracellular calcium ions but did not depend on exocellular calcium.  相似文献   

9.
The timing of the reduction of cumulus cell-oocyte coupling was correlated with oocyte meiotic maturation and the expansion (mucification) of the cumulus oophorus using immature mice treated with gonadotropins. Three hours after the injection of an ovulatory dose of human chorionic gonadotropin (hCG), more than 90% of the oocytes isolated from large Graafian follicles had undergone germinal vesicle breakdown, indicating that oocyte meiotic maturation had been initiated. However, no cumulus expansion or reduction of intercellular coupling was detected at this time. By 6 hr after hCG injection, the index of oocyte-cumulus cell coupling was still not less than that found in oocyte-cumulus cell complexes isolated from control mice not receiving hCG. Cumulus expansion at 6 hr post-hCG was limited to the outer cumulus cells while those adjacent to the oocyte were still tightly packed. Cumulus expansion appeared complete by 9 hr after hCG injection and the cumulus cell-oocyte coupling index was greatly reduced. These results show that oocyte meiotic maturation in the mouse is not initiated by a reduction in cumulus cell-oocyte coupling or by cumulus expansion. However, the results suggest that the reduction of intercellular coupling in vivo may be a result of cumulus expansion.  相似文献   

10.
Regulation of oocyte maturation in fish   总被引:2,自引:0,他引:2  
  相似文献   

11.
During oocyte maturation, the cumulus-oocyte complexes (COCs) expand dramatically. This phenomenon, which is known as cumulus expansion, is the result of the synthesis and accumulation of hyaluronan in the extracellular space between cumulus cells. The purpose of this study was to investigate the effect of 6-diazo-5-oxo-l-norleucine (DON), an inhibitor of hyaluronan synthesis, on cumulus expansion during in vitro porcine oocyte maturation and hyaluronan accumulation within COCs. Further, this study aimed to examine the influence of hyaluronan accumulation within COCs on the rate of oocyte maturation. Cumulus expansion was observed during in vitro maturation. However, the addition of DON to the maturation medium significantly inhibited cumulus expansion. The total inhibition of hyaluronan accumulation within COCs was observed with the use of confocal microscopy. Moreover, a positive correlation between the area of cumulus expansion and the rate of oocyte maturation was observed. These results demonstrate that the hyaluronan accumulation within the COCs during oocyte maturation affects oocyte maturation. On the basis of these results, we propose that hyaluronan accumulation within the COCs during cumulus expansion is a necessary step in the porcine oocyte maturation process.  相似文献   

12.
13.
During mouse oocyte maturation the regulation of the activity of a cytoplasmic maturation-promoting factor (MPF) was examined. The mouse MPF activity was determined based on its ability to induce maturation in immature starfish oocytes after microinjection with the cytoplasm from mouse oocytes. MPF appeared initially at germinal vesicle breakdown (GVBD), and its activity fluctuated in exact correspondence with meiotic cycles, reaching a peak at each metaphase and almost disappearing at the time of emission of the first polar body. Cycloheximide affected neither the initial MPF appearance nor GVBD. Thereafter, however, in the presence of cycloheximide the meiotic spindle was not formed and MPF disappeared, although the chromosomes remained condensed. After removing cycloheximide, MPF reappeared and was followed by the first metaphase and subsequently by polar body emission. Finally the meiotic cycle progressed to the second metaphase. Thus, for the appearance of MPF, there is a critical period shortly before the first metaphase, after which protein synthesis is required. In the presence of either cytochalasin D or colcemid, MPF activity remained at elevated levels. Addition of cycloheximide to such cytochalasin-treated oocytes, in which the meiotic cycle was arrested at the first metaphase, caused the MPF levels to decrease and was followed by movement of chromosomes to both poles where they decondensed and two nucleus-like structures were formed. Thus, the disappearance of MPF may initiate the metaphase-anaphase transition. Furthermore, detailed cytological examination revealed that chromosomes in cytochalasin-treated oocytes were monovalent while those treated only with cycloheximide were divalent, suggesting that dissociation of the synapsis is a prerequisite for chromosome decondensation after the disappearance of MPF. In all these respects, MPF seems to be a metaphase-promoting factor rather than just a maturation-promoting factor.  相似文献   

14.
Because low levels of DNA double strand breaks (DSBs) appear not to activate the ATM-mediated prophase I checkpoint in full-grown oocytes, there may exist mechanisms to protect chromosome integrity during meiotic maturation. Using live imaging we demonstrate that low levels of DSBs induced by the radiomimetic drug Neocarzinostatin (NCS) increase the incidence of chromosome fragments and lagging chromosomes but do not lead to APC/C activation and anaphase onset delay. The number of DSBs, represented by γH2AX foci, significantly decreases between prophase I and metaphase II in both control and NCS-treated oocytes. Transient treatment with NCS increases >2-fold the number of DSBs in prophase I oocytes, but less than 30% of these oocytes enter anaphase with segregation errors. MRE11, but not ATM, is essential to detect DSBs in prophase I and is involved in H2AX phosphorylation during metaphase I. Inhibiting MRE11 by mirin during meiotic maturation results in anaphase bridges and also increases the number of γH2AX foci in metaphase II. Compromised DNA integrity in mirin-treated oocytes indicates a role for MRE11 in chromosome integrity during meiotic maturation.  相似文献   

15.
Forskolin and mouse oocyte maturation in vitro   总被引:1,自引:0,他引:1  
Oocytes isolated from mature follicles undergo spontaneous maturation when cultured in vitro. Forskolin, an adenylate cyclase stimulator, inhibited resumption of meiosis of cumulus-free mouse oocytes in vitro. Germinal vesicle breakdown (GVBD) was prevented in more than 85% of the oocytes treated by forskolin at concentrations of 20 micrograms/ml and higher. The inhibiting effect of forskolin was dose-dependent and reversible. FSH, LH, FSH plus LH, estrogen, progesterone, and estrogen plus progesterone did not reverse the block induced by forskolin in cumulus-free and cumulus-enclosed oocytes. The present results suggest that intracellular cAMP may play a role in the regulation of oocyte maturation.  相似文献   

16.
Greatwall kinase has been identified as a key element in M phase initiation and maintenance in Drosophila, Xenopus oocytes/eggs, and mammalian cells. In M phase, Greatwall phosphorylates endosulfine and related proteins that bind to and inhibit protein phosphatase 2A/B55, the principal phosphatase for Cdk-phosphorylated substrates. We show that Greatwall binds active PP2A/B55 in G2 phase oocytes but dissociates from it when progesterone-treated oocytes reach M phase. This dissociation does not require Greatwall kinase activity or phosphorylation at T748 in the presumptive T loop of the kinase. A mutant K71M Greatwall, also known as Scant in Drosophila, induces M phase in the absence of progesterone when expressed in oocytes, despite its reduced stability and elevated degradation by the proteasome. M phase induction by Scant Greatwall requires protein synthesis but is not associated with altered binding or release of PP2A/B55 as compared to wild-type Greatwall. However, in vitro studies with Greatwall proteins purified from interphase cells indicate that Scant, but not wild-type Greatwall, has low but detectable activity against endosulfine. These results demonstrate progesterone-dependent regulation of the PP2A/B55-Greatwall interaction during oocyte maturation and suggest that the cognate Scant Greatwall mutation has sufficient constitutive kinase activity to promote M phase in Xenopus oocytes.  相似文献   

17.
目的:探讨褪黑素(MT)对小鼠卵母细胞的体外成熟的影响.方法:通过卵母细胞自发、次黄嘌呤(HX)阻滞和激素诱导成熟三种体外培养模型研究了褪黑素(MT)对小鼠卵母细胞体外成熟的影响.结果:①0.1 g/L、0.02g/L、0.004 g/L及0.0008 g/L浓度的MT均能显著抑制小鼠卵丘卵母细胞复合体(CEOs)自发成熟过程中第一极体(PB1)的释放(P<0.01);②动力曲线分析表明,MT对自发成熟的CEOs的GVBD和PB1有显著的推后作用,与对照组相比,处理组的GVBD和PB1分别被推后8~10 h和3~4 h;③0.1 g/L和0.02 g/L两有效浓度的MT还能显著抑制促性腺激素(FSH)诱导的HX阻滞的CEOsGVBD的发生(P<0.05),对PB1的排出虽有一定的抑制作用,但没有统计学意义;④MT和次黄嘌呤(HX)对CEOs的自发成熟有协同抑制作用(P<0.01),但在裸卵(DO)自发成熟的阻滞中没有协同效应.结论:MT是调节哺乳动物卵母细胞成熟的重要激素之一,其作用机制可能是通过卵丘细胞实现的.  相似文献   

18.
The role of cAMP in regulating follicular progesterone levels and oocyte maturation was investigated following in vitro culture of amphibian (Rana pipiens) ovarian follicles. Intrafollicular levels of cAMP were manipulated with the use of a stimulator of cAMP synthesis (forskolin) or by exogenous addition of cAMP alone or either of these in combination with an inhibitor of cAMP catabolism (3-isobutyl-1-methyl xanthine, IBMX). Follicular progesterone content was determined by RIA and oocyte maturation was assessed cytologically. In the presence of increasing doses of forskolin (0-3 microM), cAMP (0-3 mM), or dibutyryl cAMP (dbcAMP, 0-2.5 mM) increasing but low levels of progesterone were detected. Increasing doses of IBMX (0-0.09 mM) alone had no significant effect on follicular steroid content. Exogenous cAMP, dbcAMP, or IBMX (0.09 mM) suppressed hormone-induced oocyte maturation. Simultaneous exposure of follicles to increasing doses of both forskolin (0-3 microM) and IBMX (0-0.09 mM) markedly increased intrafollicular progesterone levels to those produced by frog pituitary homogenate (FPH). A marked increase in progesterone levels also occurred when follicles were exposed to exogenous cAMP (3 mM) and IBMX (0.09 mM). These results indicate that exogenous cAMP is incorporated by follicle cells and that forskolin effects are mediated through cAMP. Changes in follicular progesterone levels (increase and decrease) over time following FPH or cAMP manipulation (cAMP + IBMX or forskolin + IBMX) were essentially identical. In contrast to cAMP, cGMP was inactive in inhibiting hormone induced GVBD or stimulating follicular progesterone accumulation. Elevation of follicular and medium levels of progesterone resulting from FPH or cAMP stimulation required the presence of the somatic follicular cells. The decrease in follicular progesterone levels with prolonged culture was not associated with a corresponding increase in progesterone levels in the medium. The decrease in follicular progesterone levels appears to reflect steroid catabolism rather than loss of steroid to the culture medium. The results suggest that the level of intracellular cAMP in the follicle cells is modulated by the relative activity of the adenylate cyclase system and phosphodiesterase and that FPH can affect both components. Thus, intracellular levels of cAMP play a key role in regulating follicular progesterone levels and FPH action on the follicle cells. The steroidogenic capacity of follicle cells can be manipulated independently of FPH stimulation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号