首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In humans, most of the mammals and one bird species studied so far, the relative length of individual digits is sexually dimorphic. Most studies of humans have been concerned with the ratio between second (2D) and fourth digits (4D), whereas some studies of humans and other mammals have also investigated other digit ratios. Inter- and intra-sexual variation in 2D:4D may depend on differential exposure to androgens during embryonic life, and the genetic mechanisms linking 2D:4D to androgens may be mediated by Hox genes. Because Hox genes are conserved in vertebrates, similar patterns of variation in digit ratios might be expected across vertebrate classes. The observation of correlations between digit ratios and physiological, psychological and performance traits in humans has generated interest in exploring the possibility that digit ratios are a marker of embryonic exposure to androgens, which have diverse consequences on several phenotypic traits. However, the hypothesis that digit ratios depend on androgen effects during development has never been tested experimentally. In this study, we increased testosterone concentration in ring-necked pheasant eggs and measured length ratios between the second, third and fourth digits of both feet in fully grown offspring. Females from testosterone-injected eggs had larger 2D:3D in the left foot, whereas this was not the case in males. The other digit ratios were unaffected by hormone treatment in both sexes. However, digit ratios showed no sexual dimorphism among controls. Thus, present results are consistent with the hypothesis that variation in testosterone levels during development affects digit ratios.  相似文献   

2.
Hoxd13, Tbx2, Tbx3, Sall1 and Sall3 genes are candidates for encoding antero-posterior positional values in the developing chick wing and specifying digit identity. In order to build up a detailed profile of gene expression patterns in cell lineages that give rise to each of the digits over time, we compared 3 dimensional (3D) expression patterns of these genes during wing development and related them to digit fate maps. 3D gene expression data at stages 21, 24 and 27 spanning early bud to digital plate formation, captured from in situ hybridisation whole mounts using Optical Projection Tomography (OPT) were mapped to reference wing bud models. Grafts of wing bud tissue from GFP chicken embryos were used to fate map regions of the wing bud giving rise to each digit; 3D images of the grafts were captured using OPT and mapped on to the same models. Computational analysis of the combined computerised data revealed that Tbx2 and Tbx3 are expressed in digit 3 and 4 progenitors at all stages, consistent with encoding stable antero-posterior positional values established in the early bud; Hoxd13 and Sall1 expression is more dynamic, being associated with posterior digit 3 and 4 progenitors in the early bud but later becoming associated with anterior digit 2 progenitors in the digital plate. Sox9 expression in digit condensations lies within domains of digit progenitors defined by fate mapping; digit 3 condensations express Hoxd13 and Sall1, digit 4 condensations Hoxd13, Tbx3 and to a lesser extent Tbx2. Sall3 is only transiently expressed in digit 3 progenitors at stage 24 together with Sall1 and Hoxd13; then becomes excluded from the digital plate. These dynamic patterns of expression suggest that these genes may play different roles in digit identity either together or in combination at different stages including the digit condensation stage.  相似文献   

3.
The hormonal environment experienced during prenatal development may affect adult phenotype and behaviour. Digit lengths may provide an estimate of steroid levels encountered during embryonic development in humans and other vertebrates. Finger patterns in humans have been shown to reveal sexual orientation or cooperative behaviour. We explored individual breeding behaviour in a monogamous seabird, the Balearic shearwater Puffinus mauretanicus and unexpectedly detected some cooperative breeders. Furthermore, we show evidence of correlation between digit lengths and cooperative breeding in this species. Additionally, we suggest that the first digit could be a possible indicator of prenatal steroid levels. These results are the starting point for further tests of the hypothesis that first digit length is an indicator of prenatal hormone levels in other vertebrate species. Moreover, these results may offer practical use in wild populations to study the implications of the changes in prenatal environment for adult social behaviour.  相似文献   

4.
Documentation of variation in phalangeal formulae in land tortoises combined with ontogenetic information from turtles in general were used, in a phylogenetic context, to infer the potential effect of size and developmental constraints upon patterns of morphological variation. A sample of 201 specimens and published illustrations of 37 tortoise species were examined, representing all but one living genera and most species of the Testudinidae. Specimens were either articulated dry skeletons or preserved animals that were x-rayed. The patterns of digital and phalangeal loss in tortoises were predicted from developmental studies of the manus and pes in other turtles. If a digit is lost, it is the first digit, which is the last one to develop. If a digit has a single phalanx, it is usually the fifth digit. The primitive phalangeal formula for land tortoises is probably 2-2-2-2-1, the most common pattern found in living testudinid species. The presence of a second phalanx in the fifth digit evolved independently many times and usually in large tortoises. Such additions were interpreted as instances of peramorphosis. Many small tortoises have a full complement of digits (five) and phalanges (two in each digit); nevertheless, phalangeal and digital loss is associated with small size. Small and medium size tortoises exhibit greater variation in phalangeal number than do large tortoises. We hypothesize that epigenetic processes, and not simply adaptation, played a major role in the evolution of the variation in phalangeal formulae in tortoises.  相似文献   

5.
Digit reduction has occurred in parallel in many mammalian lineages. However, despite this pattern's prevalence, the developmental mechanisms underlying mammalian digit reduction remain controversial. We therefore undertook a study of digit development in the pig (Sus scrofa), a mammal with reduced first, second, and fifth digits. Our results indicate that from its earliest formation, the pig limb bud is significantly narrower than that of the model pentadactyl mammal, mouse. Furthermore, the cartilage condensations of the pig's reduced digits are noticeably smaller than those of their nonreduced counterparts from the time of their formation. In addition, growth rates of pig digits are comparable, as are the patterns of cell death in developing pig and mouse limbs. Taken together, results suggest that pig's first, second, and fifth digits are primarily reduced through evolutionary modifications in the early developmental patterning of their limbs. Results of this study, coupled with those from study of limb development in other mammals, suggest that although major developmental reorganizations (e.g., complete digit or limb loss) during early limb development may be selected against, it may be common for more subtle evolutionary modifications in limb development (e.g., changes in relative digit size) to occur at this time.  相似文献   

6.
7.
Anthropoids in general and hominoids in particular exhibit differential adaptations in forearm and digital skeletal proportions to a diverse array of locomotor modes. Hox genes act as selector genes with spatially regulated expression patterns during development. Their expression in the forelimb appears to define modules that specify differential skeletal growth. Here we explore forelimb skeletal proportions in a large sample of anthropoids from a background provided by Hoxd expression patterns in late-stage murine embryonic forelimbs. Interspecific correlation and principal components analyses of primate forelimb data indicate that morphological variation in anthropoids reflects well-defined developmental modules downstream of Hoxd expression. The phalanges of digit one appear to represent a single growth module, whereas the metacarpals and manual phalanges of the posterior digits correspond to a second, independent, expression territory that extends proximally into the distal zeugopod. In particular, hominoids show very high correlations among the posterior digits and the independence of digit one. In addition, the distal radius is generally highly correlated with the posterior digits and not digit one. Relying on established functional differences among Hox paralogs, we present a model that parsimoniously explains hominoid forearm and digital proportions as a consequence of downstream effects of Hox. We, therefore, suggest that Hox-defined developmental modules have served as evolutionary modules during manual evolution in anthropoids.  相似文献   

8.
DEVELOPMENTAL MECHANISMS UNDERLYING THE FORMATION OF ATAVISMS   总被引:1,自引:0,他引:1  
1. Atavisms emerge as evidence of localized modifications in development of an organ or of one of its parts. Different developmental processes can be triggered within the same organ rudiment, presumably in response to the same stimulus. We saw that that stimulus can have a genetic basis in a mutational event, which can be selected for. We also saw that atavism can be produced by experimental manipulation within developing systems -increased growth of the chick fibula, enamel production from avian ectoderm, and balancer formation in amphibians. Such atavisms are not based on heritable genetic changes. They indicate the developmental plasticity that exists within embryos and the relative ease with which development can be switched from one programme to another. 2. Examination of mutants (wingless chicks), limbless vertebrates and experimental manipulation of embryos, shows that cell death, inductive tissue interactions and altered patterns of growth are developmental mechanisms used in the formation of atavisms. 3. Differential development mechanisms can be triggered within the same organ at the same time to produce atavisms. In the guinea pig, formation of atavistic digit V involves prolongation of growth of metatarsal V whereas formation of atavistic digit I involves development of a new metatarsal I. 4. Secondary functional modifications ensure that the atavism is integrated with the other components of the functional unit, as illustrated by extra digits in horses or guinea pigs and fibulae in birds. Atavistic 2nd and 4th digits in horses arise by continued growth of their primordia. A consequent reduction in the growth rate of digit 3, the normal single functional digit, enables all three digits to attain approximately equal lengths and so potentially to function. The altered functional load transmitted to the limbs results in secondary but correlated alterations in muscles and skeletal elements in other portions of the limbs. The fact that embryonic digit 2 normally develops to a more advanced state than digit 4 explains why digit 2 more often develops atavistically, for if variation in growth rate is the basis for the atavistic digit, digit 2 has an advantage over digit 4. 5. Atavisms should not be an embarrassment to the evolutionary biologist. They are the outward and visible sign of a hidden potential for morphology change possessed by all organisms. Neither basic capacity to form the organ nor patterning information is lost. Modification of components of inductive tissue interactions helps to explain how organs are lost during evolution (also see Regal, 1977); retention of the basic mechanism explains how structures can be revived as atavisms (also see Rachootin & Thomson, 1981). Frequency of atavisms thus provides an indication of the degree of modification or loss of the underlying developmental programme.  相似文献   

9.
We analyse in this paper the evolutionary patterns of two types of Drosophila retrotransposons, gypsy (a virus-like element), and bilbo (a LINE-like element), in host species from the Drosophila and Scaptomyza genus. Phylogenetic analysis of the retrotransposon sequences amplified by PCR, revealed concordance with the phylogeny of the Drosophila host species from the obscura group, which is consistent with vertical transmission during differentiation of the species. However, in the species outside of the obscura group, horizontal transmission can be considered. The amplified sequences that presented intact open reading frames were used in an analysis of the evolutionary constraints on the amino acid sequences. The analysed sequences seem to be functional, and the selective constraints are evidenced, especially when sequences from distant species are compared. Comparison of the evolutionary rates of both retrotransposons in the same species, suggests that bilbo seems to evolve more rapidly than gypsy.  相似文献   

10.
Salamanders are infrequently mentioned in analyses of tetrapod limb formation, as their development varies considerably from that of amniotes. However, urodeles provide an opportunity to study how limb ontogeny varies with major differences in life history. Here we assess limb development in Desmognathus aeneus, a direct-developing salamander, and compare it to patterns seen in salamanders with larval stages (e.g., Ambystoma mexicanum). Both modes of development result in a limb that is morphologically indistinct from an amniote limb. Developmental series of A. mexicanum and D. aeneus were investigated using Type II collagen immunochemistry, Alcian Blue staining, and whole-mount TUNEL staining. In A. mexicanum, as each digit bud extends from the limb palette Type II collagen and proteoglycan secretion occur almost simultaneously with mesenchyme condensation. Conversely, collagen and proteoglycan secretion in digits of D. aeneus occur only after the formation of an amniote-like paddle. Within each species, Type II collagen expression patterns resemble those of proteoglycans. In both, distal structures form before more proximal structures. This observation is contrary to the proximodistal developmental pattern of other tetrapods and may be unique to urodeles. In support of previous findings, no cell death was observed during limb development in A. mexicanum. However, apoptotic cells that may play a role in digit ontogeny occur in the limbs of D. aeneus, thereby suggesting that programmed cell death has evolved as a developmental mechanism at least twice in tetrapod limb evolution.  相似文献   

11.
Most trigger digit (TD) patients complain that they have problems using their hand in daily or occupational tasks due to single or multiple digits being affected. Unfortunately, clinicians do not know much about how this disease affects the subtle force coordination among digits during manipulation. Thus, this study examined the differences in force patterns during cylindrical grasp between TD and healthy subjects. Forty-two TD patients with single digit involvement were included and sorted into four groups based on the involved digits, including thumb, index, middle and ring fingers. Twelve healthy subjects volunteered as healthy controls. Two testing tasks, holding and drinking, were performed by natural grasping with minimal forces. The relations between the force of the thumb and each finger were examined by Pearson correlation coefficients. The force amount and contribution of each digit were compared between healthy controls and each TD group by the independent t test. The results showed all TD groups demonstrated altered correlation patterns of the thumb relative to each finger. Larger forces and higher contributions of the index finger were found during holding by patients with index finger involved, and also during drinking by patients with affected thumb and with affected middle finger. Although no triggering symptom occurred during grasping, the patients showed altered force patterns which may be related to the role of the affected digit in natural grasping function. In conclusion, even if only one digit was affected, the subtle force coordination of all the digits was altered during simple tasks among the TD patients. This study provides the information for the future studies to further comprehend the possible injuries secondary to the altered finger coordination and also to adopt suitable treatment strategies.  相似文献   

12.
This study explores the force synergy of human digits in both static and dynamic cylindrical grasping conditions. The patterns of digit force distribution, error compensation, and the relationships among digit forces are examined to quantify the synergetic patterns and coordination of multi-finger movements. This study recruited 24 healthy participants to perform cylindrical grasps using a glass simulator under normal grasping and one-finger restricted conditions. Parameters such as the grasping force, patterns of digit force distribution, and the force coefficient of variation are determined. Correlation coefficients and principal component analysis (PCA) are used to estimate the synergy strength under the dynamic grasping condition. Specific distribution patterns of digit forces are identified for various conditions. The compensation of adjacent fingers for the force in the normal direction of an absent finger agrees with the principle of error compensation. For digit forces in anti-gravity directions, the distribution patterns vary significantly by participant. The forces exerted by the thumb are closely related to those exerted by other fingers under all conditions. The index-middle and middle-ring finger pairs demonstrate a significant relationship. The PCA results show that the normal forces of digits are highly coordinated. This study reveals that normal force synergy exists under both static and dynamic cylindrical grasping conditions.  相似文献   

13.
《The Journal of cell biology》1985,101(5):1913-1920
All-trans-retinoic acid causes striking digit pattern changes when it is continuously released from a bead implanted in the anterior margin of an early chick wing bud. In addition to the normal set of digits (234), extra digits form in a mirror-symmetrical arrangement, creating digit patterns such as a 432234. These retinoic acid-induced pattern duplications closely mimic those found after grafts of polarizing region cells to the same positions with regard to dose-response, timing, and positional effects. To elucidate the mechanism by which retinoic acid induces these pattern duplications, we have studied the temporal and spatial distribution of all-trans-retinoic acid and its potent analogue TTNPB in these limb buds. We find that the induction process is biphasic: there is an 8-h lag phase followed by a 6-h duplication phase, during which additional digits are irreversibly specified in the sequence digit 2, digit 3, digit 4. On average, formation of each digit seems to require between 1 and 2 h. The tissue concentrations, metabolic pattern, and spatial distribution of all- trans-retinoic acid and TTNPB in the limb rapidly reach a steady state, in which the continuous release of the retinoid is balanced by loss from metabolism and blood circulation. Pulse-chase experiments reveal that the half-time of clearance from the bud is 20 min for all-trans- retinoic acid and 80 min for TTNPB. Manipulations that change the experimentally induced steep concentration gradient of TTNPB suggest that a graded distribution of retinoid concentrations across the limb is required during the duplication phase to induce changes in the digit pattern. The extensive similarities between results obtained with retinoids and with polarizing region grafts raise the possibility that retinoic acid serves as a natural "morphogen" in the limb.  相似文献   

14.
15.
Much of what we currently know about digit morphogenesis during limb development is deduced from embryonic studies in the chick. In this study, we used ex utero surgical procedures to study digit morphogenesis during mouse embryogenesis. Our studies reveal some similarities; however, we have found considerable differences in how the chick and the mouse autopods respond to experimentation. First, we are not able to induce ectopic digit formation from interdigital cells as a result of wounding or TGFbeta-1 application in the mouse, in contrast to what is observed in the chick. Second, FGF4, which inhibits the formation of ectopic digits in the chick, induces a digit bifurcation response in the mouse. We demonstrate with cell marking studies that this bifurcation response results from a reorganization of the prechondrogenic tip of the digit rudiment. The FGF4 effect on digit morphogenesis correlates with changes in the expression of a number of genes, including Msx1, Igf2, and the posterior members of the HoxD cluster. In addition, the bifurcation response is digit-specific, being restricted to digit IV. We propose that FGF4 is an endogenous signal essential for skeletal branching morphogenesis in the mouse. This work stresses the existence of major differences between the chick and the mouse in how digit morphogenesis is regulated and is thus consistent with the view that vertebrate digit evolution is a relatively recent event. Finally, we discuss the relationship between the digit IV bifurcation restriction and the placement of the metapterygial axis in the evolution of the tetrapod limb.  相似文献   

16.
Explanations of the patterns of vertebrate fin and limb evolution are improving as specific hypotheses based on molecular and developmental data are proposed and tested. Comparative analyses of gene expression patterns and functions in developing limbs, and morphological patterns in embryonic, adult and fossil limbs point to digit specification as a key developmental innovation associated with the origin of tetrapods. Digit development during the fin-to-limb transition involved sustained proximodistal outgrowth and a new phase of Hox gene expression in the distal fin bud. These patterning changes in the distal limb have been explained by the linked concepts of the metapterygial axis and the digital arch. These have been proposed to account for the generation of limb pattern by sequential branching and segmentation of precartilagenous elements along the proximodistal axis of the limb. While these ideas have been very fruitful, they have become increasingly difficult to reconcile with experimental and comparative studies of fin and limb development. Here we argue that limb development does not involve a branching mechanism, and reassess the concept of a metapterygial axis in limb development and evolution.  相似文献   

17.
An often overlooked aspect of digit development is the special nature of the terminal phalanx, a specialized structure with characteristics distinct from other phalanges, for example the presence of ectodermal derivatives such as nails and claws. Here, we describe the unique ossification pattern of distal phalanges and characteristic gene expression in the digit tips of chick and duck embryos. Our results show that the distal phalanx of chick wing digit 1 is a genuine tip with a characteristic ossification pattern and expression of Bambi and Sp8; however, the terminal phalanx of digits 2* and 3 is not a genuine tip, and these are therefore truncated digits. Bambi and Sp8 expression in the chick wing provides a direct molecular assessment of digit identity changes after experimental manipulations of digit primordia. In contrast, digits 1 and 2 of the duck wing both possess true tips. Although chick wing-tip development was not rescued by application of Fgf8, this treatment induced the development of extra phalanges. Grafting experiments show that competence for tip formation, including nails, is latent in the interdigital tissue. Our results deepen understanding of the mechanisms of digit tip formation, highlighting its developmental autonomy and modular nature, with implications for digit reduction or loss during evolution. * Numbering of wing digits is 1, 2, 3 from anterior to posterior.  相似文献   

18.
Limb ossification patterns for the Lower Jurassic (Toarcian) ichthyosaur, Stenopterygius , are described. It is found that limb ossification follows a continuous proximal to distal sequence from the propodial elements through to the terminal elements of 1st to 4th digit in the manus and the 1st to 3rd digit in the pes. The 5th manal and 4th pedal digit begin ossification later than more preaxial digits and also show evidence of proximal addition of elements near the distal mesopodial row in a manner consistent with delayed ossification of the 5th distal mesopodial in other diapsids. Ossification of manal elements in the Supernumerary 3–4 (S3-4) digit and the 5th digit appear interdependent; if one or the other is highly ossified, ossification of the other is retarded. The 1st pedal digit is considered to be lost in Stenopterygius and the 4th pedal digit is identified as the 5th digit. Delayed ossification of the mesopodium is not observed. The most preaxial proximal tarsal is identified as the centralc; the remaining proximal tarsals are the astragalus and calcaneum, and it is inferred that the astragalus and calcaneum ossified from within a single proximal cartilage.  相似文献   

19.
Inactivation of Gli3, a key component of Hedgehog signaling in vertebrates, results in formation of additional digits (polydactyly) during limb bud development. The analysis of mouse embryos constitutively lacking Gli3 has revealed the essential GLI3 functions in specifying the anteroposterior (AP) limb axis and digit identities. We conditionally inactivated Gli3 during mouse hand plate development, which uncoupled the resulting preaxial polydactyly from known GLI3 functions in establishing AP and digit identities. Our analysis revealed that GLI3 directly restricts the expression of regulators of the G(1)-S cell-cycle transition such as Cdk6 and constrains S phase entry of digit progenitors in the anterior hand plate. Furthermore, GLI3 promotes the exit of proliferating progenitors toward BMP-dependent chondrogenic differentiation by spatiotemporally restricting and terminating the expression of the BMP antagonist Gremlin1. Thus, Gli3 is a negative regulator of the proliferative expansion of digit progenitors and acts as a gatekeeper for the exit to chondrogenic differentiation.  相似文献   

20.
The issue of the homology of bird fingers with those of pentadactyl amniotes has been a topic of contention for nearly 200 years. Data from the fossil record and phylogenetic systematics ascribe bird digit homologies to digits I, II, and III of pentadactyl amniotes while embryological evidence supports digital homologies of II, III, and IV. Using a molecular marker specific for condensation competent mesenchymal cells, we describe a pentadactyl arrangement of prechondrogenic digital anlagen in the wings of stage 29 chick embryos. Only the middle three anlagen develop into mature fingers. This pattern supports the hypothesis that bird fingers develop from digital anlagen II, III, and IV of pentadactylous amniotes. In addition, this result rejects a model assuming a shift in the primary axis in bird digit development and shows that a prechondrogenic digital anlage has been maintained in the bird lineage for at least 220 million years since the last known pentadactylous ancestor of the lineage. Such a vestige suggests that strong constraints are maintaining a pentadactyl ground state in amniotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号