首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spindle pole body (SPB) of Schizosaccharomyces pombe is required for assembly of the forespore membrane (FSM) during meiosis. Before de novo biogenesis of the FSM, the meiotic SPB forms outer plaques, an event referred to as SPB modification. A constitutive SPB component, Spo15, plays an indispensable role in SPB modification and sporulation. Here, we analyzed two sporulation-specific genes, spo13(+) and spo2(+), which are not required for progression of meiotic nuclear divisions, but are essential for sporulation. Spo13 is a 16-kDa coiled-coil protein, and Spo2 is a 15-kDa nonconserved protein. Both Spo13 and Spo2 specifically associated with the meiotic SPB. The respective deletion mutants are viable, but defective in SPB modification and in the onset of FSM formation. Spo13 and Spo2 localized on the cytoplasmic side of the SPB in close contact with the nascent FSM. Localization of Spo13 to the SPB was dependent on Spo15 and Spo2; that of Spo2 depended only on Spo15, suggesting that their recruitment to the SPB is strictly controlled. Spo2 physically associated with both Spo15 and Spo13, but Spo13 and Spo15 did not interact directly. Taken together, these observations indicate that Spo2 is recruited to the SPB during meiosis and then assists in the localization of Spo13 to the outer surface of the SPB.  相似文献   

2.
Spore formation in Saccharomyces cerevisiae occurs via the de novo synthesis of the prospore membrane during the second meiotic division. Prospore membrane formation is triggered by assembly of a membrane-organizing center, the meiotic outer plaque (MOP), on the cytoplasmic face of the spindle pole body (SPB) during meiosis. We report here the identification of two new components of the MOP, Ady4p and Spo74p. Ady4p and Spo74p interact with known proteins of the MOP and are localized to the outer plaque of the SPB during meiosis II. MOP assembly and prospore membrane formation are abolished in spo74Δ/spo74Δ cells and occur aberrantly in ady4Δ/ady4Δ cells. Spo74p and the MOP component Mpc70p are mutually dependent for recruitment to SPBs during meiosis. In contrast, both Ady4p and Spo74p are present at SPBs, albeit at reduced levels, in cells that lack the MOP component Mpc54p. Our findings suggest a model for the assembled MOP in which Mpc54p, Mpc70p, and Spo74p make up a core structural unit of the scaffold that initiates synthesis of the prospore membrane, and Ady4p is an auxiliary component that stabilizes the plaque.  相似文献   

3.
During meiosis II in Saccharomyces cerevisiae, the cytoplasmic face of the spindle pole body, referred to as the meiosis II outer plaque (MOP), is modified in both composition and structure to become the initiation site for de novo formation of a membrane called the prospore membrane. The MOP serves as a docking complex for precursor vesicles that are targeted to its surface. Using fluorescence resonance energy transfer analysis, the orientation of coiled-coil proteins within the MOP has been determined. The N-termini of two proteins, Mpc54p and Spo21p, were oriented toward the outer surface of the structure. Mutations in the N-terminus of Mpc54p resulted in a unique phenotype: precursor vesicles loosely tethered to the MOP but did not contact its surface. Thus, these mpc54 mutants separate the steps of vesicle association and docking. Using these mpc54 mutants, we determined that recruitment of the Rab GTPase Sec4p, as well as the exocyst components Sec3p and Sec8p, to the precursor vesicles requires vesicle docking to the MOP. This suggests that the MOP promotes membrane formation both by localization of precursor vesicles to a particular site and by recruitment of a second tethering complex, the exocyst, that stimulates downstream events of fusion.  相似文献   

4.
5.
During sporulation and meiosis of budding yeast a developmental program determines the formation of the new plasma membranes of the spores. This process of prospore membrane (PSM) formation leads to the formation of meiotic daughter cells, the spores, within the lumen of the mother cell. It is initiated at the spindle pole bodies during meiosis II. Spore formation, but not meiotic cell cycle progression, requires the function of phospholipase D (PLD/Spo14). Here we show that PLD/Spo14 forms a complex with Sma1, a meiotically expressed protein essential for spore formation. Detailed analysis revealed that both proteins are required for early steps of prospore membrane assembly but with distinct defects in the respective mutants. In the Deltaspo14 mutant the initiation of PSM formation is blocked and aggregated vesicles of homogenous size are detected at the spindle pole bodies. In contrast, initiation of PSM formation does occur in the Deltasma1 mutant, but the enlargement of the membrane is impaired. During PSM growth both Spo14 and Sma1 localize to the membrane, and localization of Spo14 is independent of Sma1. Biochemical analysis revealed that Sma1 is not necessary for PLD activity per se and that PLD present in a complex with Sma1 is highly active. Together, our results suggest that yeast PLD is involved in two distinct but essential steps during the regulated vesicle fusion necessary for the assembly of the membranous encapsulations of the spores.  相似文献   

6.
Sporulation in fission yeast represents a unique mode of cell division in which a new cell is formed within the cytoplasm of a mother cell. This event is accompanied by formation of the forespore membrane (FSM), which becomes the plasma membrane of spores. At prophase II, the spindle pole body (SPB) forms an outer plaque, from which formation of the FSM is initiated. Several components of the SPB play an indispensable role in SPB modification, and therefore in sporulation. In this paper, we report the identification of a novel SPB component, Spo7, which has a pleckstrin homology (PH) domain. We found that Spo7 was essential for initiation of FSM assembly, but not for SPB modification. Spo7 directly bound to Meu14, a component of the leading edge of the FSM, and was essential for proper localization of Meu14. The PH domain of Spo7 had affinity for phosphatidylinositol 3-phosphate (PI3P). spo7 mutants lacking the PH domain showed aberrant spore morphology, similar to that of meu14 and phosphatidylinositol 3-kinase (pik3) mutants. Our study suggests that Spo7 coordinates formation of the leading edge and initiation of FSM assembly, thereby accomplishing accurate formation of the FSM.  相似文献   

7.
8.
Davidow LS  Goetsch L  Byers B 《Genetics》1980,94(3):581-595
Yeast cells subjected to a reversible thermal arrest of meiosis yielded progressively fewer spores per ascus as the arrest was extended. Dissection of two-spored asci by a newly developed method that prevents selection of false asci revealed that the spores were not a random sample of the haploid meiotic products. Most, if not all, pairs of spores contain nonsister products of the reductional division. Electron microscopic examination of the meiotic cells revealed the cytological basis for this bias. All four spindle pole bodies (SPBs) present at the second meiotic division normally gain a structural modification (the outer plaque) upon which the initiation of the prospore wall occurs. In the formation of a two-spored ascus, only one spindle pole body on each meiosis II spindle was so modified. These observations suggest that the morphogenesis of spores is regulated at meiosis II by limiting the number of SPBs gaining the outer plaque. The enhancement of spore yield upon addition of fresh medium suggests that this morphogenetic regulation responds more directly to nutrient deprivation arising during the thermal arrest, rather than to elevated temperature per se.  相似文献   

9.
In the yeast Saccharomyces cerevisiae, cells undergoing sporulation form prospore membranes to surround their meiotic nuclei. The prospore membranes ultimately become the plasma membranes of the new cells. The putative phospholipase Spo1 and the tandem Pleckstrin Homology domain protein Spo71 have previously been shown to be required for prospore membrane development, along with the constitutively expressed Vps13 involved in vacuolar sorting. Here, we utilize genetic analysis, and find that SPO73 is required for proper prospore membrane shape and, like SPO71, is necessary for prospore membrane elongation. Additionally, similar to SPO71, loss of SPO73 partially suppresses spo1Δ. Spo73 localizes to prospore membranes and complexes with Spo71. We also find that phosphatidylserine localizes to the prospore membrane. Our results suggest a model where SPO71 and SPO73 act in opposition to SPO1 to form and elongate prospore membranes, while VPS13 plays a distinct role in prospore membrane development.  相似文献   

10.
ADY1 is identified in a genetic screen for genes on chromosome VIII of Saccharomyces cerevisiae that are required for sporulation. ADY1 is not required for meiotic recombination or meiotic chromosome segregation, but it is required for the formation of four spores inside an ascus. In the absence of ADY1, prospore formation is restricted to mainly one or two spindle poles per cell. Moreover, the two spores in the dyads of the ady1 mutant are predominantly nonsisters, suggesting that the proficiency to form prospores is not randomly distributed to the four spindle poles in the ady1 mutant. Interestingly, the meiosis-specific spindle pole body component Mpc54p, which is known to be required for prospore membrane formation, is localized predominantly to only one or two spindle poles per cell in the ady1 mutant. A partially functional Myc-Pfs1p is localized to the nucleus of mononucleate meiotic cells but not to the spindle pole body or prospore membrane. These results suggest that Pfs1p is specifically required for prospore formation at selected spindle poles, most likely by ensuring the functionality of all four spindle pole bodies of a cell during meiosis II.  相似文献   

11.
Li J  Agarwal S  Roeder GS 《Genetics》2007,175(1):143-154
Spore formation in Saccharomyces cerevisiae requires the synthesis of prospore membranes (PSMs) followed by the assembly of spore walls (SWs). We have characterized extensively the phenotypes of mutants in the sporulation-specific genes, SSP2 and OSW1, which are required for spore formation. A striking feature of the osw1 phenotype is asynchrony of spore development, with some spores displaying defects in PSM formation and others spores in the same ascus blocked at various stages in SW development. The Osw1 protein localizes to spindle pole bodies (SPBs) during meiotic nuclear division and subsequently to PSMs/SWs. We propose that Osw1 performs a regulatory function required to coordinate the different stages of spore morphogenesis. In the ssp2 mutant, nuclei are surrounded by PSMs and SWs; however, PSMs and SWs often also encapsulate anucleate bodies both inside and outside of spores. In addition, the SW is not as thick as in wild type. The ssp2 mutant defect is partially suppressed by overproduction of either Spo14 or Sso1, both of which promote the fusion of vesicles at the outer plaque of the SPB early in PSM formation. We propose that Ssp2 plays a role in vesicle fusion during PSM formation.  相似文献   

12.
Nickas ME  Neiman AM 《Genetics》2002,160(4):1439-1450
Spore formation in Saccharomyces cerevisiae requires the de novo synthesis of prospore membranes and spore walls. Ady3p has been identified as an interaction partner for Mpc70p/Spo21p, a meiosis-specific component of the outer plaque of the spindle pole body (SPB) that is required for prospore membrane formation, and for Don1p, which forms a ring-like structure at the leading edge of the prospore membrane during meiosis II. ADY3 expression has been shown to be induced in midsporulation. We report here that Ady3p interacts with additional components of the outer and central plaques of the SPB in the two-hybrid assay. Cells that lack ADY3 display a decrease in sporulation efficiency, and most ady3Delta/ady3Delta asci that do form contain fewer than four spores. The sporulation defect in ady3Delta/ady3Delta cells is due to a failure to synthesize spore wall polymers. Ady3p forms ring-like structures around meiosis II spindles that colocalize with those formed by Don1p, and Don1p rings are absent during meiosis II in ady3Delta/ady3Delta cells. In mpc70Delta/mpc70Delta cells, Ady3p remains associated with SPBs during meiosis II. Our results suggest that Ady3p mediates assembly of the Don1p-containing structure at the leading edge of the prospore membrane via interaction with components of the SPB and that this structure is involved in spore wall formation.  相似文献   

13.
During sporulation in diploid Saccharomyces cerevisiae, spindle pole bodies acquire the so-called meiotic plaque, a prerequisite for spore formation. Mpc70p is a component of the meiotic plaque and is thus essential for spore formation. We show here that MPC70/mpc70 heterozygous strains most often produce two spores instead of four and that these spores are always nonsisters. In wild-type strains, Mpc70p localizes to all four spindle pole bodies, whereas in MPC70/mpc70 strains Mpc70p localizes to only two of the four spindle pole bodies, and these are always nonsisters. Our data can be explained by conservative spindle pole body distribution in which the two newly synthesized meiosis II spindle pole bodies of MPC70/mpc70 strains lack Mpc70p.  相似文献   

14.
Kehkooi Kee  Scott Keeney 《Genetics》2002,160(1):111-122
In Saccharomyces cerevisiae, formation of the DNA double-strand breaks (DSBs) that initiate meiotic recombination requires the products of at least 10 genes. Spo11p is thought to be the catalytic subunit of the DNA cleaving activity, but the roles of the other proteins, and the interactions among them, are not well understood. This study demonstrates genetic and physical interactions between the products of SPO11 and another early meiotic gene required for DSB formation, REC102. We found that epitope-tagged versions of SPO11 and REC102 that by themselves were capable of supporting normal or nearly normal levels of meiotic recombination conferred a severe synthetic cold-sensitive phenotype when combined in the same cells. DSB formation, meiotic gene conversion, and spore viability were drastically reduced in the doubly tagged strain at a nonpermissive temperature. This conditional defect could be partially rescued by expression of untagged SPO11, but not by expression of untagged REC102, indicating that tagged REC102 is fully dominant for this synthetic phenotype. Both tagged and wild-type Spo11p co-immunoprecipitated with tagged Rec102p from meiotic cell extracts, indicating that these proteins are present in a common complex in vivo. Tagged Rec102p localized to the nucleus in whole cells and to chromatin on spread meiotic chromosomes. Our results are consistent with the idea that a multiprotein complex that includes Spo11p and Rec102p promotes meiotic DSB formation.  相似文献   

15.
Lee BH  Kiburz BM  Amon A 《Current biology : CB》2004,14(24):2168-2182
BACKGROUND: The meiotic cell cycle, the cell division cycle that leads to the generation of gametes, is unique in that a single DNA replication phase is followed by two chromosome segregation phases. During meiosis I, homologous chromosomes are segregated, and during meiosis II, as in mitosis, sister chromatids are partitioned. For homolog segregation to occur during meiosis I, physical linkages called chiasmata need to form between homologs, sister chromatid cohesion has to be lost in a stepwise manner, and sister kinetochores must attach to microtubules emanating from the same spindle pole (coorientation). RESULTS: Here we show that the meiosis-specific factor Spo13 functions in two key aspects of meiotic chromosome segregation. In cells lacking SPO13, cohesin, which is the protein complex that holds sister chromatids together, is not protected from removal around kinetochores during meiosis I but is instead lost along the entire length of the chromosomes. We furthermore find that Spo13 promotes sister kinetochore coorientation by maintaining the monopolin complex at kinetochores. In the absence of SPO13, Mam1 and Lrs4 disassociate from kinetochores prematurely during pro-metaphase I and metaphase I, resulting in a partial defect in sister kinetochore coorientation in spo13 Delta cells. CONCLUSIONS: Our results indicate that Spo13 has the ability to regulate both the stepwise loss of sister chromatid cohesion and kinetochore coorientation, two essential features of meiotic chromosome segregation.  相似文献   

16.
Spore formation in the yeast Saccharomyces cerevisiae depends on a modification of spindle pole bodies (SPBs) at the onset of meiosis II that allows them to promote de novo membrane formation. Depletion of the environmental carbon source during sporulation results in modification of only one SPB from each meiosis II spindle and formation of a two-spored ascus, called a nonsister dyad (NSD). We have found that mutants impaired in the glyoxylate pathway, which is required for the conversion of acetate to glucose, make NSDs when acetate is the primary carbon source. Wild-type cells make NSDs when the carbon source is glycerol, which is converted to glucose independently of the glyoxylate pathway. During NSD formation in glycerol, only the two SPBs created at the meiosis I/II transition ("daughters") are modified. In these conditions, the SPB components Mpc70p and Spo74p are not recruited to mother SPBs. Moreover, cooverexpression of Mpc70p and Spo74p suppresses NSD formation in glycerol. Our findings indicate that flux through the glyoxylate pathway during sporulation regulates modification of mother SPBs via recruitment of Mpc70p and Spo74p. These results define a cellular response in which the accumulation of an intermediary metabolite serves as a measure of biosynthetic capacity to regulate the number of daughter cells formed.  相似文献   

17.
During meiosis, DNA replication is followed by two consecutive rounds of chromosome segregation. Cells lacking the protein phosphatase CDC14 or its regulators, SPO12 and SLK19, undergo only a single meiotic division, with some chromosomes segregating reductionally and others equationally. We find that this abnormal chromosome behavior is due to an uncoupling of meiotic events. Anaphase I spindle disassembly is delayed in cdc14-1, slk19Delta, or spo12Delta mutants, but the chromosome segregation cycle continues, so that both meiotic chromosome segregation phases take place on the persisting meiosis I spindle. Our results show that Cdc14, Slk19, and Spo12 are not only required for meiosis I spindle disassembly but also play a pivotal role in establishing two consecutive chromosome segregation phases, a key feature of the meiotic cell cycle.  相似文献   

18.
19.
Cnm67p, a novel yeast protein, localizes to the microtubule organizing center, the spindle pole body (SPB). Deletion of CNM67 (YNL225c) frequently results in spindle misorientation and impaired nuclear migration, leading to the generation of bi- and multinucleated cells (40%). Electron microscopy indicated that CNM67 is required for proper formation of the SPB outer plaque, a structure that nucleates cytoplasmic (astral) microtubules. Interestingly, cytoplasmic microtubules that are essential for spindle orientation and nuclear migration are still present in cnm67Δ1 cells that lack a detectable outer plaque. These microtubules are attached to the SPB half- bridge throughout the cell cycle. This interaction presumably allows for low-efficiency nuclear migration and thus provides a rescue mechanism in the absence of a functional outer plaque. Although CNM67 is not strictly required for mitosis, it is essential for sporulation. Time-lapse microscopy of cnm67Δ1 cells with green fluorescent protein (GFP)-labeled nuclei indicated that CNM67 is dispensable for nuclear migration (congression) and nuclear fusion during conjugation. This is in agreement with previous data, indicating that cytoplasmic microtubules are organized by the half-bridge during mating.  相似文献   

20.
In mammalian meiotic prophase, the initial steps in repair of SPO11-induced DNA double-strand breaks (DSBs) are required to obtain stable homologous chromosome pairing and synapsis. The X and Y chromosomes pair and synapse only in the short pseudo-autosomal regions. The rest of the chromatin of the sex chromosomes remain unsynapsed, contains persistent meiotic DSBs, and the whole so-called XY body undergoes meiotic sex chromosome inactivation (MSCI). A more general mechanism, named meiotic silencing of unsynapsed chromatin (MSUC), is activated when autosomes fail to synapse. In the absence of SPO11, many chromosomal regions remain unsynapsed, but MSUC takes place only on part of the unsynapsed chromatin. We asked if spontaneous DSBs occur in meiocytes that lack a functional SPO11 protein, and if these might be involved in targeting the MSUC response to part of the unsynapsed chromatin. We generated mice carrying a point mutation that disrupts the predicted catalytic site of SPO11 (Spo11YF/YF), and blocks its DSB-inducing activity. Interestingly, we observed foci of proteins involved in the processing of DNA damage, such as RAD51, DMC1, and RPA, both in Spo11YF/YF and Spo11 knockout meiocytes. These foci preferentially localized to the areas that undergo MSUC and form the so-called pseudo XY body. In SPO11-deficient oocytes, the number of repair foci increased during oocyte development, indicating the induction of S phase-independent, de novo DNA damage. In wild type pachytene oocytes we observed meiotic silencing in two types of pseudo XY bodies, one type containing DMC1 and RAD51 foci on unsynapsed axes, and another type containing only RAD51 foci, mainly on synapsed axes. Taken together, our results indicate that in addition to asynapsis, persistent SPO11-induced DSBs are important for the initiation of MSCI and MSUC, and that SPO11-independent DNA repair foci contribute to the MSUC response in oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号