首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Three differently modified forms of beta-glucuronidase are known to exist: a microsomal enzyme form (M) existing in tissues where egasyn, a second microsomal protein, is present; and an acidic (La; complex-type oligosaccharide) and a basic (Lb; non-complex type oligosaccharide) lysosomal form which occur in all mouse tissues. Lb predominates in tissues containing microsomal beta-glucuronidase, La in those lacking it. In pulse-labelling experiments using mouse strain C57BL/6 liver containing egasyn (Eg+/Eg+) and microsomal enzyme, about half of the newly synthesized beta-glucuronidase was processed to the microsomal enzyme form, which was evidently further processed to Lb, and about half directly to La. In contrast, in liver of the congenic line C57BL/6.YBR Es-1b Eg0 that lacks egasyn (Eg0/Eg0) and microsomal enzyme, most of the labelled beta-glucuronidase was processed to La, and only a minor portion to Lb. Newly synthesized enzyme appeared first in microsomal, then in light and heavy lysosomal fractions of Eg+/Eg+ liver. In Eg0/Eg0 liver, no labelled enzyme was measurable in the microsomes, but it appeared rapidly in both types of lysosomes. Taken together these findings indicate that the microsomal enzyme form serves as a precursor of Lb, and that La is synthesized independently. The apparent half-life of La is only two-thirds that of Lb; this fact accounts for the reduced beta-glucuronidase activity in Eg0/Eg0 liver, which contains La as the predominant form.  相似文献   

2.
Lysosomal beta-glucuronidase shows a dual localization in mouse liver, where a significant fraction is retained in the endoplasmic reticulum (ER) by interaction with an ER-resident carboxyl esterase called egasyn. This interaction of mouse egasyn (mEg) with murine beta-glucuronidase (mGUSB) involves binding of the C-terminal 8 residues of the mGUSB to the carboxylesterase active site of the mEg. We isolated the recombinant human homologue of the mouse egasyn cDNA and found that it too binds human beta-glucuronidase (hGUSB). However, the binding appears not to involve the active site of the human egasyn (hEg) and does not involve the C-terminal 18 amino acids of hGUSB. The full-length cDNA encoding hEg was isolated from a human liver cDNA library using full-length mEg cDNA as a probe. The 1941-bp cDNA differs by only a few bases from two previously reported cDNAs for human liver carboxylesterase, allowing the anti-human carboxylesterase antiserum to be used for immunoprecipitation of human egasyn. The cDNA expressed bis-p-nitrophenyl phosphate (BPNP)-inhibitable esterase activity in COS cells. When expressed in COS cells, it is localized to the ER. The intracellular hEg coimmunoprecipitated with full-length hGUSB and with a truncated hGUSB missing the C-terminal 18-amino-acid residue when extracts of COS cells expressing both proteins were treated with anti-hGUSB antibody. It did not coimmunoprecipitate with mGUSB from extracts of coexpressing COS cells. Unlike mEg, hEg was not released from the hEg-GUSB complex with BPNP. Thus, hEg resembles mEg in that it binds hGUSB. However, it differs from mEg in that (i) it does not appear to use the esterase active site for binding since treatment with BPNP did not release hEg from hGUSB and (ii) it does not use the C terminus of GUSB for binding, since a C-terminal truncated hGUSB (the C-terminal 18 amino acids are removed) bound as well as nontruncated hGUSB. Evidence is presented that an internal segment of 51 amino acids between 228 and 279 residues contributes to binding of hGUSB by hEg.  相似文献   

3.
Certain highly purified forms of rat lysosomal glycosidases, β-glucuronidase and N-acetyl-β-d-glucosaminidase, are rapidly cleared from the circulation following intravenous infusion. Several lines of evidence are presented which indicate that the primary site of enzyme uptake is the liver. Clearance of the two enzymes was unaffected by nephrectomy, whereas it was abolished by evisceration. Tissue distribution experiments with native and [125I]β-glucuronidase indicate the liver as the major, if not exclusive, site of enzyme uptake. Experiments with the isolated perfused liver showed clearance of certain enzyme preparations but not others. Those enzymes cleared by the isolated perfused liver were likewise cleared in vivo. Liver fractionation studies following infusion of large doses of β-glucuronidase revealed a rapid, short-lived increase in microsomal β-glucuronidase and a slower but larger increase in lysosomal β-glucuronidase. The results indicate that β-glucuronidase, N-acetyl-β-d-glucosaminidase, and probably other glycosidases are rapidly incorporated into the lysosomal compartment of liver.  相似文献   

4.
The level of serum beta-glucuronidase increases in various pathological conditions, including liver disorders. The aim of this investigation was to study the changes in liver lysosomal membrane stability during experimentally induced hepatic fibrosis that may result in the elevation of serum beta-glucuronidase. Liver injury was induced by intraperitoneal injections of N-nitrosodimethylamine (NDMA) in adult male albino rats over 3 weeks. The progression of fibrosis was evaluated histopathologically as well as by monitoring liver collagen content. Lipid peroxides and beta-glucuronidase levels were measured in the liver homogenate and subcellular fractions on days 0, 7, 14, and 21 after the start of NDMA administration. Serum beta-glucuronidase levels were also determined. A significant increase was observed in beta-glucuronidase levels in the serum, liver homogenate, and subcellular fractions, but not in the nuclear fraction on days 7, 14, and 21 after the start of NDMA administration. Lipid peroxides also increased in the liver homogenate and the lysosomal fraction. The measurement of lysosomal membrane stability revealed a maximum lysosomal fragility on day 21 during NDMA-induced fibrosis. In vitro studies showed that NDMA has no significant effect on liver lysosomal membrane permeability. The results of this investigation demonstrated that lysosomal fragility increases during NDMA-induced hepatic fibrosis, which could be attributed to increased lipid peroxidation of lysosomal membrane. In this study, we also elucidated the mechanism of increased beta-glucuronidase and other lysosomal glycohydrolases in the serum during hepatic fibrosis.  相似文献   

5.
The lysosomal form (L form) of beta-glucuronidase was purified 6,500-fold from the liver of C57BL/6J mice with high yield. Purified enzyme was homogeneous as judged by polyacrylamide gel electrophoresis in the presence or absence of sodium dodetcyl sulfate. The microsomal forms of beta-glucuronidase were spontaneously converted to the L form. The purified L form is a tetramer of molecular weight of 280,000 to 300,000, composedd of four identical subunits of 75,000 molecular weight. The enzyme contains a high content of arginine and glutamic acid and a very low content of sulfur-containing amino acids. Approximately 7% of the enzyme molecule is compose of carbohydrate. Sugars in the L form are glucosamine, mannose, galactose, and glucose. Sialic acid and fucose are absent in the enzyme.  相似文献   

6.
N-Bromosuccinimide completely inactivated the cellulase, and titration experiments showed that oxidation of one tryptophan residue per cellulase molecule coincided with 100% inactivation. CM-cellulose protected the enzyme from inactivation by N-bromosuccinimide. The cellulase was inhibited by active benzyl halides, and reaction with 2-hydroxy-5-nitrobenzyl bromide resulted in the incorporation of 2.3 hydroxy-5-nitrobenzyl groups per enzyme molecule; one tryptophan residue was shown to be essential for activity. Diazocarbonyl compounds in the presence of Cu2+ ions inhibited the enzyme. The pH-dependence of inactivation was consistent with the reaction occurring with a protonated carboxyl group. Carbodi-imide inhibited the cellulase, and kinetic analysis indicated that there was an average of 1 mol of carbodi-imide binding to the cellulase during inactivation. Treatment of the cellulase with diethyl pyrocarbonate resulted in the modification of two out of the four histidine residues present in the cellulase. The modified enzyme retained 40% of its original activity. Inhibition of cellulase activity by the metal ions Ag+ and Hg2+ was ascribed to interaction with tryptophan residues, rather than with thiol groups.  相似文献   

7.
S Medda  A M Stevens  R T Swank 《Cell》1987,50(2):301-310
Organophosphorous compounds, which are potent inhibitors of egasyn-esterase activity, caused a rapid dissociation of the high molecular weight egasyn-microsomal beta-glucuronidase complex when administered in vivo or when added in vitro to microsomal suspensions. The dissociation was relatively specific to phosphodiester inhibitors of the esterase active site. Also, the egasyn-esterase active site was inaccessible to substrates and to inhibitors when egasyn was complexed to beta-glucuronidase. Dissociation of the egasyn-microsomal beta-glucuronidase complex in vivo by organophosphorous compounds was followed by massive and rapid secretion of microsomal beta-glucuronidase, but not egasyn, into plasma. These experiments implicate the egasyn-esterase active site in attachment of microsomal beta-glucuronidase to egasyn by a novel mechanism that, in turn, compartmentalizes beta-glucuronidase within the endoplasmic reticulum.  相似文献   

8.
The isoenzymes of rat-liver lysosomal beta-glucuronidase (beta-D-glucuronide glucuronosohydrolase (EC 3.2.1.31)) were inactivated at different rates at 0 degrees C in 3M guanidinium chloride solutions adjusted to pH 5.0 In 4 M urea buffered by 0.01 M glycylglycine, pH 7.0 isoenzymes I, III, and V were reversibly inhibited 80%. Sodium dodecyl sulfate (SDS), 0.1% in 0.01 M phosphate buffer, pH 7.0 irreversibly inhibited at 37 degrees C all five isoenzymes. Sedimentation analysis showed that loss of catalytic activity in these denaturing media is accompanied by dissociation into slower sedimenting subunits. SDS gel electrophoresis revealed that the isoenzymes are apparently tetramers made up of different proportions of subunits alpha, beta, and gamma having apparent molecular weights of 62,900, 60,200, and 58,700, respectively. The three subunits appear to be glycoproteins.  相似文献   

9.
Rat liver beta-glucuronidase (EC 3.2.1.31), both from microsomal and lysosomal fractions, were purified about 9500-fold over the homogenate with high yield using affinity chromatography prepared by coupling purified specific immunoglobulin G against rat preputial gland beta-glucuronidase to Sepharose 2B and isoelectric focusing. The purified enzymes appeared homogeneous on electrophoresis in polyacrylamide gel and had a molecular weight of approximately 310000. In dodecylsulfate polyacrylamide gel electrophoresis, the microsomal beta-glucuronidase showed a single band corresponding to a molecular weight of 79000, while the lysosomal beta-glucuronidase had three distinct bands which consisted of one major and two minor bands corresponding to molecular weight of 79000, 74000, and 70000, respectively. A broad pH activity curve with a single optimum at pH 4.4 was observed in both the microsomal and the lysosomal beta-glucuronidases. Immunological gel diffusion technique with rabbit antiserum against rat liver lysosomal beta-glucuronidase revealed that both enzymes had the same or quite similar antigenic determinants.  相似文献   

10.
The effect of swainsonine, an inhibitor of Golgi alpha-mannosidase II and lysosomal alpha-mannosidase, on the synthesis, processing, and turnover of two glycoproteins, lysosomal beta-galactosidase and lysosomal beta-glucuronidase, has been studied in cultured mouse peritoneal macrophages. No effect of the inhibitor on the relative rates of synthesis of the precursor form of either enzyme was observed. On the other hand, carbohydrate processing of beta-galactosidase and beta-glucuronidase was markedly altered by swainsonine, consistent with a blockage by the inhibitor of the removal of the alpha-1,3- and alpha-1,6-linked mannose residues which occurs in normal processing. In homogenates of both normal and swainsonine-treated cells, the precursor forms of the enzymes were found exclusively in the light membrane fraction on Percoll gradients and the mature forms exclusively in the lysosomal fractions indicating that translocation from Golgi to lysosomes and proteolytic processing in the lysosome were not impaired by the presence of abnormal oligosaccharide side chains. There was no detectable effect of swainsonine during a 4-day chase period on the total cellular turnover of these enzymes which involves two processes, secretion and degradation. In the absence of swainsonine, secretion represented about 40% of the total turnover of beta-galactosidase and about 50% with beta-glucuronidase. The presence of swainsonine increased these proportions to about 60 and 70%, respectively.  相似文献   

11.
Sulfated oligosaccharides in human lysosomal enzymes   总被引:1,自引:0,他引:1  
Cathepsin D, arylsulfatase A and the alpha-chain of beta-hexosaminidase are synthesized in human fibroblasts as sulfated polypeptides. The sulfate is added posttranslationally. Its half-life is less than one-tenth of that of the respective polypeptide chains. The sulfate residues were found on asparagine-linked oligosaccharides sensitive to endoglycosidase F and peptide: N-glycosidase F and resistant to endoglycosidase H. Inhibition of formation of complex type oligosaccharides by 1-deoxy-manno-nojirimycin prevented sulfation, indicating that the sulfate residues were added to complex type oligosaccharides.  相似文献   

12.
We have analyzed the interaction of phosphorylated oligosaccharides and lysosomal enzymes with immobilized bovine liver cation-dependent mannose-6-P receptor. Oligosaccharides with phosphomonoesters were the only species that interacted with the receptor, and molecules with two phosphomonoesters showed the best binding. Lysosomal enzymes with several oligosaccharides containing only one phosphomonoester had a higher affinity for the receptor than did the isolated oligosaccharides, indicating the possible importance of multivalent interactions between weakly binding ligands and the receptor. The binding of a mixture of phosphorylated lysosomal enzymes to the cation-dependent Man-6-P receptor was markedly influenced by pH. At pH 6.3, almost all of the lysosomal enzymes bound to the receptor; whereas at pH 7.0-7.5, approximately one-third of the material passed through the column, one-third interacted weakly, and one-third bound tightly. The distribution of individual lysosomal enzyme activities was similar to that of the total material. The species of phosphorylated oligosaccharides present on the lysosomal enzymes which interacted poorly with the receptor were similar to those found on the tightly bound material and included species of oligosaccharides with two phosphomonoester groups. Isolated oligosaccharides of this type bound to the receptor over the entire pH range tested. These findings indicate that at neutral pH the phosphorylated oligosaccharides on some lysosomal enzyme molecules are oriented in a manner which makes them inaccessible to the binding site of the cation-dependent Man-6-P receptor. Since the same enzymes bind to the cation-independent Man-6-P receptor at neutral pH, at least a portion of the phosphomannosyl residues must be exposed. We conclude that small variations in the pH of the Golgi compartment where lysosomal enzymes bind to the receptors could potentially modulate the extent of binding to the two receptors.  相似文献   

13.
Previous studies have suggested that the binding of mouse glucuronidase to endoplasmic reticulum membrane is stabilized by the membrane protein egasyn. Using a radioimmunoassay for egasyn, we have now examined the inheritance of egasyn levels in mice. Mice of the ibred strain C57BL/6J, which have normal levels of microsomal glucuronidase, contained 56±10 g egasyn per gram of liver. Mice of the inbred strain YBR, which carry the Eg 0 mutation resulting in the absence of microsomal glucuronidase, did not contain detectable levels of egasyn. The F1 progeny of these two strains contained intermediate levels of egasyn, 25±4 g egasyn per gram of liver. Progeny from the backcross of these F1 animals to YBR were distributed equally into two discrete phenotypic classes. One class lacked both egasyn and microsomal glucuronidase, while the other class contained 25±3 g egasyn per gram of liver and contained normal levels of microsomal glucuronidase. Thus egasyn levels are determined by the Eg locus and show additive inheritance. These results suggest that the Eg gene codes for egasyn and that it is the inability to produce egasyn that results in a deficiency of microsomal glucuronidase in the Eg 0 mutant.This work was supported in part by USPHS Grant GM-19521.  相似文献   

14.
Following the rapid enzymatic transfer of an oligosaccharide (GlcNAc2Man9Glc3) from a lipid carrier to endogenous protein acceptors in membrane preparations from NIL fibroblasts, the transferred oligosaccharide chain undergoes processing. Protein-bound oligosaccharides, released from the polypeptide backbone by treatment with endo-beta-N-acetylglucosaminidase H, were analyzed by gel filtration and by susceptibility to alpha-mannosidase digestion. The initial stages of this processing in vitro consist of sequential excision of 3 glucose residues prior to the removal of mannose residues. The array of oligosaccharides generated in vitro by membrane preparations from NIL cells appears to be identical with processed oligosaccharides derived in vivo in intact NIL cells.  相似文献   

15.
Golgi membranes from rat liver have been shown to contain an endo-alpha-D-mannosidase which can convert Glc1Man9GlcNAc to Man8GlcNAc with the release of Glc alpha 1----3Man (Lubas, W. A., and Spiro, R. G. (1987) J. Biol. Chem. 262, 3775-3781). We now report that this enzyme has the capacity to cleave the alpha 1----2 linkage between the glucose-substituted mannose residue and the remainder of the polymannose branch in a wide range of oligosaccharides (Glc3Man9GlcNAc to Glc1Man4GlcNAc) as well as glycopeptides and oligosaccharide-lipids. Whereas the tri- and diglucosylated species (Glc3Man9GlcNAc and Glc2Man9GlcNAc), which yielded Glc3Man and Glc2Man, respectively, were processed more slowly than Glc1Man9GlcNAc, the monoglucosylated components with truncated mannose chains (Glc1Man8GlcNAc to Glc1Man4GlcNAc) were trimmed at an increased rate which was inversely related to the number of mannose residues present. The endomannosidase was not inhibited by a number of agents which are known to interfere with N-linked oligosaccharide processing by exoglycosidases, including 1-deoxynojirimycin, castanospermine, bromoconduritol, 1-deoxymannojirimycin, swainsonine, and EDTA. However, Tris and other buffers containing primary hydroxyl groups substantially decreased its activity. After Triton solubilization, the endomannosidase was observed to be bound to immobilized wheat germ agglutinin, indicating the presence of a type of carbohydrate unit consistent with Golgi localization of the enzyme. The Man8GlcNAc isomer produced by endomannosidase action was found to be processed by Golgi enzymes through a different sequence of intermediates than the rough endoplasmic reticulum-generated Man8GlcNAc variant, in which the terminal mannose of the middle branch is absent. Whereas the latter oligosaccharide is converted to Man5GlcNAc via Man7GlcNAc and Man6GlcNAc at an even rate, the processing of the endomannosidase-derived Man8GlcNAc stalls at the Man6GlcNAc stage due to the apparent resistance to Golgi mannosidase I of the alpha 1,2-linked mannose of the middle branch. The results of our study suggest that the Golgi endomannosidase takes part in a processing route for N-linked oligosaccharides which have retained glucose beyond the rough endoplasmic reticulum; the distinctive nature of this pathway may influence the ultimate structure of the resulting carbohydrate units.  相似文献   

16.
17.
Murine egasyn, a protein which stabilizes the binding of β-glucuronidase to microsomal membranes, was induced 1.9 fold in liver by phenobarbital treatment. Accompanying this increase was an alteration of the subcellular distribution of liver β-glucuronidase, although total glucuronidase activity remained constant. In control mice 32.6 ± 4.6% of the activity was microsomal, while after four days of phenobarbital treatment 50.5 ± 3.1% was microsomal. Thus, the availability of egasyn appears to be an important factor in determining the proportion of glucuronidase distributed to either microsomes or lysosomes.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号