首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The pregenomic RNA (pgRNA) of hepadnaviruses is packaged into capsids where it is reverse transcribed to yield mature DNA genomes. This report describes differences between the 3' region and other regions of the pgRNA isolated from capsids. Analysis of capsid pgRNA isolated by using an established method involving micrococcal nuclease treatment demonstrated reduced levels of the 3' region of the pgRNA compared to the 5' region. This underrepresentation of the 3' region was partly a result of microccocal nuclease digestion of the 3' region because isolation of capsid pgRNA by an alternative method that did not involve nuclease treatment led to a greater, but not complete, recovery of the 3' region. These results indicate that the 3' region of the capsid pgRNA is susceptible to micrococcal nuclease digestion during its isolation and that the 3' region can still be underrepresented when capsid pgRNA is isolated without nuclease digestion. Additional experiments show that the 3' ends of capsid pgRNA isolated by micrococcal nuclease treatment are heterogeneously dispersed from nucleotide 2577 to the poly(A) tail. These data provide evidence that the 3' region of the capsid pgRNA has biochemical properties different from those of its 5' region. Possibly, the 3' region of the pgRNA is not packaged into the interior of the capsid but rather is associated with a part of the capsid where it is susceptible to microccocal nuclease digestion.  相似文献   

5.
Ostrow KM  Loeb DD 《Journal of virology》2004,78(16):8780-8787
Packaging of hepadnavirus pregenomic RNA (pgRNA) into capsids, or encapsidation, requires several viral components. The viral polymerase (P) and the capsid subunit (C) are necessary for pgRNA encapsidation. Previous studies of duck hepatitis B virus (DHBV) indicated that two cis-acting sequences on pgRNA are required for encapsidation: epsilon, which is near the 5' end of pgRNA, and region II, located near the middle of pgRNA. Later studies suggested that the intervening sequence between these two elements may also make a contribution. It has been demonstrated for DHBV that epsilon interacts with P to facilitate encapsidation, but it is not known how other cis-acting sequences contribute to encapsidation. We analyzed chimeras of DHBV and a related virus, heron hepatitis B virus (HHBV), to gain insight into the interactions between the various viral components during pgRNA encapsidation. We learned that having epsilon and P derived from the same virus was not sufficient for high levels of encapsidation, implying that other viral interactions contribute to encapsidation. Chimeric analysis showed that a large sequence containing region II may interact with P and/or C for efficient encapsidation. Further analysis demonstrated that possibly an RNA-RNA interaction between the intervening sequence and region II facilitates pgRNA encapsidation. Together, these results identify functional interactions among various viral components that contribute to pgRNA encapsidation.  相似文献   

6.
Ostrow KM  Loeb DD 《Journal of virology》2002,76(18):9087-9095
Previous analysis of duck hepatitis B virus (DHBV) indicated the presence of at least two cis-acting sequences required for efficient encapsidation of its pregenomic RNA (pgRNA), epsilon and region II. epsilon, an RNA stem-loop near the 5' end of the pgRNA, has been characterized in detail, while region II, located in the middle of the pgRNA, is not as well defined. Our initial aim was to identify the sequence important for the function of region II in DHBV. We scanned region II and the surrounding sequence by using a quantitative encapsidation assay. We found that the sequence between nucleotides (nt) 438 and 720 contributed to efficient pgRNA encapsidation, while the sequence between nt 538 and 610 made the largest contribution to encapsidation. Additionally, deletions between the two encapsidation sequences, epsilon and region II, had variable effects on encapsidation, while substitutions of heterologous sequence between epsilon and region II disrupted the ability of the pgRNA to be encapsidated efficiently. Overall, these data indicate that the intervening sequences between epsilon and region II play a role in encapsidation. We also analyzed heron hepatitis B virus (HHBV) for the presence of region II and found features similar to DHBV: a broad region necessary for efficient encapsidation that contained a critical region II sequence. Furthermore, we analyzed variants of DHBV that were substituted with HHBV sequence over region II and found that the chimeras were not fully functional for RNA encapsidation. These results indicate that sequences within region II may need to be compatible with other viral components in order to function in pgRNA encapsidation.  相似文献   

7.
8.
9.
Guo L  Allen EM  Miller WA 《Molecular cell》2001,7(5):1103-1109
Translationally competent mRNAs form a closed loop via interaction of initiation factors with the 5' cap and poly(A) tail. However, many viral mRNAs lack a cap and/or a poly(A) tail. We show that an uncapped, nonpolyadenylated plant viral mRNA forms a closed loop by direct base-pairing (kissing) of a stem loop in the 3' untranslated region (UTR) with a stem loop in the 5' UTR. This allows a sequence in the 3' UTR to confer translation initiation at the 5'-proximal AUG. This base-pairing is also required for replication. Unlike other cap-independent translation mechanisms, the ribosome enters at the 5' end of the mRNA. This remarkably long-distance base-pairing reveals a novel mechanism of cap-independent translation and means by which mRNA UTRs can communicate.  相似文献   

10.
Niepel M  Ling J  Gallie DR 《FEBS letters》1999,462(1-2):79-84
The 5'-cap structure and poly(A) tail of eukaryotic mRNAs cooperate to promote translation initiation but whether this functional interaction benefits certain classes of mRNAs has not been investigated. In this study, we investigate whether a structured 5'-leader or 3'-untranslated region (UTR) affects the cap/poly(A) tail interaction. A structured leader reduced the degree to which the 5'-cap promoted translation in plant cells and inhibited translation from capped and uncapped mRNAs equally in yeast. Secondary structure within the 3'-UTR reduced translational efficiency when adjacent to the stop codon but had little effect on the cap/poly(A) tail synergy. The functional interaction between the cap and poly(A) tail was as important for an mRNA with a structured leader or 3'-UTR as it was for an unstructured mRNA in either species, suggesting that these structures can reduce translation without affecting the functional interaction between the cap and poly(A) tail. However, the loss of Xrn1p, the major 5'-->3' exoribonuclease in yeast, abolished cap-dependent translation and the functional interaction between the cap and poly(A) tail, suggesting that the cap/poly(A) tail synergy is of particular importance under conditions of active RNA turnover.  相似文献   

11.
Gao M  Fritz DT  Ford LP  Wilusz J 《Molecular cell》2000,5(3):479-488
We have used an in vitro system that reproduces in vivo aspects of mRNA turnover to elucidate mechanisms of deadenylation. DAN, the major enzyme responsible for poly(A) tail shortening in vitro, specifically interacts with the 5' cap structure of RNA substrates, and this interaction is greatly stimulated by a poly(A) tail. Several observations suggest that cap-DAN interactions are functionally important for the networking between regulated mRNA stability and translation. First, uncapped RNA substrates are inefficiently deadenylated. Second, a stem-loop structure in the 5' UTR dramatically reduces deadenylation by interfering with cap-DAN interactions. Third, the addition of cap binding protein eIF4E inhibits deadenylation in vitro. These data provide insights into the early steps of substrate recognition that target an mRNA for degradation.  相似文献   

12.
13.
14.
The genomic RNAs of flaviviruses such as dengue virus (DEN) have a 5' m7GpppN cap like those of cellular mRNAs but lack a 3' poly(A) tail. We have studied the contributions to translational expression of 5'- and 3'-terminal regions of the DEN serotype 2 genome by using luciferase reporter mRNAs transfected into Vero cells. DCLD RNA contained the entire DEN 5' and 3' untranslated regions (UTRs), as well as the first 36 codons of the capsid coding region fused to the luciferase reporter gene. Capped DCLD RNA was as efficiently translated in Vero cells as capped GLGpA RNA, a reporter with UTRs from the highly expressed alpha-globin mRNA and a 72-residue poly(A) tail. Analogous reporter RNAs with regulatory sequences from West Nile and Sindbis viruses were also strongly expressed. Although capped DCLD RNA was expressed much more efficiently than its uncapped form, uncapped DCLD RNA was translated 6 to 12 times more efficiently than uncapped RNAs with UTRs from globin mRNA. The 5' cap and DEN 3' UTR were the main sources of the translational efficiency of DCLD RNA, and they acted synergistically in enhancing translation. The DEN 3' UTR increased mRNA stability, although this effect was considerably weaker than the enhancement of translational efficiency. The DEN 3' UTR thus has translational regulatory properties similar to those of a poly(A) tail. Its translation-enhancing effect was observed for RNAs with globin or DEN 5' sequences, indicating no codependency between viral 5' and 3' sequences. Deletion studies showed that translational enhancement provided by the DEN 3' UTR is attributable to the cumulative contributions of several conserved elements, as well as a nonconserved domain adjacent to the stop codon. One of the conserved elements was the conserved sequence (CS) CS1 that is complementary to cCS1 present in the 5' end of the DEN polyprotein open reading frame. Complementarity between CS1 and cCS1 was not required for efficient translation.  相似文献   

15.
Regulation of mRNA decapping is a critical determinant for gene expression. We demonstrate that the poly(A) tail-mediated regulation of mRNA decapping observed in humans can be recapitulated in vitro by the cytoplasmic poly(A)-binding protein PABP through a direct and specific binding to the 5' end of capped mRNA. The specific association of PABP with the cap occurred only within the context of the RNA whereby a cap attached to an RNA moiety served as the high-affinity substrate but not the cap structure or RNA alone. Binding of PABP to the RNA 5' end required the presence of the cap and was accentuated by the N7 methyl moiety of the cap. Interestingly, conditions that enhanced hDcp2 decapping activity reduced the affinity of PABP for cap association and consequently its ability to inhibit decapping, suggestive of a regulated association of PABP with the cap. These observations reveal a novel direct involvement of human PABP in the stabilization of mRNA by protecting the 5' end from decapping.  相似文献   

16.
17.
The 5' cap and 3' poly(A) tail of classical eukaryotic mRNAs functionally communicate to synergistically enhance translation initiation. Synergy has been proposed to result in part from facilitated ribosome recapture on circularized mRNAs. Here, we demonstrate that this is not the case. In poly(A)-dependent, ribosome-depleted rabbit reticulocyte lysates, the addition of exogenous poly(A) chains of physiological length dramatically stimulated translation of a capped, nonpolyadenylated mRNA. When the poly(A):RNA ratio approached 1, exogenous poly(A) stimulated translation to the same extent as the presence of a poly(A) tail at the mRNA 3' end. In addition, exogenous poly(A) significantly improved translation of capped mRNAs carrying short poly(A(50)) tails. Trans stimulation of translation by poly(A) required the eIF4G-poly(A)-binding protein interaction and resulted in increased affinity of eIF4E for the mRNA cap, exactly as we recently described for cap-poly(A) synergy. These results formally demonstrate that mRNA circularization per se is not the cause of cap-poly(A) synergy at least in vitro.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号