首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Arabidopsis thaliana lacking phytochrome A, phytochrome B or both (double mutant) were analyzed by comparing their photoresponse with that of the wild type. Results indicate that root hair formation in Arabidopsis was strongly stimulated by light irradiation. Both phytochrome A and phytochrome B are responsible for photoinduction by continuous red light irradiation, while only phytochrome A mediates the response under continuous far-red light. The fluence response relationships to a red light pulse in the wild type displayed a biphasic trend similar to that previously observed in lettuce seedlings, with the first phase showing a sharp maximum at 78.3 Jm−2, and the second one operating over a wider fluence range (3,100–9,400 Jm−2) two orders of magnitude higher than the first one. Analysis of the fluence response curves for red light induction in the phytochrome mutants revealed that phytochrome A is responsible for the first phase in the wild type, while the second is the result of the combined action of both phytochrome A and phytochrome B. Received 13 August 1999/ Accepted in revised form 22 December 1999  相似文献   

2.
−2 . The inductive effect of 100 Jm−2 red light could be partially reversed by subsequent far-red light only one time. On the other hand, the inductive effect of 1,000 Jm−2 red light was partially reversed by subsequent far-red light irradiation at least twice. These results indicate the involvement of phytochrome in this response. The inductive effect of blue light was repeatedly reversed by subsequent far-red light irradiation, suggesting that the blue-light induction was mainly mediated by phytochrome. Received 13 August 1999/ Accepted in revised form 22 December 1999  相似文献   

3.
Kadota A  Sato Y  Wada M 《Planta》2000,210(6):932-937
 The light-induced intracellular relocation of chloroplasts was examined in red-light-grown protonemal cells of the moss Physcomitrella patens. When irradiated with polarized red or blue light, chloroplast distribution in the cell depended upon the direction of the electrical vector (E-vector) in both light qualities. When the E-vector was parallel to the cross-wall (i.e. perpendicular to the protonemal axis), chloroplasts accumulated along the cross-wall; however, no accumulation along the cross-wall was observed when the E-vector was perpendicular to it (i.e. parallel to the protonemal axis). When a part of the cell was irradiated with a microbeam of red or blue light, chloroplasts accumulated at or avoided the illumination point depending on the fluence rate used. Red light of 0.1–18 W m−2 and blue light of 0.01–85.5 W m−2 induced an accumulation response (low-fluence-rate response; LFR), while an avoidance response (high-fluence-rate response; HFR) was induced by red light of 60 W m−2 or higher and by blue light of 285 W m−2. The red-light-induced LFR and HFR were nullified by a simultaneous background irradiation of far-red light, whereas the blue-light-induced LFR and HFR were not affected at all by this treatment. These results show, for the first time, that dichroic phytochrome, as well as the dichroic blue-light receptor, is involved in the chloroplast relocation movement in these bryophyte cells. Further, the phytochrome-mediated responses but not the blue-light responses were revealed to be lost when red-light-grown cells were cultured under white light for 2 d. Received: 7 September 1999 / Accepted: 15 October 1999  相似文献   

4.
Wheat seedling grown with their shoot bottom exposed to red light (400 μmol m−2 s−1) either with constant illumination or light-dark cycles did not accumulate chlorophyll. This near-etiolation response was manifested by a critical threshold intensity of red light and did not need continuous illumination. The inhibition of the greening process resulted from reduced synthesis of glutamate-1-semialdehyde and consequent reduction in tetrapyrrole precursor 5-aminolevulinic acid. Red light perceived by the shoot bottom down regulated the protein and/or gene expression of enzymes involved in the biosynthesis of tetrapyrroles. The contents of endogenous cytokinins, i.e., isopentenyl-adenosine and dihydrozeatinriboside, were reduced in seedlings grown in red light having their shoot bottom exposed. Application of exogenous cytokinin and its analogue to roots of seedlings grown in red light reversed the down regulation of the greening process. The reversal of red-light-induced near-etiolation morphogenesis by far-red (200 μmol m−2 s−1) or blue (25 μmol m−2 s−1) light suggests that it could be a very high red-irradiance response of phytochrome, in the meristematic layers of the shoot bottom, that works in concert with blue light receptor(s). This work was supported by a competitive grant from the Department of Science and Technology, Govt. of India (DST/SP/SO/A-49/95) to BCT. Suchi Sood Varsha Gupta: Equal contributors  相似文献   

5.
When 3–4 mm long coleoptiles of etiolated rice seedlings (cv. Koshijiwase) were irradiated with continuous red light their growth was seriously inhibited. If a brief exposure of red light (4×103 ergs cm−2) was given to the short coleoptiles, the growth rate dropped immediately after the irradiation, but the growth did not stop till the coleoptile reached some calculated length. If another brief red irradaition of the same order was given 24 hr after the first, the growth rate and the final length dropped further. The effect of red light was reversed by successively given far-red light, and this response was repeatedly red and far-red reversible. The escape reaction was rather slow so that photoreversibility was not lost at all by 8th hr, and 50% of the initial reversibility was lost within ca. 16 hr at 25±0.5 C. Blue light also induced the inhibition of coleoptile elongation, the effect was reversed by subsequent far-red irradiation, and this could be obtained repeatedly. Thus, the photoinhibition of the young coleoptile can be concluded to be under the control of phytochrome, and the mode of action appeared quite different from the previously reported results with longer coleoptiles.  相似文献   

6.
InHordeum vulgare cultivar “Kirin-choku No. 1”, the final length of intact coleoptiles of totally etiolated seedlings was approximately twice as long as that of those grown under continuous red light. The fluence response curve of the latter was biphasic; the low-energy effect was saturated by red light of ca. 50 J m−2 which gave rise to about 40% of the maximum inhibition by continuous irradiation with red light of 1.2 W m−2, whereas the high-energy effect was induced by irradiation for 1 hr or longer. Coleoptiles of 3-day-old seedlings were most sensitive to light causing the low-energy effect, which was repeatedly red/far-red reversible. The growth inhibition was correlated to the photometrically measured percentage of Pfr so that the maximum effect was induced by red light of 50 J m−2 which transformed 70% of phytochrome to Pfr in the coleoptile tip. Wavelength dependence of the high-energy effect showed that monochromatic light of 400, 600 and 650 nm greatly inhibited the coleoptile growth, whereas light of 700 and 750 nm promoted it instead. The effect was also induced by intermittent irradiation with red light, and the more frequently the intermittent treatment was given, the more the growth was inhibited.  相似文献   

7.
Volker D. Kern  Fred D. Sack 《Planta》1999,209(3):299-307
Apical cells of protonemata of the moss Ceratodon purpureus (Hedw.) Brid. are negatively gravitropic in the dark and positively phototropic in red light. Various fluence rates of unilateral red light were tested to determine whether both tropisms operate simultaneously. At irradiances ≥140 nmol m−2 s−1 no gravitropism could be detected and phototropism predominated, despite the presence of amyloplast sedimentation. Gravitropism occurred at irradiances lower than 140 nmol m−2 s−1 with most cells oriented above the horizontal but not upright. At these low fluence rates, phototropism was indistinct at 1 g but apparent in microgravity, indicating that gravitropism and phototropism compete at 1 g. The frequency of protonemata that were negatively phototropic varied with the fluence rate and the duration of illumination, as well as with the position of the apical cell before illumination. These data show that the fluence rate of red light regulates whether gravitropism is allowed or completely repressed, and that it influences the polarity of phototropism and the extent to which apical cells are aligned in the light path. Received: 19 January 1999 / Accepted: 19 March 1999  相似文献   

8.
The effects of UVB on the kinetics of stem elongation of wild type (WT) and photomorphogenic mutants of tomato were studied by using linear voltage transducers connected to a computer. Twenty-one or twenty-six-day-old plants, grown in 12 h white light (150 μmol m−2 s−1 PAR)/12 h dark cycles, were first transferred to 200 μmol m−2 s−1 monochromatic yellow light for 12 h, then irradiated with 0.1 or 4.5 μmol m−2 s−1 UVB for 12 h and finally kept in darkness for another 24 h. The measurements of the kinetics of stem elongation started after 4 h under yellow light. Significant differences in stem growth during the irradiation with yellow light, as well as during the dark period, were found between the genotypes. In darkness, the magnitude of stem growth followed the order: tri > AC = fri > MMau > hp1. Two factors determined the large differences of growth in darkness: 1) the different stem elongation rate (SER) and 2) the different duration of the growing phase among the genotypes. In darkness the stem growth of au and hp1 mutants lasted for about 18 h, whereas it continued for the whole experimental period (36 h) in the other genotypes. UVB irradiation substantially reduced elongation growth of all genotypes (4.5 μmol m−2 s−1 being more effective than 0.1 μmol m−2 s−1). Both fluence rates of UVB induced a detectable reduction of SER already after 15 min of irradiation. Red light inhibited, while far red light promoted stem growth of all the genotypes tested. fri (phyA null), tri (phyB1 null), hp1 (exhibiting exaggerated phytochrome responses) mutants and WT tomato showed similar levels of UVB–induced inhibition of growth, while the aurea mutant showed the largest growth inhibition during the 12 h of irradiation. These results indicate that phytochrome is not directly involved in UVB control of stem elongation. The results of dichromatic irradiations UVB + red or UVB + far red indicate the presence of distinct and additive action of UVB photoreceptor and of the phytochrome system in the photoregulation of stem growth. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Uenaka H  Wada M  Kadota A 《Planta》2005,222(4):623-631
Side branch formation in the moss, Physcomitrella patens, has been shown to be light dependent with cryptochrome 1a and 1b (Ppcry1a and Ppcry1b), being the blue light receptors for this response (Imaizumi et al. in Plant Cell 14:373, 2002). In this study, detailed photobiological analyses were performed, which revealed that this response involves multiple photoreceptors including cryptochromes. For light induction of branches, blue light of a fluence rate higher than 6 μmol m−2 s−1 for period longer than 3 h is required. The number of branches increased with the increase in fluence rate and in the irradiation period. The number of branches also increased when red light was applied together with the blue light, although red light alone had a very few effect. By partially irradiating a cell, both receptive sites for blue and red light were found to be located around the nucleus. Further, both red and blue light determine the positions of branches being dependent upon the vibration plane of polarized light. Red light control of branch position was nullified by simultaneous far-red light irradiation. A blue light effect on branch position was not found in lines with disrupted phototropin genes. Thus, dichroic phytochrome and phototropin, possibly on the plasma membrane, regulate branch position. These results indicate that at least four distinct photoreceptor systems, namely, cryptochromes and red light receptor around or in the nucleus, dichroic phytochrome and phototropin around the cell periphery, are involved in the light induction of side branches in the moss Physcomitrella patens.  相似文献   

10.
The relationship between O2-based gross photosynthesis (GP) and in vivo chlorophyll fluorescence of Photosystem II-based electron transport rate (ETR) as well as the relationship between effective quantum yield of fluorescence (ΦPSII) and quantum yield of oxygen evolution (ΦO_2) were examined in the green algae Ulva rotundata and Ulva olivascens and the red alga Porphyra leucosticta collected from the field and incubated for 3 days at 100 μmol m−2 s−1 in nutrient enriched seawater. Maximal GP was twice as high in Ulva species than that measured in P. leucosticta. In all species ETR was saturated at much higher irradiance than GP. The initial slope of ETR versus absorbed irradiance was higher than that of GP versus absorbed irradiance. Only under absorbed irradiances below saturation or at values of GP <2 μmol O2 m−2 s−1 a linear relationship was observed. In the linear phase, calculated O2 evolved /ETR molar ratios were closed to the theoretical value of 0.25 in Ulva species. In P. leucosticta, the estimated GP was associated to the estimated ETR only at high irradiances. ETR was determined under white light, red light emitting by diodes and solar radiation. In Ulva species the maximal ETR was reached under red light and solar radiation whereas in P. leucosticta the maximal ETR was reached under white light and minimal under red light. These results are in agreement with the known action spectra for photosynthesis in these species. In the case of P. leucosticta, GP and ETR were additionally determined under saturating irradiance in algae pre-incubated for one week under white light at different irradiances and at white light (100 μmol m−2 s−1) enriched with far-red light. GP and growth rate increased at a growth irradiance of 500 μmol m−2 s−1 becoming photoinhibited at higher irradiances, while ETR increased when algae were exposed to the highest growth irradiance applied (2000 μmol m−2 s−1). The calculated O2 evolved /ETR molar ratios were close to the theoretical value of 0.25 when algae were pre-incubated under 500–1000 μmol m−2 s−1. The enrichment by FR light provoked a decrease in both GP and ETR and an increase of nonphotochemical quenching although the irradiance of PAR was maintained at a constant level. In addition to C assimilation, other electron sinks, such as nitrogen assimilation, affected the GP–ETR relationship. The slopes of GP versus ETR or ΦPSII versus ΦO_2 were lower in the algae with the highest N assimilation capacity, estimated as nitrate reductase activity and internal nitrogen contents, i.e., Ulva rotundata and Porphyra leucosticta, than that observed in U. olivascens. The possible mechanisms to explain this discrepancy between GP and ETR are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
The marine diatom Haslea ostrearia was immobilized in a tubular agar gel layer introduced into a photobioreactor of original design with internal illumination for the continuous synthesis of marennin, a blue-green pigment of biotechnological interest. Marennin was produced for a long-term period (27–43 days) and the volumetric productivity was maximum (18.7 mg day−1 l−1 gel) at the highest dilution rate (0.25 day−1) and lowest agar layer thickness (3 mm). Heterogeneous cell distribution in the agar layer revealed diffusional limitation of light and nutrients. However, the 3 mm gel thickness led to a more homogeneous cell distribution during incubation and to an increase of the whole biomass in the agar gel layer. Received: 22 October 1999 / Received revision: 14 February 2000 / Accepted: 18 February 2000  相似文献   

12.
The influence of brackish phytoplankton cell classes upon the response of urea decomposition was investigated in Lake Nakaumi. The urea decomposition rate was 5 to 350 μmol urea m−3 h−1 in the light and 3 to 137 μmol urea m−3 h−1 in the dark. The urea decomposition rates in the light were obviously higher than in the dark. An extremely high rate (350 μmol urea m−3 h−1) was observed in Yonago Bay. The rate in the smaller fraction (<5 μm) exceeded that in the middle (5–25 μm) and larger fractions (>25 μm). The chlorophyll- and photosynthesis-specific rates for urea decomposition in the light were 0.5 to 3.9 μmol urea mg chl.a −1 h−1 and 0.3 to 1.3 μmol urea mg photo.C−1. The specific urea decomposing activities were higher in the smaller fraction than in the other two fractions. The present results suggest that in brackish waters urea decomposition occurred with coupling to the standing crop and photosynthetic activity of phytoplankton. Received: May 22, 1999 / Accepted: August 15, 1999  相似文献   

13.
In caulonemal filaments of the moss, Physcomitrella patens, which had been incubated in darkness, 3 s irradiation with blue light (λmax 450 nm) at fluence rates of 100 μmol m−2 s−1 and above caused a transient␣increase in cytosolic calcium ion concentration, [Ca2+]cyt, which was both intensity- and time-dependent. Measurements of [Ca2+]cyt were made using moss transformed with the cDNA for apoaequorin and reconstituting the Ca2+-dependent photoprotein aequorin in the cytosol by incubation in coelenterazine.␣In response to blue light at fluence rates of 100–1000 μmol photons m−2 s−1, [Ca2+]cyt increased transiently from a basal level of approximately 50 nM to between 200 and 700 nM. Irradiation with red light did not evoke any measurable change in [Ca2+]cyt. The presence of calcium in the incubating medium was not required for the increase in [Ca2+]cyt to occur. A mutant strain, gad-139, was identified which required an irradiance of only 1 s to evoke a response. The kinetics showed a delay of approximately 6 s from the beginning of illumination before the beginning of the increase in [Ca2+]cyt. The data suggest that the activation of a photoreceptor rather than the direct opening of calcium channels is involved in this blue-light response. Received: 4 December 1997 / Accepted: 4 May 1998  相似文献   

14.
Fine root turnover is a major pathway for carbon and nutrient cycling in terrestrial ecosystems and is most likely sensitive to many global change factors. Despite the importance of fine root turnover in plant C allocation and nutrient cycling dynamics and the tremendous research efforts in the past, our understanding of it remains limited. This is because the dynamics processes associated with soil resources availability are still poorly understood. Soil moisture, temperature, and available nitrogen are the most important soil characteristics that impact fine root growth and mortality at both the individual root branch and at the ecosystem level. In temperate forest ecosystems, seasonal changes of soil resource availability will alter the pattern of carbon allocation to belowground. Therefore, fine root biomass, root length density (RLD) and specific root length (SRL) vary during the growing season. Studying seasonal changes of fine root biomass, RLD, and SRL associated with soil resource availability will help us understand the mechanistic controls of carbon to fine root longevity and turnover. The objective of this study was to understand whether seasonal variations of fine root biomass, RLD and SRL were associated with soil resource availability, such as moisture, temperature, and nitrogen, and to understand how these soil components impact fine root dynamics in Larix gmelinii plantation. We used a soil coring method to obtain fine root samples (⩽2 mm in diameter) every month from May to October in 2002 from a 17-year-old L. gmelinii plantation in Maoershan Experiment Station, Northeast Forestry University, China. Seventy-two soil cores (inside diameter 60 mm; depth intervals: 0–10 cm, 10–20 cm, 20–30 cm) were sampled randomly from three replicates 25 m × 30 m plots to estimate fine root biomass (live and dead), and calculate RLD and SRL. Soil moisture, temperature, and nitrogen (ammonia and nitrates) at three depth intervals were also analyzed in these plots. Results showed that the average standing fine root biomass (live and dead) was 189.1 g·m−2·a−1, 50% (95.4 g·m−2·a−1) in the surface soil layer (0–10 cm), 33% (61.5 g·m−2·a−1), 17% (32.2 g·m−2·a−1) in the middle (10–20 cm) and deep layer (20–30cm), respectively. Live and dead fine root biomass was the highest from May to July and in September, but lower in August and October. The live fine root biomass decreased and dead biomass increased during the growing season. Mean RLD (7,411.56 m·m−3·a−1) and SRL (10.83 m·g−1·a−1) in the surface layer were higher than RLD (1 474.68 m·m−3·a−1) and SRL (8.56 m·g−1·a−1) in the deep soil layer. RLD and SRL in May were the highest (10 621.45 m·m−3 and 14.83m·g−1) compared with those in the other months, and RLD was the lowest in September (2 198.20 m·m−3) and SRL in October (3.77 m·g−1). Seasonal dynamics of fine root biomass, RLD, and SRL showed a close relationship with changes in soil moisture, temperature, and nitrogen availability. To a lesser extent, the temperature could be determined by regression analysis. Fine roots in the upper soil layer have a function of absorbing moisture and nutrients, while the main function of deeper soil may be moisture uptake rather than nutrient acquisition. Therefore, carbon allocation to roots in the upper soil layer and deeper soil layer was different. Multiple regression analysis showed that variation in soil resource availability could explain 71–73% of the seasonal variation of RLD and SRL and 58% of the variation in fine root biomass. These results suggested a greater metabolic activity of fine roots living in soil with higher resource availability, which resulted in an increased allocation of carbohydrate to these roots, but a lower allocation of carbohydrate to those in soil with lower resource availability. __________ Translated from Acta Phytoecologica Sinica, 2005, 29(3): 403–410 [译自: 植物生态学报, 2005, 29(3): 403–410]  相似文献   

15.
This article reports on quantified soil water gains and their possible effects on summer water relationships in a semiarid Stipa tenacissima L. grasslands located in SE Spain. We believe that the net soil water gains detected using minilysimeters could be from soil water vapour adsorption (WVA). Our study of high water-stress showed stomatal conductance (21.8–43.1 mmol H2O m−2 s−1) in S. tenacissima leaves unusual for the summer season, and the evapotranspiration from S. tenacissima grassland, estimated by a multi-source sparse evapotranspiration model, closely corresponding to total WVA. This highlights the importance of summer soil WVA to stomatal conductance and vital transpiration in S. tenacissima. This study measured pre-dawn leaf water potential (ψ) response to sporadic light rainfall, finding that a light summer rainfall (1.59 mm day−1) was sufficient to vary ψ in S. tenacissima from −3.8 (close to the turgour loss point) to −2.7 MPa. We hypothesize that soil WVA can supply vegetation with water vital to its survival in seasons with a severe water deficit, giving rise to a close relationship between soil water dynamics and plant water response.  相似文献   

16.
Four temperature treatments were studied in the climate controlled growth chambers of the Georgia Envirotron: 25/20, 30/25, 35/30, and 40/35 °C during 14/10 h light/dark cycle. For the first growth stage (V3-5), the highest net photosynthetic rate (P N) of sweet corn was found for the lowest temperature of 28–34 μmol m−2 s−1 while the P N for the highest temperature treatment was 50–60 % lower. We detected a gradual decline of about 1 P N unit per 1 °C increase in temperature. Maximum transpiration rate (E) fluctuated between 0.36 and 0.54 mm h−1 (≈5.0–6.5 mm d−1) for the high temperature treatment and the minimum E fluctuated between 0.25 and 0.36 mm h−1 (≈3.5–5.0 mm d−1) for the low temperature treatment. Cumulative CO2 fixation of the 40/35 °C treatment was 33.7 g m−2 d−1 and it increased by about 50 % as temperature declined. The corresponding water use efficiency (WUE) decreased from 14 to 5 g(CO2) kg−1(H2O) for the lowest and highest temperature treatments, respectively. Three main factors affected WUE, P N, and E of Zea: the high temperature which reduced P N, vapor pressure deficit (VPD) that was directly related to E but did not affect P N, and quasi stem conductance (QC) that was directly related to P N but did not affect E. As a result, WUE of the 25/20 °C temperature treatment was almost three times larger than that of 40/35 °C temperature treatment.  相似文献   

17.
The branching zooxanthellate soft coral Sinularia flexibillis releases antimicrobial and toxic compounds with potential pharmaceutical importance. As photosynthesis by the symbiotic algae is vital to the host, the light-dependency of the coral, including its specific growth rate (μ day−1) and the physiological response to a range of light intensities (10–1,000 μmol quanta m−2 s−1) was studied for 12 weeks. Although a range of irradiances from 100 to 400 μmol quanta m−2 s−1 was favorable for S. flexibilis, based on chlorophyll content, a light intensity around 100 μmol quanta m−2 s−1 was found to be optimal. The contents of both zooxanthellae and chlorophyll a were highest at 100 μmol quanta m−2 s−1. The specific budding rate showed almost the same pattern as the specific growth rate. The concentration of the terpene flexibilide, produced by this species, increased at high light intensities (200–600 μmol quanta m−2 s−1).  相似文献   

18.
Using 77 K chlorophyll a (Chl a) fluorescence spectra in vivo, the development was studied of Photosystems II (PS II) and I (PS I) during greening of barley under intermittent light followed by continuous light at low (LI, 50 μmol m−2 s−1) and high (HI, 1000 μmol m−2 s−1) irradiances. The greening at HI intermittent light was accompanied with significantly reduced fluorescence intensity from Chl b excitation for both PS II (F685) and PS I (F743), in comparison with LI plants, indicating that assembly of light-harvesting complexes (LHC) of both photosystems was affected to a similar degree. During greening at continuous HI, a slower increase of emission from Chl b excitation in PS II as compared with PS I was observed, indicating a preferred reduction in the accumulation of LHC II. The following characteristics of 77 K Chl a fluorescence spectra documented the photoprotective function of an elevated content of carotenoids in HI leaves: (1) a pronounced suppression of Soret region of excitation spectra (410–450 nm) in comparison with the red region (670–690 nm) during the early stage of greening indicated a strongly reduced excitation energy transfer from carotenoids to the Chl a fluorescing forms within PS I and PS II; (2) changes in the shape of the excitation band of Chl b and carotenoids (460–490 nm) during greening under continuous light confirmed that the energy transfer from carotenoids to Chl a within PS II remained lower as compared with the LI plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
The effects of temperature (20, 24 and 28 °C) and irradiance (15 and 40 μmol photon m−2 s−1) on the nitrate and ammonium uptake rates of the subtropical red alga, Laurencia brongniartii, were investigated to prepare for tank cultivation. Nitrate uptake followed saturation kinetics and was faster at higher irradiances and temperatures. In contrast, ammonium uptake was linear over the experimental range and was not affected by an increase in temperature. A parameter, β, was calculated to compare substrate uptake rates of nitrate along the linear portion of the uptake curve with that of ammonium. For nitrate, β was lower at low irradiance and higher at high irradiance (β = 0.007 ± 0.003 and 0.030 ± 0.002 [μmol N L−1 (μmol N gww−1 d)−1], respectively). However, β was 0.023 ± 0.002 and 0.034 ± 0.002 [μmol N L−1 (μmol N gww−1 d−1)−1] for ammonium, suggesting a preference for ammonium over nitrate.  相似文献   

20.
The purpose of this study was to clarify effects of anthocyanins on photosynthesis and photoinhibition in green and red leaves of Oxalis triangularis. Gas analysis indicated that green plants had the highest apparent quantum yield for CO2 assimilation [0.051 vs. 0.031 μmol(CO2) μmol−1(photon)] and the highest maximum photosynthesis [10.07 vs. 7.24 μmol(CO2) m−2 s−1], while fluorescence measurements indicated that red plants had the highest PSII quantum yield [0.200 vs. 0.143 μmol(e) μmol−1(photon)] and ETRmax [66.27 vs. 44.34 μmol(e) m−2 s−1]. Red plants had high contents of anthocyanins [20.11 mg g−1(DM)], while green plants had low and undetectable levels of anthocyanin. Red plants also had statistically significantly (0.05>p>0.01) lower contents of xanthophyll cycle components [0.63 vs. 0.76 mg g−1(DM)] and higher activities of the reactive oxygen scavenging enzyme ascorbate peroxidase [41.2 vs. 10.0 nkat g−1(DM)]. Anthocyanins act as a sunscreen, protecting the chloroplasts from high light intensities. This shading effect causes a lower photosynthetic CO2 assimilation in red plants compared to green plants, but a higher quantum efficiency of photosystem II (PSII). Anthocyanins contribute to photoprotection, compensating for lower xanthophyll content in red plants, and red plants are less photoinhibited than green plants, as illustrated by the Fv/Fm ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号