首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Inhaled nitric oxide (NO) is a highly selective pulmonary vasodilator. It was recently reported that inhaled NO causes peripheral vasodilatation after treatment with a NO synthase (NOS) inhibitor. These findings suggested the possibility that inhibition of endogenous NOS uncovered the systemic vasodilating effect of NO or NO adducts absorbed via the lungs during NO inhalation. To learn whether inhaled NO reduces systemic vascular resistance in the absence of endothelial NOS, we studied the systemic vascular effects of NO breathing in wild-type mice treated without and with the NOS inhibitor N(omega)-nitro-l-arginine methyl ester and in NOS3-deficient (NOS3(-/-)) mice. During general anesthesia, the cardiac output, left ventricular function, and systemic vascular resistance were not altered by NO breathing at 80 parts/million in both genotypes. Breathing NO in air did not alter blood pressure and heart rate, as measured by tail-cuff and telemetric methods, in either awake wild-type mice (whether or not they were treated with N(omega)-nitro-l-arginine methyl ester), or in awake NOS3(-/-) mice. Our findings suggest that absorption of NO or adducts during NO breathing is insufficient to cause systemic vasodilation in mice, even when endogenous endothelial NO production is congenitally absent.  相似文献   

2.
Nitric oxide (NO), synthesized by NO synthases (NOS), plays a pivotal role in regulation of pulmonary vascular tone. To examine the role of endothelial NOS (NOS3) in hypoxic pulmonary vasoconstriction (HPV), we measured left lung pulmonary vascular resistance (LPVR), intrapulmonary shunting, and arterial PO2 (PaO2) before and during left mainstem bronchus occlusion (LMBO) in mice with and without a deletion of the gene encoding NOS3. The increase of LPVR induced by LMBO was greater in NOS3-deficient mice than in wild-type mice (151 +/- 39% vs. 109 +/- 36%, mean +/- SD; P < 0.05). NOS3-deficient mice had a lower intrapulmonary shunt fraction than wild-type mice (17.1 +/- 3.6% vs. 21.7 +/- 2.4%, P < 0.05) during LMBO. Both real-time PaO2 monitoring with an intra-arterial probe and arterial blood-gas analysis during LMBO showed higher PaO2 in NOS3-deficient mice than in wild-type mice (P < 0.05). Inhibition of all three NOS isoforms with Nomega-nitro-L-arginine methyl ester (L-NAME) augmented the increase of LPVR induced by LMBO in wild-type mice (183 +/- 67% in L-NAME treated vs. 109 +/- 36% in saline treated, P < 0.01) but not in NOS3-deficient mice. Similarly, systemic oxygenation during one-lung ventilation was augmented by L-NAME in wild-type mice but not in NOS3-deficient mice. These findings indicate that NO derived from NOS3 modulates HPV in vivo and that inhibition of NOS3 improves systemic oxygenation during acute unilateral lung hypoxia.  相似文献   

3.
Apoptotic cells are removed by phagocytes without causing inflammation. It remains largely unresolved whether anti-inflammatory mediators prevent neutrophil infiltration upon apoptotic cell clearance in vivo. In this study, we showed that, upon induction of apoptosis in the thymus by x-ray, inducible NO synthase knockout (KO) mice exhibited higher levels of neutrophil infiltration and production of MIP-2 and keratinocyte-derived chemokine (KC) in the thymus than wild-type (WT) mice. Furthermore, administration of NG-nitro-L-arginine methyl ester, an inhibitor of NO synthase, to x-irradiated WT mice increased the level of neutrophil infiltration to that of KO mice by the augmentation of MIP-2 and KC production. Additionally, thymic macrophages isolated from x-irradiated KO mice produced more MIP-2 and KC than those from WT mice. Thus, although apoptosis is believed to be noninflammatory, this is actually achieved by the production of immunosuppressive signals such as NO that counteract proinflammatory chemokines such as MIP-2 and KC.  相似文献   

4.
Pulmonary vasoconstriction in response to alveolar hypoxia (HPV) is frequently impaired in patients with sepsis or acute respiratory distress syndrome or in animal models of endotoxemia. Pulmonary vasodilation due to overproduction of nitric oxide (NO) by NO synthase 2 (NOS2) may be responsible for this impaired HPV after administration of endotoxin (LPS). We investigated the effects of acute nonspecific (N(G)-nitro-L-arginine methyl ester, L-NAME) and NOS2-specific [L-N6-(1-iminoethyl)lysine, L-NIL] NOS inhibition and congenital deficiency of NOS2 on impaired HPV during endotoxemia. The pulmonary vasoconstrictor response and pulmonary vascular pressure-flow (P-Q) relationship during normoxia and hypoxia were studied in isolated, perfused, and ventilated lungs from LPS-pretreated and untreated wild-type and NOS2-deficient mice with and without L-NAME or L-NIL added to the perfusate. Compared with lungs from untreated mice, lungs from LPS-challenged wild-type mice constricted less in response to hypoxia (69 +/- 17 vs. 3 +/- 7%, respectively, P < 0.001). Perfusion with L-NAME or L-NIL restored this blunted HPV response only in part. In contrast, LPS administration did not impair the vasoconstrictor response to hypoxia in NOS2-deficient mice. Analysis of the pulmonary vascular P-Q relationship suggested that the HPV response may consist of different components that are specifically NOS isoform modulated in untreated and LPS-treated mice. These results demonstrate in a murine model of endotoxemia that NOS2-derived NO production is critical for LPS-mediated development of impaired HPV. Furthermore, impaired HPV during endotoxemia may be at least in part mediated by mechanisms other than simply pulmonary vasodilation by NOS2-derived NO overproduction.  相似文献   

5.
Pseudomonas aeruginosa is a Gram-negative pathogen that causes severe infections in immunocompromised individuals and individuals with cystic fibrosis or chronic obstructive pulmonary disease (COPD). Here we show that kinase suppressor of Ras-1 (Ksr1)-deficient mice are highly susceptible to pulmonary P. aeruginosa infection accompanied by uncontrolled pulmonary cytokine release, sepsis and death, whereas wild-type mice clear the infection. Ksr1 recruits and assembles inducible nitric oxide (NO) synthase (iNOS) and heat shock protein-90 (Hsp90) to enhance iNOS activity and to release NO upon infection. Ksr1 deficiency prevents lung alveolar macrophages and neutrophils from activating iNOS, producing NO and killing bacteria. Restoring NO production restores the bactericidal capability of Ksr1-deficient lung alveolar macrophages and neutrophils and rescues Ksr1-deficient mice from P. aeruginosa infection. Our findings suggest that Ksr1 functions as a previously unknown scaffold that enhances iNOS activity and is therefore crucial for the pulmonary response to P. aeruginosa infections.  相似文献   

6.
Previous results from our laboratory using pharmacological approaches suggested a role for nitric oxide (NO) in the host defense against the human filarial parasite, Brugia malayi. We sought to determine whether a complementary genetic approach, using mice homozygous for a targeted mutation in the gene encoding inducible nitric oxide-synthase (NOS2), would confirm our observation. We hypothesized that such mice would exhibit some deficit in their ability to clear B. malayi. Our data show that the course of infection in NOS2-/- mice is the same as in wild-type mice. Thus, peritoneal cellular responses to infection are similar in NOS2-/- and wild-type mice, with the exception that T cells form a higher percentage of total peritoneal cells in the former. We find virtually no serum IgE in NOS2-/- mice, suggesting a less robust Th2 response. In contrast, NOS2-/- mice demonstrate an early rise in IgG2a titers compared to B6 +/+ mice. Our data suggest that NO is not an obligate requirement for the elimination of B. malayi from the peritoneal cavities of mice.  相似文献   

7.
Cell culture models implicate increased nitric oxide (NO) synthesis as a cause of mucosal hyperpermeability in intestinal epithelial infection. NO may also mediate a multitude of subepithelial events, including activation of cyclooxygenases. We examined whether NO promotes barrier function via prostaglandin synthesis using Cryptosporidium parvum-infected ileal epithelium in residence with an intact submucosa. Expression of NO synthase (NOS) isoforms was examined by real-time RT-PCR of ileal mucosa from control and C. parvum-infected piglets. The isoforms mediating and mechanism of NO action on barrier function were assessed by measuring transepithelial resistance (TER) and eicosanoid synthesis by ileal mucosa mounted in Ussing chambers in the presence of selective and nonselective NOS inhibitors and after rescue with exogenous prostaglandins. C. parvum infection results in induction of mucosal inducible NOS (iNOS), increased synthesis of NO and PGE2, and increased mucosal permeability. Nonselective inhibition of NOS (NG-nitro-L-arginine methyl ester) inhibited prostaglandin synthesis, resulting in further increases in paracellular permeability. Baseline permeability was restored in the absence of NO by exogenous PGE2. Selective inhibition of iNOS [L-N6-(1-iminoethyl)-L-lysine] accounted for approximately 50% of NOS-dependent PGE2 synthesis and TER. Using an entire intestinal mucosa, we have demonstrated for the first time that NO serves as a proximal mediator of PGE2 synthesis and barrier function in C. parvum infection. Expression of iNOS by infected mucosa was without detriment to overall barrier function and may serve to promote clearance of infected enterocytes.  相似文献   

8.
Leishmania amazonensis, L. braziliensis and L. chagasi promastigotes were grown in the presence of L-arginine analogs such as Nomega-nitro-L-arginine methyl ester (L-NAME), NG-nitro-L-arginine (L-NNA) and D-arginine (an inactive L-arginine isomer), besides an intracellular calcium chelator [ethylene glycol-bis (beta-aminoethyl ether)-N,N,N',N'-tetra acetic acid; EGTA] to verify the importance of L-arginine metabolism and the cofactors for these parasites. The parasite's growth curve was followed up and the culture supernatants were used to assay nitric oxide (NO) production by the Griess reaction. The results showed a significant effect of L-arginine analogs on NO production by all Leishmania species studied, especially L-NAME, an irreversible inhibitor of the constitutive nitric oxide synthase (cNOS). When L. amazonensis promastigotes were pre-incubated with L-NAME, the infection range of the murine macrophages was lowered to 61% in 24 h and 19% after 48 h. These data demonstrated that the parasite NO pathway is important to the establishment of the infection.  相似文献   

9.
Antifungal type 1 responses are upregulated in IL-10-deficient mice   总被引:4,自引:0,他引:4  
C57BL/6 mice are highly resistant to infections caused by Candida albicans and Aspergillus fumigatus. To elucidate the role of IL-10 produced by C57BL/6 mice during these infections, parameters of infection and immunity to it were evaluated in IL-10-deficient and wild-type mice with disseminated or gastrointestinal candidiasis or invasive pulmonary aspergillosis. Unlike parasitic protozoan infection, C. albicans or A. fumigatus infection did not induce significant acute toxicity in IL-10-deficient mice, who, instead, showed reduced fungal burden and fungal-associated inflammatory responses. The increased resistance to infections as compared to wild-type mice was associated with upregulation of innate and acquired antifungal Th1 responses, such as a dramatically higher production of IL-12, nitric oxide (NO) and TNF-alpha as well as IFN-gamma by CD4+ T cells. Pharmacological inhibition of NO production greatly reduced resistance to gastrointestinal candidiasis, thus pointing to the importance of IL-10-dependent NO regulation at mucosal sites in fungal infections. These results are reminiscent of those obtained in genetically susceptible mice, in which IL-10 administration increased, and IL-10 neutralization decreased, susceptibility to C. albicans and A. fumigatus infections. Collectively, these observations indicate that the absence of IL-10 augments innate and acquired antifungal immunity by upregulating type 1 cytokine responses. The resulting protective Th1 responses lead to a prompt reduction of fungal growth, thus preventing tissue destruction and lethal levels of proinflammatory cytokines.  相似文献   

10.
Prominent neurite outgrowth induced by genipin, a plant-derived iridoid, was substantially inhibited by addition of NG-nitro-L-arginine methyl ester (L-NAME), a nitric oxide (NO) synthase (NOS) inhibitor, and carboxy-PTIO, an NO scavenger, in PC12h cells. Increases of the NADPH-diaphorase activity and neuronal and inducible NOS proteins in cells preceded the neurite outgrowth after addition of genipin to medium. NO donors could induce the neurite outgrowth dose-dependently in the cells. On the other hand, an inhibitor of soluble guanylate cyclase (SGC), which is known to be a stimulatory target of NO, abolished greatly the genipin-induced neurite outgrowth. Addition of extracellular signal-regulated kinase (ERK) kinase inhibitors could almost completely abolish the neurite induction. L-NAME remarkably depressed genipin-stimulated phosphorylation of ERK-1 and -2. A neuritogenic effect of nerve growth factor (NGF) in PC12h cells was also remarkably inhibited by the NOS inhibitor, NO scavenger and SGC inhibitor. These findings suggest that induced NO production followed by cyclic GMP-mediated stimulation of the mitogen-activated protein kinase (MAPK) cascade is implicated in the neuritogenesis by genipin and NGF in PC12h cells.  相似文献   

11.
Cyclic GMP (cGMP) mediates various physiological functions of nitric oxide (NO) synthesized by nitric oxide synthase (NOS). A crude peel extract and purified fraction of Flemingia vestita, as well as a crude rhizome extract of Stephania glabra and fractions were tested with respect to the activity of NOS, NO efflux and cGMP concentration in the cestode Raillietina echinobothrida in order to find out the possible mode of anthelmintic action of these plant-derived components. For comparison purposes, the parasites were also treated with pure genistein, sodium nitroprusside (SNP-a known NO donor), and the reference drug, praziquantel (PZQ). At the time of onset of paralysis in the parasites, a significant increase (32%-87%) in the NOS activity and a two to three fold increase of NO efflux into the incubation medium were observed in the treated parasites in comparison to their respective controls. The cGMP concentration in the treated parasites' tissue was also increased by 44%-103%. However, in the presence of NG-nitro-L-arginine methyl ester, a potent inhibitor of NOS, there was no increase in the cGMP concentration in the parasite tissue. This study indicates that the phytochemicals, in particular genistein and tetrahydropalmatine, from F. vestita and S. glabra, respectively, disturb the downstream signalling pathway of NO, as indicated by the change in cGMP concentration in the parasite tissue.  相似文献   

12.
Incubation of various tissues, including heart, liver, kidney, muscle, and intestine from mice and erythrocytes or their membrane fractions from humans, with physiologic concentration of insulin resulted in the activation of a membrane-bound nitric oxide synthase (NOS). Activation of NOS and synthesis of NO were stimulated by the binding of insulin to specific receptors on the cell surface. A Lineweaver-Burk plot of the enzymatic activity demonstrated that the stimulation of NOS by insulin was related to the decrease in the Km for L-arginine, the substrate for NOS, with a simultaneous increase of Vmax. Addition of NG-nitro-L-arginine methyl ester (LNAME), a competitive inhibitor of NOS, to the reaction mixture completely inhibited the hormone-stimulated NO synthesis in all tissues. Furthermore, NO had an insulin-like effect in stimulating glucose transport and glucose oxidation in muscle, a major site for insulin action. Addition of NAME to the reaction mixture completely blocked the stimulatory effect of insulin by inhibiting both NO production and glucose metabolism, without affecting the hormone-stimulated tyrosine or phosphatidyl-inositol 3-kinases of the membrane preparation. Injection of NO in alloxan-induced diabetic mice mimicked the effect of insulin in the control of hyperglycemia (i.e., lowered the glucose content in plasma). However, injection of NAME before the administration of insulin to diabetic-induced and nondiabetic mice inhibited not only the insulin-stimulated increase of NO in plasma but also the glucose-lowering effect of insulin.  相似文献   

13.
BACKGROUND: Nitric oxide (NO) has been implicated as a mediator of penile erection, because the neuronal isoform of NO synthase (NOS) is localized to the penile innervation and NOS inhibitors selectively block erections. NO can also be formed by two other NOS isoforms derived from distinct genes, inducible NOS (iNOS) and endothelial NOS (eNOS). To clarify the source of NO in penile function, we have examined mice with targeted deletion of the nNOS gene (nNOS- mice). MATERIALS AND METHODS: Mating behavior, electrophysiologically induced penile erection, isolated erectile tissue isometric tension, and eNOS localization by immunohistochemistry and Western blot were performed on nNOS- mice and wild-type controls. RESULTS: Both intact animal penile erections and isolated erectile tissue function are maintained in nNOS mice, in agreement with demonstrated normal sexual behaviors, but is stereospecifically blocked by the NOS inhibitor, L-nitroarginine methyl ester (L-NAME). eNOS is abundantly present in endothelium of penile vasculature and sinusoidal endothelium within the corpora cavemosa, with levels that are significantly higher in nNOS- mice than in wild-type controls. CONCLUSIONS: eNOS mediates NO-dependent penile erection in nNOS- animals and normal penile erection. These data clarify the role of nitric oxide in penile erection and may have implications for therapeutic agents with selective effects on NOS isoforms.  相似文献   

14.
Nitric oxide (NO) is a potent vasodilator, but it can also modulate contractile responses of the airway smooth muscle. Whether or not endothelial (e) NO synthase (NOS) contributes to the regulation of bronchial tone is unknown at present. Experiments were designed to investigate the isoforms of NOS that are expressed in murine airways and to determine whether or not the endogenous release of NO modulates bronchial tone in wild-type mice and in mice with targeted deletion of eNOS [eNOS(-/-)]. The presence of neuronal NOS (nNOS), inducible NOS (iNOS), and eNOS in murine trachea and lung parenchyma was assessed by RT-PCR, immunoblotting, and immunohistochemistry. Airway resistance was measured in conscious unrestrained mice by means of a whole body plethysmography chamber. The three isoforms of NOS were constitutively present in lungs of wild-type mice, whereas only iNOS and nNOS were present in eNOS(-/-) mice. Labeling of nNOS was localized in submucosal airway nerves but was not consistently detected, and iNOS immunoreactivity was observed in tracheal and bronchiolar epithelial cells, whereas eNOS was expressed in endothelial cells. In wild-type mice, treatment with N-nitro-L-arginine methyl ester, but not with aminoguanidine, potentiated the increase in airway resistance produced by inhalation of methacholine. eNOS(-/-) mice were hyperresponsive to inhaled methacholine and markedly less sensitive to N-nitro-L-arginine methyl ester. These results demonstrate that the three NOS isoforms are expressed constitutively in murine lung and that NO derived from eNOS plays a physiological role in controlling bronchial airway reactivity.  相似文献   

15.
Altered nitric oxide (NO) production/release is involved in gastrointestinal motor disorders occurring in dystrophic (mdx) mice. Since the hormone relaxin (RLX) can upregulate NO biosynthesis, its effects on spontaneous motility and NO synthase (NOS) expression in the ileum of dystrophic (mdx) mice were investigated. Mechanical responses of ileal preparations were recorded in vitro via force-displacement transducers. Evaluation of the expression of NOS isoforms was performed by immunohistochemistry and Western blot. Normal and mdx mice were distributed into three groups: untreated, RLX pretreated, and vehicle pretreated. Ileal preparations from the untreated animals showed spontaneous muscular contractions whose amplitude was significantly higher in mdx than in normal mice. Addition of RLX, alone or together with l-arginine, to the bath medium depressed the amplitude of the contractions in the mdx mice, thus reestablishing a motility pattern typical of the normal mice. The NOS inhibitor N(G)-nitro-L-arginine (L-NNA) or the guanylate cyclase inhibitor ODQ reversed the effects of RLX. In RLX-pretreated mdx mice, the amplitude of spontaneous motility was reduced, thus resembling that of the normal mice, and NOS II expression in the muscle coat was increased in respect to the vehicle-pretreated mdx animals. These results indicate that RLX can reverse the altered ileal motility of mdx mice to a normal pattern, likely by upregulating NOS II expression and NO biosynthesis in the ileal smooth muscle.  相似文献   

16.
Pulmonary vasoconstriction is influenced by inactivation of nitric oxide (NO) with extracellular superoxide (O2-*). Because the short-lived O2-* anion cannot diffuse across plasma membranes, its release from vascular cells requires specialized mechanisms that have not been well delineated in the pulmonary circulation. We have shown that the bicarbonate (HCO3-)-chloride anion exchange protein (AE2) expressed in the lung also exchanges O2-* for HCO3-. Thus we determined whether O2-* release involved in pulmonary vascular tone depends on extracellular HCO3-. We assessed endothelium-dependent vascular reactivity and O2-* release in the presence or absence of HCO3- in pulmonary artery (PA) rings isolated from normal rats and those exposed to hypoxia for 3 days. Lack of extracellular HCO3- in normal PA rings significantly attenuated endothelial O2-* release, opposed hypoxic vasoconstriction, and enhanced acetylcholine-mediated vasodilation. Release of O2-* was also inhibited by an AE2 inhibitor (SITS) and abolished in normoxia by an NO synthase inhibitor (NG-nitro-L-arginine methyl ester). In contrast, hypoxia increased PA AE2 protein expression and O2-* release; the latter was not affected by NG-nitro-l-arginine methyl ester or other inhibitors of enzymatic O2-* generation. Enhanced O2-* release by uncoupling NO synthase with geldanamycin was attenuated by hypoxia or by HCO3- elimination. These results indicate that O2-* produced by endothelial NOS in normoxia and unidentified sources in hypoxia regulate pulmonary vascular tone via AE2.  相似文献   

17.
Whether or not NO plays a critical role in murine CMV (MCMV) infection has yet to be elucidated. In this study, we examined the role of NO in acute infection with MCMV using NO synthase type 2 (NOS2)-deficient mice. NOS2(-/-) mice were more susceptible to lethal infection with MCMV than NOS2(+/+) mice and generated a much higher peak virus titer in the salivary gland after acute infection. A moderate increase in the MCMV titer was also observed in other organs of NOS2(-/-) mice such as the spleen, lung, and liver. The immune responses to MCMV infection including NK cell cytotoxicity and CTL response in NOS2(-/-) mice were comparable with those of NOS2(+/+) mice. Moreover, the ability to produce IFN-gamma is not impaired in NOS2(-/-) mice after MCMV infection. The peritoneal macrophages from NOS2(-/-) mice, however, exhibited a lower antiviral activity than those from NOS2(+/+) mice, resulting in an enhanced viral replication in macrophages themselves. Treatment of these cells from NOS2(+/+) mice with a selective NOS2 inhibitor decreased the antiviral activity to a level below that obtained with NOS2(-/-) mice. In addition, the absence of NOS2 and NOS2-mediated antiviral activity of macrophages resulted in not only an enhanced MCMV replication and a high mortality but also a consequent risk of the latency. It was thus concluded that the NOS2-mediated antiviral activity of macrophages via NO plays a protective role against MCMV infection at an early and late stage of the infection.  相似文献   

18.
Leishmania tropica is the causative agent of Old World anthroponotic cutaneous leishmaniasis, which is characterized by lesions that take an extended period of time to heal, often resulting in disfiguring scars, and are more refractory to treatment than leishmaniasis caused by Leishmania major. Immunologic studies involving experimental animal models of L. tropica infection are virtually nonexistent. In the current study, infectious-stage L. tropica were used to establish dermal infections in C57BL/6 and BALB/c mice. In both strains, the lesions were slow to develop and showed minimal pathology. They nonetheless contained a stable number of between 10(4) and 10(5) parasites for over 1 year, which were efficiently picked up by a natural sand fly vector, Phlebotomus sergenti. Control of parasite growth depended on the development of a Th1 response, as C57BL/6 mice genetically deficient in Th1 cytokines and BALB/c mice treated with Abs to IFN-gamma harbored significantly more parasites. By contrast, IL-10-deficient mice harbored significantly fewer parasites throughout the infection. To further study the immunologic mechanisms that may prevent efficient clearance of the parasites, IL-10 and TGF-beta signaling were abrogated during the chronic phase of infection in wild-type C57BL/6 mice. Distinct from chronic L. major infection, IL-10 blockade alone had no effect on L. tropica, but required simultaneous treatment with anti-TGF-beta Abs to promote efficient parasite clearance from the infection site. Thus, chronic infection with L. tropica appears to be established via multiple suppressive factors, which together maintain the host as a long-term reservoir of infection for vector sand flies.  相似文献   

19.
Nitric oxide (NO) is mainly generated by endothelial NO synthase (eNOS) or neuronal NOS (nNOS). Recent studies indicate that angiotensin II generates NO release, which modulates renal vascular resistance and sympathetic neurotransmission. Experiments in wild-type [eNOS(+/+) and nNOS(+/+)], eNOS-deficient [eNOS(-/-)], and nNOS-deficient [nNOS(-/-)] mice were performed to determine which NOS isoform is involved. Isolated mice kidneys were perfused with Krebs-Henseleit solution. Endogenous norepinephrine release was measured by HPLC. Angiotensin II dose dependently increased renal vascular resistance in all mice species. EC(50) and maximal pressor responses to angiotensin II were greater in eNOS(-/-) than in nNOS(-/-) and smaller in wild-type mice. The nonselective NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME; 0.3 mM) enhanced angiotensin II-induced pressor responses in nNOS(-/-) and wild-type mice but not in eNOS(-/-) mice. In nNOS(+/+) mice, 7-nitroindazole monosodium salt (7-NINA; 0.3 mM), a selective nNOS inhibitor, enhanced angiotensin II-induced pressor responses slightly. Angiotensin II-enhanced renal nerve stimulation induced norepinephrine release in all species. L-NAME (0.3 mM) reduced angiotensin II-mediated facilitation of norepinephrine release in nNOS(-/-) and wild-type mice but not in eNOS(-/-) mice. 7-NINA failed to modulate norepinephrine release in nNOS(+/+) mice. (4-Chlorophrnylthio)guanosine-3', 5'-cyclic monophosphate (0.1 nM) increased norepinephrine release. mRNA expression of eNOS, nNOS, and inducible NOS did not differ between mice strains. In conclusion, angiotensin II-mediated effects on renal vascular resistance and sympathetic neurotransmission are modulated by NO in mice. These effects are mediated by eNOS and nNOS, but NO derived from eNOS dominates. Only NO derived from eNOS seems to modulate angiotensin II-mediated renal norepinephrine release.  相似文献   

20.
Nitric oxide (NO) can either prevent or promote apoptosis, depending on cell type. In the present study, we tested the hypothesis that NO suppresses ultraviolet B radiation (UVB)-induced keratinocyte apoptosis both in vitro and in vivo. Irradiation with UVB or addition of the NO synthase (NOS) inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME) increased apoptosis in the human keratinocyte cell line CCD 1106 KERTr, and apoptosis was greater when the two agents were given in combination. Addition of the chemical NO donor S-nitroso-N-acetyl-penicillamine (SNAP) immediately after UVB completely abrogated the rise in apoptosis induced by l-NAME. An adenoviral vector expressing human inducible NOS (AdiNOS) also reduced keratinocyte death after UVB. Caspase-3 activity, an indicator of apoptosis, doubled in keratinocytes incubated with l-NAME compared with the inactive isomer, d-NAME, and was reduced by SNAP. Apoptosis was also increased on addition of 1,H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylate cyclase. Mice null for endothelial NOS (eNOS) exhibited significantly higher apoptosis than wild-type mice both in the dermis and epidermis, whereas mice null for inducible NOS (iNOS) exhibited more apoptosis than wild-type mice only in the dermis. These results demonstrate an antiapoptotic role for NO in keratinocytes, mediated by cGMP, and indicate an antiapoptotic role for both eNOS and iNOS in skin damage induced by UVB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号