共查询到20条相似文献,搜索用时 0 毫秒
1.
Beppu M Ohishi K Kasahara M Kizaki K Inohana Y Kikugawa K 《Journal of biochemistry》2002,131(4):547-555
The involvement of intracellular protein phosphorylation in macrophages in the binding and uptake of oxidized low density lipoprotein (oxLDL) was investigated. The treatment of fibronectin-unstimulated and stimulated mouse thioglycolate-induced macrophages with inhibitors of myosin light chain kinase, protein kinase C and protein tyrosine kinase resulted in decreased macrophage binding of oxLDL, macrophage foam cell formation, and whole intracellular protein phosphorylation. The treatment of fibronectin-unstimulated and stimulated macrophages with inhibitors of protein serine/threonine and tyrosine phosphatases caused enhanced macrophage binding of oxLDL, macrophage foam cell formation, and whole intracellular protein phosphorylation. Fibronectin, which stimulates macrophage activity, enhanced macrophage intracellular protein phosphorylation. Myosin light chain phosphorylation may be involved in the fibronectin stimulation of macrophages. Treatment of fibronectin-unstimulated and stimulated macrophages with thiophosphate, which forms thiophosphate esters of intracellular proteins that are not so susceptible to protein phosphatases, enhanced macrophage binding of oxLDL. The above results indicate that intracellular protein phosphorylation maintains and enhances macrophage binding and the uptake of oxLDL. 相似文献
2.
3.
4.
Strategies to prevent the uptake of modified low density lipoproteins (LDLs) by immune cells, a major trigger of inflammation and atherogenesis, are challenged by complex interfacial factors governing LDL receptor-mediated uptake. We examine a new approach based on a family of "nanoblockers", which are designed to examine the role of size, charge presentation, and architecture on inhibition of highly oxidized LDL (hoxLDL) uptake in macrophages. The nanoblockers are macromolecules containing mucic acid, lauryl chloride, and poly(ethylene glycol) that self-assemble into 15-20 nm nanoparticles. We report that the micellar configuration of the macromolecules and the combined display of anionic (carboxylate) groups in the hydrophobic region of the nanoblockers caused the most effective inhibition in the uptake of hoxLDL by IC21 macrophages. The nanoblockers primarily targeted SR-A and CD36, the major scavenger receptors and modulated the "atherogenic" phenotype of cells in terms of the degree of cytokine secretion, accumulation of cholesterol, and "foam cell" formation. These studies highlight the promise of synthetically engineered nanoblockers against oxidized LDL uptake. 相似文献
5.
Kuniyasu A Hayashi S Nakayama H 《Biochemical and biophysical research communications》2002,294(2):319-323
Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine involved in controlling critical cellular activities including proliferation, differentiation, extracellular matrix production, and apoptosis. TGF-beta signals are mediated by a family of Smad proteins, of which Smad2 and Smad3 are downstream intracellular targets of serine/threonine kinase receptors of TGF-beta. Although Smad2 and Smad3 are crucial for TGF-beta signaling, little is known about the regulation of their expression. In this study, we investigated the expression of Smad2 and Smad3 in an in vivo animal model of lung fibrosis induced by bleomycin. We found that the expression of Smad3 was regulated in lungs during bleomycin-induced pulmonary fibrosis. The decline of Smad3 mRNA was evident at day three of post-bleomycin instillation and the expression of Smad3 continually decreased during the reparative phase of lung injury (days 8 and 12), whereas the expression of Smad2 showed little change after bleomycin administration. We further investigated whether the expression of Smad3 was regulated by TGF-beta in an in vitro lung fibroblast culture system. Our results show an immediate translocation of Smad3 protein from the cytoplasm to the nucleus and a delayed down-regulation of Smad3 mRNA by TGF-beta in lung fibroblasts. These studies provide direct evidence for a differential regulation of Smad3 expression that is distinct from that of Smad2 during bleomycin-induced pulmonary fibrosis and suggest a ligand-induced negative feedback loop that modulates cellular TGF-beta signaling. 相似文献
6.
Ye ZJ Go GW Singh R Liu W Keramati AR Mani A 《The Journal of biological chemistry》2012,287(2):1335-1344
Genetic variations in LRP6 gene are associated with high serum LDL cholesterol levels. We have previously shown that LDL clearance in peripheral B-lymphocytes of the LRP6(R611C) mutation carriers is significantly impaired. In this study we have examined the role of wild type LRP6 (LRP6(WT)) and LRP6(R611C) in LDL receptor (LDLR)-mediated LDL uptake. LDL binding and uptake were increased when LRP6(WT) was overexpressed and modestly reduced when it was knocked down in LDLR-deficient CHO (ldlA7) cells. These findings implicated LRP6 in LDLR-independent cellular LDL binding and uptake. However, LRP6 knockdown in wild type CHO cells resulted in a much greater decline in LDL binding and uptake compared with CHO-ldlA7 cells, suggesting impaired function of the LDLR. LDLR internalization was severely diminished when LRP6 was knocked down and was restored after LRP6 was reintroduced. Further analysis revealed that LRP6(WT) forms a complex with LDLR, clathrin, and ARH and undergoes a clathrin-mediated internalization after stimulation with LDL. LDLR and LRP6 internalizations as well as LDL uptake were all impaired in CHO-k1 cells expressing LRP6(R611C). These studies identify LRP6 as a critical modulator of receptor-mediated LDL endocytosis and introduce a mechanism by which variation in LRP6 may contribute to high serum LDL levels. 相似文献
7.
The low density lipoprotein receptor-related protein modulates levels of matrix metalloproteinase 9 (MMP-9) by mediating its cellular catabolism 总被引:7,自引:0,他引:7
Hahn-Dantona E Ruiz JF Bornstein P Strickland DK 《The Journal of biological chemistry》2001,276(18):15498-15503
Members of the matrix metalloproteinase (MMP) family of enzymes participate in matrix remodeling and share a number of structural and functional features. The activity of this family of proteinases is carefully regulated at the level of zymogen activation and by a family of specific inhibitors termed tissue inhibitors of metalloproteinases (TIMP). It is now becoming clear that levels of certain MMPs are modulated by their association with cellular receptors that mediate their rapid internalization and degradation. In the current investigation we report that the amount of MMP-9 in conditioned cell culture medium is significantly increased when mouse embryonic fibroblasts are grown in the presence of the 39-kDa receptor-associated protein (RAP), an antagonist of ligand binding to low density lipoprotein receptor-related protein (LRP). In vitro assays reveal that the MMP-9.TIMP-1 complex binds to LRP with high affinity and that the binding determinant for LRP appears to reside on MMP-9. Cell lines expressing LRP mediate the internalization of 125I-labeled MMP-9.TIMP-1 complexes, whereas cell lines genetically deficient in LRP show a diminished capacity to mediate the cellular catabolism of MMP-9.TIMP-1 complexes. The results demonstrate that LRP is a functional receptor for MMP-9 and suggest a major role for LRP in modulating remodeling of the extracellular matrix by regulating extracellular proteinase activity. 相似文献
8.
Non-enzymatic glycation of low density lipoprotein (LDL) has been suggested to be responsible for the increase in susceptibility to atherogenesis of diabetic individuals. Although the association of lipid glycation with this process has been investigated, the effect of specific lipid glycation products on LDL metabolism has not been addressed. This study reports that glucosylated phosphatidylethanolamine (Glc-PtdEtn), the major LDL lipid glycation product, promotes LDL uptake and cholesteryl ester (CE) and triacylglycerol (TG) accumulation by THP-1 macrophages. Incubation of THP-1 macrophages at a concentration of 100 micrograms/ml protein LDL specifically enriched (10 nmol/mg LDL protein) with synthetically prepared Glc-PtdEtn resulted in a significant increase in CE and TG accumulation when compared with LDL enriched in non-glucosylated PtdEtn. After a 24-h incubation with LDL containing Glc-PtdEtn, the macrophages contained 2-fold higher CE (10.11 +/- 1.54 micrograms/mg cell protein) and TG (285.32 +/- 4.38 micrograms/mg cell protein) compared with LDL specifically enriched in non-glucosylated PtdEtn (CE, 3.97 +/- 0.95, p < 0.01 and TG, 185.57 +/- 3.58 micrograms/mg cell protein, p < 0.01). The corresponding values obtained with LDL containing glycated protein and lipid were similar to those of LDL containing Glc-PtdEtn (CE, 11.9 +/- 1.35 and TG, 280.78 +/- 3.98 micrograms/mg cell protein). The accumulation of both neutral lipids was further significantly increased by incubating the macrophages with Glc-PtdEtn LDL exposed to copper oxidation. By utilizing the fluorescent probe, 1,1'-dioctadecyl-3,3,3', 3'-tetramethylindocarbocyanine perchlorate (DiI), a 1.6-fold increase was seen in Glc-PtdEtn + LDL uptake when compared with control LDL. Competition studies revealed that acetylated LDL is not a good competitor for DiI Glc-PtdEtn LDL (5-6% inhibition), whereas glycated LDL gave an 80% inhibition, and LDL + Glc-PtdEtn gave 93% inhibition of uptake by macrophages. These results indicate that glucosylation of PtdEtn in LDL accounts for the entire effect of LDL glycation on macrophage uptake and CE and TG accumulation and, therefore, the increased atherogenic potential of LDL in hyperglycemia. 相似文献
9.
Acrolein modification of apolipoprotein (apo) E in human very low density lipoprotein (VLDL) was suppressed by ascorbate. Acrolein-modified apoE in VLDL was not taken up by human hepatoma cell whereas unmodified apoE in the presence of ascorbate was taken up. These results suggest that ascorbate can play an important role in maintaining proper lipoprotein metabolism by the antioxidant effect. 相似文献
10.
CD36 is a type 2 scavenger receptor with multiple functions. CD36 binding to oxidized LDL triggers signaling cascades that are required for macrophage foam cell formation, but the mechanisms by which CD36 signals remain incompletely understood. Mass spectrometry analysis of anti-CD36 immuno-precipitates from macrophages identified the tetraspanin CD9 as a CD36 interacting protein. Western blot showed that CD9 was precipitated from mouse macrophages by anti-CD36 monoclonal antibody and CD36 was likewise precipitated by anti-CD9, confirming the mass spectrometry results. Macrophages from cd36 null mice were used to demonstrate specificity. Membrane associations of the two proteins on intact cells was analyzed by confocal immunofluorescence microscopy and by a novel cross linking assay that detects proteins in close proximity (<40 nm). Functional significance was determined by assessing lipid accumulation, foam cell formation and JNK activation in wt, cd9 null and cd36 null macrophages exposed to oxLDL. OxLDL uptake, lipid accumulation, foam cell formation, and JNK phosphorylation were partially impaired in cd9 null macrophages. The present study demonstrates that CD9 associates with CD36 on the macrophage surface and may participate in macrophage signaling in response to oxidized LDL. 相似文献
11.
Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in low density lipoprotein receptor-deficient mice 总被引:4,自引:0,他引:4
Babaev VR Patel MB Semenkovich CF Fazio S Linton MF 《The Journal of biological chemistry》2000,275(34):26293-26299
The role of macrophage lipoprotein lipase (LPL) expression in atherosclerotic lesion formation was examined in low density lipoprotein receptor (LDLR(-/-)) mice using dietary conditions designed to induce either fatty streak lesions or complex atherosclerotic lesions. First, LDLR(-/-) mice chimeric for macrophage LPL expression were created by transplantation of lethally irradiated female LDLR(-/-) mice with LPL(-/-) (n = 12) or LPL(+/+) (n = 14) fetal liver cells as a source of hematopoietic cells. To induce fatty streak lesions, these mice were fed a Western diet for 8 weeks, resulting in severe hypercholesterolemia. There were no differences in plasma post-heparin LPL activity, serum lipid levels, or lipoprotein distribution between these two groups. The mean lesion area in the proximal aorta in LPL(-/-) --> LDLR(-/-) mice was significantly reduced by 33% compared with LPL(+/+) --> LDLR(-/-) mice, and a similar reduction (38%) in lesion area was found by en face analysis of the aortae. To induce complex atherosclerotic lesions, female LDLR(-/-) mice were lethally irradiated, transplanted with LPL(-/-) (n = 14), LPL(+/-) (n = 13), or LPL(+/+) (n = 14) fetal liver cells, and fed the Western diet for 19 weeks. Serum cholesterol and triglyceride levels did not differ between the three groups. After 19 weeks of diet, the lesions in the proximal aorta were complex with relatively few macrophages expressing LPL protein and mRNA in LPL(+/+) --> LDLR(-/-) mice. Analysis of cross-sections of the proximal aorta demonstrated no differences in the extent of lesion area between the groups, whereas en face analysis of the aortae revealed a dose-dependent effect of macrophage LPL on mean aortic lesion area in LPL(-/-) --> LDLR(-/-), LPL(-/+) --> LDLR(-/-), and LPL(+/+) --> LDLR(-/-) mice (1.8 +/- 0. 2%, 3.5 +/- 0.5% and 5.9 +/- 0.8%, respectively). Taken together, these data indicate that macrophage LPL expression in the artery wall promotes atherogenesis during foam cell lesion formation, but this impact may be limited to macrophage-rich lesions. 相似文献
12.
Human serum paraoxonase (PON 1) is inactivated by oxidized low density lipoprotein and preserved by antioxidants 总被引:25,自引:0,他引:25
Aviram M Rosenblat M Billecke S Erogul J Sorenson R Bisgaier CL Newton RS La Du B 《Free radical biology & medicine》1999,26(7-8):892-904
Human serum paraoxonase (PON1) can protect low density lipoprotein (LDL) from oxidation induced by either copper ion or by the free radical generator azo bis amidinopropane hydrochloride (AAPH). During LDL oxidation in both of these systems, a time-dependent inactivation of PON arylesterase activity was observed. Oxidized LDL (Ox-LDL) produced by lipoprotein incubation with either copper ion or with AAPH, indeed inactivated PON arylesterase activity by up to 47% or 58%, respectively. Three possible mechanisms for PON inactivation during LDL oxidation were considered and investigated: copper ion binding to PON, free radical attack on PON, and/or the effect of lipoprotein-associated peroxides on the enzyme. As both residual copper ion and AAPH are present in the Ox-LDL preparations and could independently inactivate the enzyme, the effect of minimally oxidized (Ox-LDL produced by LDL storage in the air) on PON activity was also examined. Oxidized LDL, as well as oxidized palmitoyl arachidonoyl phosphatidylcholine (PAPC), lysophosphatidylcholine (LPC, which is produced during LDL oxidation by phospholipase A2-like activity), and oxidized cholesteryl arachidonate (Ox-CA), were all potent inactivators of PON arylesterase activity (PON activity was inhibited by 35%-61%). PON treatment with Ox-LDL (but not with native LDL), or with oxidized lipids, inhibited its arylesterase activity and also reduced the ability of the enzyme to protect LDL against oxidation. PON Arylesterase activity however was not inhibited when PON was pretreated with the sulfhydryl blocking agent, p-hydroxymercurybenzoate (PHMB). Similarly, on using recombinant PON in which the enzyme's only free sulfhydryl group at the position of cysteine-284 was mutated, no inactivation of the enzyme arylesterase activity by Ox-LDL could be shown. These results suggest that Ox-LDL inactivation of PON involves the interaction of oxidized lipids in Ox-LDL with the PON's free sulfhydryl group. Antioxidants such as the flavonoids glabridin or quercetin, when present during LDL oxidation in the presence of PON, reduced the amount of lipoprotein-associated lipid peroxides and preserved PON activities, including its ability to hydrolyze Ox-LDL cholesteryl linoleate hydroperoxides. We conclude that PON's ability to protect LDL against oxidation is accompanied by inactivation of the enzyme. PON inactivation results from an interaction between the enzyme free sulfhydryl group and oxidized lipids such as oxidized phospholipids, oxidized cholesteryl ester or lysophosphatidylcholine, which are formed during LDL oxidation. The action of antioxidants and PON on LDL during its oxidation can be of special benefit against atherosclerosis since these agents reduce the accumulation of Ox-LDL by a dual effect: i.e. prevention of its formation, and removal of Ox-LDL associated oxidized lipids which are generated during LDL oxidation. 相似文献
13.
Asahina M Mashimo T Takeyama M Tozawa R Hashimoto T Takizawa A Ueda M Aoto T Kuramoto T Serikawa T 《Biochemical and biophysical research communications》2012,418(3):553-558
To establish low density lipoprotein receptor (LDLR) mutant rats as a hypercholesterolemia and atherosclerosis model, we screened the rat LDLR gene for mutations using an N-ethyl-N-nitrosourea mutagenesis archive of rat gene data, and identified five mutations in its introns and one missense mutation (478T>A) in exon 4. The C160S mutation was located in the ligand binding domain of LDLR and was revealed to be equivalent to mutations (C160Y/G) identified in human familial hypercholesterolemia (FH) patients. The wild type, heterozygous, and homozygous mutant rats were fed a normal chow diet or a high fat high cholesterol (HFHC) diet from the age of 10 weeks for 16 weeks. The LDLR homozygous mutants fed the normal chow diet showed higher levels of plasma total cholesterol and LDL cholesterol than the wild type rats. When fed the HFHC diet, the homozygous mutant rats exhibited severe hyperlipidemia and significant lipid deposition from the aortic arch to the abdominal aorta as well as in the aortic valves. Furthermore, the female homozygous mutants also developed xanthomatosis in their paws. In conclusion, we suggest that LDLR mutant rats are a useful novel animal model of hypercholesterolemia and atherosclerosis. 相似文献
14.
Kasey C. Vickers Colin T. Maguire Robert Wolfert Alan R. Burns Michael Reardon Richard Geis Paul Holvoet Joel D. Morrisett 《Journal of lipid research》2009,50(9):1735-1743
Plasma levels of lipoprotein-associated phospholipase A2 (Lp-PLA2) and oxidized low density lipoprotein (oxLDL) have been identified as risk factors for cardiovascular disease. Lp-PLA2 is the sole enzyme responsible for the hydrolysis of oxidized phospholipids on LDL particles in atherosclerotic plaques. We have studied the relationship between Lp-PLA2 and oxLDL in carotid endarterectomy (CEA) tissues and in matched plasmas. In extracts from CEA anatomical segments, the levels of oxLDL were significantly associated with the levels of Lp-PLA2 protein (r = 0.497) and activity (r = 0.615). OxLDL and Lp-PLA2 mass/activity were most abundant in the carotid bifurcation and internal segments where plaque was most abundant. In extracts from CEA atheroma, the levels of oxLDL and Lp-PLA2 were significantly correlated (r = 0.634). In matched plasma and atheroma extracts, the levels of Lp-PLA2 were negatively correlated (r = − 0.578). The ratio of Lp-PLA2 to oxLDL was higher in atheromatous tissue (277:1) than in normal tissue (135:1) and plasma (13:1). Immunohistochemical experiments indicated that in plaques, oxLDL and Lp-PLA2 existed in overlapping but distinctly different distribution. Fluorescence microscopy showed both oxLDL and Lp-PLA2 epitopes on the same LDL particle in plasma but not in plaque. These results suggest that the relationship between Lp-PLA2 and oxLDL in the atherosclerotic plaque is different from that in the plasma compartment. 相似文献
15.
Soluble lectin-like oxidized low density lipoprotein receptor-1 in type 2 diabetes mellitus 总被引:1,自引:0,他引:1
The lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) can be proteolytically cleaved and released as soluble forms (sLOX-1). We have determined serums LOX-1 in type 2 diabetes and evaluated the effect of glucose and advanced glycation end products (AGEs) on sLOX-1 in vitro and in vivo. Endothelial cells were incubated with glucose or AGEs, and sLOX-1 in cell medium was measured. Serum sLOX-1 was measured in 219 diabetic patients and 187 controls by ELISA. The effect of lowering glucose and AGEs on sLOX-1 was determined in 38 poorly controlled diabetic patients after improvement in glycemic control. Incubation of endothelial cells with AGE-BSA led to a dose-dependent increase in sLOX-1, whereas the effect of glucose on sLOX-1 was less marked. Serum sLOX-1 was 9% higher in diabetic patients compared with controls (P<0.01). In the poorly controlled patients, serum sLOX-1 decreased by 12.5% after improvement in glycemic control (P<0.05). The magnitude of reduction in sLOX-1 correlated with the improvement in hemoglobin A1c and AGEs but not with the reduction in oxidized LDL. sLOX-1 level is increased in type 2 diabetes. Both glucose and AGEs are important determinants of LOX-1 expression, and lowering glucose and AGEs leads to a reduction in sLOX-1. 相似文献
16.
Lupo G Anfuso CD Ragusa N Strosznajder RP Walski M Alberghina M 《Biochimica et biophysica acta》2001,1531(1-2):143-155
Free radicals induced by organic peroxides or oxidized low density lipoprotein (oxLDL) play a critical role in the development of atherosclerosis. In investigating this process, and the concomitant inflammatory response, the role of pericytes, cells supporting the endothelial ones in blood vessels, has received little attention. In this study we tested the hypothesis that tert-butyl hydroperoxide (t-BuOOH) and oxLDL, administered in sublethal doses to the culture medium of retinal pericytes, function as prooxidant signals to increase the stimulation of the peroxidation process induced by lipopolysaccharide (LPS). Confluent cell monolayers were exposed to t-BuOOH (25-400 microM), native LDL or oxLDL (3.4-340 nmol hydroperoxides/mg protein, 1-100 micro). LPS (1 microg/ml), t-BuOOH (200 microM), and oxLDL (100 microM), but not native LDL, incubated for 24 h with cells, markedly increased lipid peroxidation, cytosolic phospholipase A2 (cPLA2) activity and arachidonic acid (AA) release in a time- and dose-dependent manner. AACOCF(3), a potent cPLA2 inhibitor, and the antioxidant alpha-tocopherol strongly inhibited the prooxidant-stimulated AA release. Long-term exposure to maximal concentrations of t-BuOOH (400 microM) or oxLDL (100 microM) had a sharp cytotoxic effect on the cells, described by morphological and biochemical indices. The presence of t-BuOOH or oxLDL at the same time, synergistically increased phospholipid hydrolysis induced by LPS alone. 400 microM t-BuOOH or 100 microM oxLDL had no significant effect on the stimulation of an apoptosis process estimated by DNA laddering and light and electron microscopy. The results indicate that (i) pericytes may be the target of extensive oxidative damage; (ii) activation of cPLA2 mediates AA liberation; (iii) as long-term regulatory signals, organic peroxide and specific constituents of oxLDL increase the pericyte ability to degrade membrane phospholipids mediated by LPS which was used, in the present study, to simulate in vitro an inflammatory burst in the retinal capillaries. 相似文献
17.
Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: steps 2 and 3 总被引:12,自引:0,他引:12
Navab M Hama SY Anantharamaiah GM Hassan K Hough GP Watson AD Reddy ST Sevanian A Fonarow GC Fogelman AM 《Journal of lipid research》2000,41(9):1495-1508
Treatment of human artery wall cells with apolipoprotein A-I (apoA-I), but not apoA-II, with an apoA-I peptide mimetic, or with high density lipoprotein (HDL), or paraoxonase, rendered the cells unable to oxidize low density lipoprotein (LDL). Human aortic wall cells were found to contain 12-lipoxygenase (12-LO) protein. Transfection of the cells with antisense to 12-LO (but not sense) eliminated the 12-LO protein and prevented LDL-induced monocyte chemotactic activity. Addition of 13(S)-hydroperoxyoctadecadienoic acid [13(S)-HPODE] and 15(S)-hydroperoxyeicosatetraenoic acid [15(S)-HPETE] dramatically enhanced the nonenzymatic oxidation of both 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (PAPC) and cholesteryl linoleate. On a molar basis 13(S)-HPODE and 15(S)-HPETE were approximately two orders of magnitude greater in potency than hydrogen peroxide in causing the formation of biologically active oxidized phospholipids (m/z 594, 610, and 828) from PAPC. Purified paraoxonase inhibited the biologic activity of these oxidized phospholipids. HDL from 10 of 10 normolipidemic patients with coronary artery disease, who were neither diabetic nor receiving hypolipidemic medications, failed to inhibit LDL oxidation by artery wall cells and failed to inhibit the biologic activity of oxidized PAPC, whereas HDL from 10 of 10 age- and sex-matched control subjects did.We conclude that a) mildly oxidized LDL is formed in three steps, one of which involves 12-LO and each of which can be inhibited by normal HDL, and b) HDL from at least some coronary artery disease patients with normal blood lipid levels is defective both in its ability to prevent LDL oxidation by artery wall cells and in its ability to inhibit the biologic activity of oxidized PAPC. 相似文献
18.
Hamid Massaeli Cecilia Hurtado J. Alejandro Austria Grant N. Pierce 《Free radical research》2013,47(1):9-16
Vascular smooth muscle cells respond with an increase in intracellular Ca2+ within seconds after exposure to oxidized low density lipoprotein (oxLDL). This has been suggested to represent a signaling response that may have implications for gene expression. If so, oxLDL may induce increases in nuclear Ca2+ in smooth muscle cells in response to oxLDL. Aortic smooth muscle cells were exposed to 100 μg/ml oxLDL. Large, rapid increases in [Ca2+]i were observed using fluo-3 as an indicator dye to detect intracellular Ca2+ on the stage of a confocal micro-scope. This was also confirmed using ratiometric imaging of indo signals. These elevations appeared to be localized to the nuclear region of the cell. DNA staining of the cells confirmed its localization to the nuclear / perinuclear region of the cell. Our data demonstrate that oxLDL induces a nuclear localized elevation in Ca2+i that may have important implications for nuclear function. 相似文献
19.
Effects of oxidized low density lipoprotein on nitric oxide synthetase and protein kinase C activities in bovine endothelial cells. 总被引:9,自引:0,他引:9
S Mukherjee S D Coaxum M Maleque S K Das 《Cellular and molecular biology, including cyto-enzymology》2001,47(6):1051-1058
Oxidized low-density lipoprotein (Ox-LDL) is an atherogenic lipoprotein. It has been suggested that Ox-LDL causes endothelial dysfunction by decreasing the release of endothelium-derived factors (EDRF-NO) or increasing the inactivation of EDRF-NO. The mechanism by which Ox-LDL causes dysfunctional NO during early stages of atherosclerosis is not clear. The purpose of this study was to examine the role of Ox-LDL on nitric oxide synthetase (eNOS), protein kinase C (PKC) activities and cAMP production in bovine aortic endothelial cells (BAEC). Ox-LDL stimulated PKC activity of BAEC but it inhibited both eNOS activity and cAMP production. Ox-LDL partially inhibited the forskolin stimulated cAMP production. Furthermore, we observed that 8Br-cAMP treatment decreased the activity of eNOS in a concentration dependent manner. Serotonin which has a profound inhibitory effect on cAMP production also stimulated eNOS activity. Pertusis toxin treatment blocked the stimulatory action of serotonin on the stimulation of eNOS activity. Our results thus suggest that Ox-LDL inhibit the endothelium-dependent relaxation. One possible mechanism is that Ox-LDL stimulates PKC activity, which in turn increases the phosphorylation of the Gi-protein. Inhibition of Gi-protein then leads to reduced release of NO from endothelial cells and thus causes endothelial dysfunction. 相似文献
20.
High density lipoprotein prevents oxidized low density lipoprotein-induced inhibition of endothelial nitric-oxide synthase localization and activation in caveolae 总被引:15,自引:0,他引:15
Uittenbogaard A Shaul PW Yuhanna IS Blair A Smart EJ 《The Journal of biological chemistry》2000,275(15):11278-11283
Oxidized LDL (oxLDL) depletes caveolae of cholesterol, resulting in the displacement of endothelial nitric-oxide synthase (eNOS) from caveolae and impaired eNOS activation. In the present study, we determined if the class B scavenger receptors, CD36 and SR-BI, are involved in regulating nitric-oxide synthase localization and function. We demonstrate that CD36 and SR-BI are expressed in endothelial cells, co-fractionate with caveolae, and co-immunoprecipitate with caveolin-1. Co-incubation of cells with 10 microgram/ml high density lipoprotein (HDL) prevented oxLDL-induced translocation of eNOS from caveolae and restored acetylcholine-induced nitric-oxide synthase stimulation. Acetylcholine caused eNOS activation in cells incubated with 10 microgram/ml oxLDL (10-15 thiobarbituric acid-reactive substances) and blocking antibodies to CD36, whereas cells treated with only oxLDL were unresponsive. Furthermore, CD36-blocking antibodies prevented oxLDL-induced redistribution of eNOS. SR-BI-blocking antibodies were used to demonstrate that the effects of HDL are mediate by SR-BI. HDL binding to SR-BI maintained the concentration of caveola-associated cholesterol by promoting the uptake of cholesterol esters, thereby preventing oxLDL-induced depletion of caveola cholesterol. We conclude that CD36 mediates the effects of oxLDL on caveola composition and eNOS activation. Furthermore, HDL prevents oxLDL from decreasing the capacity for eNOS activation by preserving the cholesterol concentration in caveolae and, thereby maintaining the subcellular location of eNOS. 相似文献