首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SD大鼠和Beagle犬大唾液腺的形态学观察   总被引:1,自引:0,他引:1  
潘玉英  白文霞  苏宁 《四川动物》2005,24(4):620-622,F0004
目的-研究及观察SD大鼠和Beagle犬大唾液腺正常比较组织学.方法-SD大鼠和Beagle犬三对大唾液腺剖取后进行石蜡切片、HE染色和PAS染色,光学显微镜观察.结果-SD大鼠腮腺是纯浆液腺,Beagle犬腮腺属混合腺,以浆液性腺泡为主,偶见小的粘液细胞群.SD大鼠的下颌下腺属于以浆液腺泡为主的混合腺,Beagle犬的下颌下腺属于以粘液腺泡为主的混合腺.SD大鼠与Beagle犬的舌下腺均为粘液性腺泡为主的混合腺.Beagle犬的眶腺亦是以纯粘液性腺泡为主的混合腺结构.  相似文献   

2.
In untreated, fasting animals the cells of the serous demilunes of the sublingual gland incorporate [3H]-leucine at a higher rate than any other of the 5 main cell types of the 3 major salivary glands. The acinar cells of the submandibular and the mucous cells of the sublingual gland show intermediate values, while the cells of the granular ducts of the submandibular and the acini of the parotid gland have a low rate of incorporation. In fasting animals extrusion of newly synthesized protein starts early in the cells of the serous demilunes. It starts between 4 and 7 hrs after [3H]-leucine injection in the acinar cells of the submandibular gland, while the other cell types did not lose substantial amounts of labelled (glyco)protein within 7 hrs. The secretion of protein is stimulated by the cholinergic drug pilocarpine in all but one of the 5 types of salivary gland cells studied. The acinar cells of the submandibular gland react strongly, the granular duct cells less strongly. Still less are the reactions of the acinar cells of the parotid and of the nucous cells of the sublingual gland. The cells of the serous demilunes of the latter appear to be insensible to pilocarpine. The effect of food uptake on secretion does not differ from pilocarpine stimulation, with one exception: the acinar cells of the parotid gland react more strongly on food uptake than on cholenergic stimulation.  相似文献   

3.
Embryonic development of the mouse salivary glands begins with epithelial thickening and continues with sequential changes from the pre-bud to terminal bud stages. After birth, morphogenesis proceeds, and the glands develop into a highly branched epithelial structure that terminates with saliva-producing acinar cells at the adult stage. Acinar cells derived from the epithelium are differentiated into serous, mucous, and seromucous types. During differentiation, cytokeratins, intermediate filaments found in most epithelial cells, play vital roles. Although the localization patterns and developmental roles of cytokeratins in different epithelial organs, including the mammary glands, circumvallate papilla, and sweat glands, have been well studied, their stage-specific localization and morphogenetic roles during salivary gland development have yet to be elucidated. Therefore, the aim of this study was to determine the stage and acinar cell type-specific localization pattern of cytokeratins 4, 5, 7, 8, 13, 14, 18, and 19 in the major salivary glands (submandibular, sublingual, and parotid glands) of the mouse at the E15.5, PN0, PN10, and adult stages. In addition, cell physiology, including cell proliferation, was examined during development via immunostaining for Ki67 to understand the cellular mechanisms that govern acinar cell differentiation during salivary gland morphogenesis. The distinct localization patterns of cytokeratins in conjunction with cell physiology will reveal the roles of epithelial cells in salivary gland formation during the differentiation of serous, mucous or seromucous salivary glands.  相似文献   

4.
Sialomucin Complex (SMC; Muc4) is a heterodimeric glycoprotein consisting of two subunits, the mucin component ASGP-1 and the transmembrane subunit ASGP-2. Northern blot and immunoblot analyses demonstrated the presence of SMC/Muc4 in submaxillary, sublingual and parotid salivary glands of the rat. Immunocytochemical staining of SMC using monoclonal antisera raised against ASGP-2 and glycosylated ASGP-1 on paraffin-embedded sections of parotid, submaxillary and sublingual tissues was performed to examine the localization of the mucin in the major rat salivary glands. Histological and immunocytochemical staining of cell markers showed that the salivary glands consisted of varying numbers of serous and mucous acini which are drained by ducts. Parotid glands were composed almost entirely of serous acini, sublingual glands were mainly mucous in composition and a mixture of serous and mucous acini were present in submaxillary glands. Since immunoreactive (ir)-SMC was specifically localized to the serous cells, staining was most abundant in parotid glands, intermediate levels in submaxillary glands and least in sublingual glands. Ir-SMC in sublingual glands was localized to caps of cells around mucous acini, known as serous demilunes, which are also present in submaxillary glands. Immunocytochemical staining of SMC in human parotid glands was localized to epithelial cells of serous acini and ducts. However, the staining pattern of epithelial cells was heterogeneous, with ir-SMC present in some acinar and ductal epithelial cells but not in others. This report provides a map of normal ir-SMC/Muc4 distribution in parotid, submaxillary and sublingual glands which can be used for the study of SMC/Muc4 expression in salivary gland tumors.  相似文献   

5.
Abstract. Mitotic and labelling indices were studied in the submandibular, parotid and oesophageal cells of male mice within the first 6 hr (but particularly within the 1st hr) of a single injection of isoproterenol or saline, using the metaphase arrest agent (vincristine) which was previously tested for efficacy in submandibular gland. There was a significant increase in the metaphase index of the salivary glands over control values 5, 15, 30, 45 and 60 min after isoproterenol. In contrast, there were no significant changes in the metaphase index of basal cells of the oesophagus. There was no significant change in the labelling index in isoproterenol-treated mice in comparison with saline-injected control animals. Possible explanations for the rapid mitotic response in murine salivary glands are considered; a rapid efflux from G2 into mitosis is thought to be the most likely.  相似文献   

6.
以透射电镜观察和组织化学方法研究了45日龄皱纹盘鲍的唾液腺和消化腺。唾液腺由粘液细胞和纤毛细胞组成,粘液细胞含发达的粗面内质网和大量的粘原颗粒,分泌中性和酸性混合粘多糖。消化腺由消化细胞和嗜碱性细胞组成,消化细胞呈现活跃的内吞和细胞内消化,并具蛋白酶和非特异性酯酶活性。嗜碱性细胞含发达的粗面内质网和大量含铁的折光小体,折光小体的电子密度较低。  相似文献   

7.
Some members of aquaporin family (AQP) plays crucial functions in salivary synthesis and secretion. These proteins expression has already been reported during salivary gland formation, however no previous studies in human developing glands have been performed. We evaluated AQP1, 3 and 5 expression through the stages of human salivary gland morphogenesis and discuss the possible role of AQP for glandular maturation. Human salivary glands derived from foetuses aged between 14 and 25 weeks were submitted to immunohistochemistry. At the bud stage, membrane expression of AQP1, 3 and 5 were observed within the epithelial bud cells presenting a similar apicolateral pattern, also found at the pseudoglandular stage, present within the terminal portions of future acini, while AQP5 was also particularly strong at the apical membrane of pre-acinar and pre-ductal cells. AQP5 was co-localised with Cytokeratin 7. Similar AQP1, 3 and 5 expression were observed at the following canalicular stage, where distinct and strongly luminal and acinar AQP5 expression is present. During the final terminal bud stage, AQP1 was only identified in serous acini, myoepithelial and endothelial cells, while differentiated mucous acinar cells and ducts were negative. AQP3 was detected at apicolateral membranes of both mucous and serous acini. AQP5 also showed a diffuse expression in mucous and serous acini, in addition to strong apical membrane expression within lumen of intercalated ductal cells. This topographic analysis of AQP1, 3 and 5 revealed differences in the expression pattern throughout salivary gland developmental stages, suggesting different roles for each protein in human glandular maturation.  相似文献   

8.
By means of the indirect immunoperoxidase method in deparaffinized slices a comparative investigation on distribution of the female milk lactoferrin (LF) in tissues of the mature person and in the fetus has been performed. LF is revealed in cells of the neutrophil line of the mature person and of the fetus and in the secretory epithelium of some organs of the mature person (in the mammary, submandibular and parotid salivary glands, in the bronchial mucous membrane glands in the fundal and pyloric glands of the stomach). In all the cases investigated LF is revealed in the cells producing serous secrete: in the cells of the serous terminal parts and in the serous semilunar mixed terminal parts of the salivary glands, in the serous cells of the bronchial glands and in the chief cells of the gastric mucous membrane glands. In the fetal secretory epithelium of the organs LF is not found. As LF is revealed in the secretory epithelium of the mature person and is not revealed in the corresponding epithelium of the fetus, it should be considered as a marker of the cells, that reach certain degree of differentiation.  相似文献   

9.
We have studied the transduction of TAT-HA-beta-galactosidase fusion protein into two cell lines of rat salivary gland origin, A5 and C6-21, into cells of fetal mouse submandibular glands in organ culture, and into rat submandibular gland after retrograde duct injection, using a histochemical method to demonstrate beta-galactosidase activity. Transduction of the fusion protein into A5 and C6-21 cells was concentration- and time-dependent. Therefore, the intensity of the beta-galactosidase staining, which was cytoplasmic, was less after 1 hr of exposure compared to exposures up to 24 hr. However, the fusion protein was transduced into 100% of both types of cultured cells. When explants of mouse fetuses at 13 days of gestation were exposed to the fusion proteins, both epithelial and mesenchymal cells were stained for the enzyme, with a conspicuous accumulation of the reaction product at perinuclear cytoplasmic regions. The histochemical staining of the mesenchymal cells was more intense compared to that seen in epithelial cells. TAT-HA-beta-galactosidase fusion protein was also delivered to rat submandibular glands by retrograde duct injection. Histochemical staining for beta-galactosidase activity of cryostat sections prepared from the injected glands revealed that the transduction of the fusion protein was also time- and dose-dependent. In the glands of rats sacrificed from 10 min to 1 hr after the retrograde injection, essentially all acinar and duct cells showed cytoplasmic staining. The intensity of the staining then declined, and was not seen in the glands of rats killed 24 hr after the injection of the fusion proteins. These results indicate that a full-length, active TAT fusion protein can be targeted to salivary gland cells both in vitro and in vivo to analyze physiological, developmental, and pathophysiological processes.  相似文献   

10.
We cloned a rat gene that is expressed primarily in the sublingual gland and named the predicted 503 amino-acid protein SLAMP (sublingual acinar membrane protein). SLAMP has 63% homology with human ERGIC-53-like protein, a member of the family of animal L-type lectins. Using a cDNA probe for SLAMP mRNA and rabbit antisera against SLAMP, we examined the expression and localization of SLAMP in major rat organs and tissues. With both Northern and Western blot analyses, abundant expression of SLAMP was demonstrated predominantly in the sublingual gland, with single sizes of the mRNA and protein 1.8 kb and 50 kDa, respectively, but not in other organs or tissues, including the parotid and submandibular glands. With immunohistochemistry, SLAMP was localized to the mucous acinar cells, but not to the serous demilunes or the duct system. With immunoelectron microscopy, SLAMP was localized predominantly to regions corresponding to the ER-Golgi intermediate compartment. Besides the sublingual gland, SLAMP immunoreactivity was also demonstrated in mucous cells of the minor salivary glands in oral cavity and of Brunner's glands in the duodenum. These results suggested that rat SLAMP plays a specific role in the early secretory pathway of glycoproteins in specific types of mucous cells.  相似文献   

11.
Submandibular and major sublingual salivary glands of the opossum contain histochemically demonstrable neutral mucosubstances, nonsulfated acid musosubstances and sulfomucins. Sialomucins could not be demonstrated conclusively with the methods used in this study. Special serous cells of the opossum submandibular gland contained low concentrations of acidic mucosubstances but no appreciable concentration of neutral mucosubstances was seen. Sulfomucins were not observed in special serous cells. The mucous tubules of the submandibular gland contained high concentrations of neutral mucosubstances. No appreciable acidic mucosubstance was demonstrated in the submandibular gland mucous tubules. Unlike the mucous tubules of the submandibular gland, the major sublingual gland mucous tubules contained high concentrations of both neutral and acidic mucosubstances. The mucous tubules often contained sulfomucin-positive cells interspersed among cells that contained high concentrations of non-sulfated acidic mucosubstance. Marked staining of sulfated acidic mucosubstance was seen only in the major sublingual gland, in both the mucous tubules and in the seromucous demilunes. The seromucous demilunes contained both sulfated and non-sulfated acidic mucosubstances.  相似文献   

12.
35S- and 3H-labeled S-2-(3-methylaminopropylamino)ethylphosphorothioic acid (WR-3689) have been synthesized in our laboratory and used to study organ and cellular level distribution in C3H/Km mice bearing RIF-1 tumors. Tissue biodistributions obtained with 35S-WR-3689 showed that blood levels peak at 15 min postinjection and decline gradually over 60 min. At 30 min after drug injection the highest uptake is in kidney and submandibular salivary gland, with lowest levels in brain and moderate to low levels in the RIF-1 tumor, comparable to levels in skin and muscle. High resolution diffusible substance autoradiography with 3H-WR-3689 reveals a homogenous distribution of label over cells in liver and lung and nonuniform distribution of silver grains over the cytoplasm of cells in the kidney cortex, parotid and submandibular salivary glands, and small intestine. There are no indications of preferential nuclear location of label from protective drug in any tissue. Correlations of biodistribution and autoradiography data with measures of radioprotection in different tissues will be useful in interpreting mechanisms of radioprotection with this phosphorothioate.  相似文献   

13.
The human salivary mucins MG1 and MG2 are well characterized biochemically and functionally. However, there is disagreement regarding their cellular and glandular sources. The aim of this study was to define the localization and distribution of these two mucins in human salivary glands using a postembedding immunogold labeling method. Normal salivary glands obtained at surgery were fixed in 3% paraformaldehyde-0.1% glutaraldehyde and embedded in Lowicryl K4M or LR Gold resin. Thin sections were labeled with rabbit antibodies to MG1 or to an N-terminal synthetic peptide of MG2, followed by gold-labeled goat anti-rabbit IgG. The granules of all mucous cells of the submandibular and sublingual glands were intensely reactive with anti-MG1. No reaction was detected in serous cells. With anti-MG2, the granules of both mucous and serous cells showed reactivity. The labeling was variable in both cell types, with mucous cells exhibiting a stronger reaction in some glands and serous cells in others. In serous granules, the electron-lucent regions were more reactive than the dense cores. Intercalated duct cells near the acini displayed both MG1 and MG2 reactivity in their apical granules. In addition, the basal and lateral membranes of intercalated duct cells were labeled with anti-MG2. These results confirm those of earlier studies on MG1 localization in mucous cells and suggest that MG2 is produced by both mucous and serous cells. They also indicate differences in protein expression patterns among salivary serous cells.  相似文献   

14.
The three major salivary glands of the monotreme echidna are described. The parotid is a typical serous gland with tubulo-acinar secretory endpieces and a well-developed system of striated ducts. The mandibular gland, although light microscopically resembling a mucous gland, secretes very little glycoprotein. Its cells are packed instead with serous granules, resembling in fine structure the “bull's eye” granules in the mandibular gland of the European hedgehog Erinaceus europaeus. The sublingual glands secrete an extremely viscous mucous saliva. Expulsion of this saliva through the narrow ducts is probably aided by contraction of the extensive myoepithelial sheaths surrounding the secretory tubules. Application of the glyoxylic acid induced fluorescence method failed to demonstrate adrenergic innervation in any of the glands.  相似文献   

15.
Summary Light-microscopic autoradiography was used to localize the cellular sites for neutral amino acid uptake in submandibular and sublingual salivary gland epithelia. The vasculature of isolated glands was perfused for 3–5 min with either L-(3-3H)serine or L-(4-3H)phenylalanine and then fixed by perfusion with buffered glutaraldehyde. In the submandibular gland the small neutral amino acid L-serine and the aromatic amino acid L-phenylalanine were localized to central acinar cells, demilunar cells and ductal cells. In the sublingual gland silver grains associated with each of these tritiated amino acids were localized to central acinar and ductal cells. Perfusion of both submandibular and sublingual glands with unlabelled L-serine (25 mM) or L-phenylalanine (30 mM) resulted in a significant decrease in the silver grain density associated with each labelled amino acid. The absence of silver grains in the lumina of acinar and ductal cells and the presence of tight junctions near the apical surface of the epithelium strongly suggest that the initial uptake of these amino acids was mediated by basolateral plasma membrane carriers.  相似文献   

16.
This study reports a detailed anatomical and histological study of the digestive system of Octopus vulgaris. Emphasis was placed on characterising the glands and glandular cells and their distribution throughout the digestive tract. The use of classic histological and histochemical techniques revealed two morphological types of glandular cells: granular and mucous. Moreover, the histochemical analysis indicated specialisation of mucous glandular cells in the buccal mass, the submandibular gland and the caecum for secreting acid and neutral glycoconjugates. The cells of the anterior salivary glands are specialised for secreting neutral glycoproteins, and those of the posterior salivary glands are specialised for granular and mucous secretion. The oesophagus, crop and stomach lack glandular cells, but both granular and mucous glandular cells are found in the intestine. An unusual structure resembling the typhlosole of bivalves is described for the first time in the intestine of O. vulgaris. The highly ciliated epithelium and location of the structure in the anterior part of the intestine suggest a possible role in bypassing the caecum, stomach and intestine. We discuss how these cells and organs contribute to the process of digestion in the light of the present histological and histochemical data and of previously published information on the morphology and physiology of digestion in the octopus.  相似文献   

17.
18.
Summary The prosomal glands of Tetranychus urticae (Acari, Tetranychidae) were examined light and electron microscopically. Five paired and one unpaired gland are found both in females and males. The silk spinning apparatus consists of paired silk glands which extend laterally on both sides of the esophagus into the pedipalps. There, they enter the terminal silk gland bag which opens into a silk bristle at the apex of the pedipalps. The salivary secretions are formed in three paired glands which have an interconnecting duct, the podocephalic canal. The dorsal podocephalic glands may produce a serous secretion, the anterior podocephalic glands a mucous secretion, and the coxal organ may add a liquid, ion-rich secretion. These secretions pass the podocephalic canal and reach the mouth at the apex of the gnathosome. The function of the paired tracheal organs and the unpaired tracheal gland is still unclear. The tracheal gland may produce a secretion which facilitates the movement of the fused chelicerae and the stylets.This study was financed by a grant from the Deutsche Forschungsgemeinschaft (DFG Se 162/12)  相似文献   

19.
Histology and mucosubstance histochemistry of ferret lingual glands.   总被引:1,自引:0,他引:1  
S Poddar  S Jacob 《Acta anatomica》1979,105(1):65-74
The histology and mucosubstance histochemistry of the ferret lingual glands were studied. Both serous and mucous minor salivary glands were present in the posterior part of the tongue. In serous glands, acinar cells and a very few cells of the excretory ducts contained granules which gave reactions for neutral mucopolysaccharides only. The mucous glands, including the duct system, contained mainly weakly sulphated acidic mucin, some neutral mucin but no carboxylated mucin. Occasional goblet cells were present in the excretory ducts of both serous and mucous glands. They contained weakly sulphated mucin.  相似文献   

20.
By SEM we have investigated the human minor salivary glands using the NaOH method for the visualization of endpieces and myoepithelial cells, and the osmium maceration technique that reveals membranous intracellular structures. With the former method all minor glands, including the posterior deep (Ebner's) lingual glands, consist of tubules sometimes dilated into alveoli, while true acini of the kind observed in human major salivary glands, are absent. Tubules of the posterior deep lingual gland exhibit stellate myoepitelial cells that leave a substantial part of the secretory cells uncovered. The latter cells, at variance with serous cells of major glands, do not show basal folds. In contrast, tubules of the other minor glands, like the mucous ones of major glands, are covered almost completely by band-like myoepithelial cells. The osmium maceration method clearly demonstrates that posterior deep lingual glands are serous in character and that all the other minor glands, together with the predominant mucous cells, possess a variable number of seromucous cells that, despite variations among individuals, increase in order from palatine and posterior superficial lingual (Weber's), to minor sublingual, labial, anterior lingual (Blandin and Nuhn's), and buccal glands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号