首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable carbon isotope composition (δ13C) of dry matter has been widely investigated as a selection tool in cereal breeding programmes. However, reports on the possibilities of using stable oxygen isotope composition (δ18O) as a yield predictor are very scarce and only in the absence of water stress. Indeed, it remains to be tested whether changes in phenology and stomatal conductance in response to water stress overrule the use of either δ13C or δ18O when water is limited. To answer this question, a set of 24 genotypes of bread wheat ( Triticum aestivum ) were assayed in two trials with different levels of deficit irrigation and a third trial under rainfed conditions in a Mediterranean climate (northwest Syria). Grain yield (GY) and phenology (duration from planting to anthesis and from anthesis to maturity) were recorded, and the δ13C and δ18O of grains were analysed to assess their suitability as GY predictors. Both δ13C and δ18O showed higher broad-sense heritabilities ( H 2) than GY. Genotype means of GY across trials were negatively correlated with δ13C, as previously reported, but not with δ18O. Both isotopes were correlated with grain filling duration, whereas δ18O was also strongly affected by crop duration from planting to anthesis. We concluded that δ18O of grains is not a proper physiological trait to breed for suboptimal water conditions, as its variability is almost entirely determined by crop phenology. In contrast, δ13C of grains, despite being also affected by phenology, still provides complementary information associated with GY.  相似文献   

2.
We investigated the extent to which plant water and nutrient status are affected by intraspecific competition intensity and microsite quality in a monodominant tussock grassland. Leaf gas exchange and stable isotope measurements were used to assess the water relations of Stipa tenacissima tussocks growing along a gradient of plant cover and soil depth in a semi-arid catchment of Southeast Spain. Stomatal conductance and photosynthetic rate decreased with increasing intensity of competition during the wet growing season, leading to foliar δ 18O and δ 13C enrichment. A high potential for runoff interception by upslope neighbours exerted strong detrimental effects on the water and phosphorus status of downslope S. tenacissima tussocks. Foliar δ 15N values became more enriched with increasing soil depth. Multiple stepwise regression showed that competition potential and/or rhizosphere soil depth accounted for large proportions of variance in foliar δ 13C, δ 18O and δ 15N among target tussocks (57, 37 and 64%, respectively). The results presented here highlight the key role that spatial redistribution of resources (water and nutrients) by runoff plays in semi-arid ecosystems. It is concluded that combined measurement of δ 13C, δ 18O and nutrient concentrations in bulk leaf tissue can provide insight into the intensity of competitive interactions occurring in natural plant communities.  相似文献   

3.
1. Although marine research has indicated that metabolic fractionations of 13C due to differences in organismal trophic position and proximal composition can complicate the isotopic interpretation of energy flow pathways, such potentially confounding problems have never been examined in freshwater benthic food webs.
2. The δ13C values of animals comprising a littoral benthic food web composited from four Canadian Shield lakes showed no relationship with either individual trophic position (δ15N) or lipid content (C/N ratios).
3. Differences in the relative incorporation of autochthonous and allochthonous energy sources by freshwater benthic organisms will alter their δ13C and δ15N values, thereby masking any possibility of observing 13C trophic enrichment.
4. Removal of the possibly confounding influences of lipids through either empirical correction or by analytical extraction may be unnecessary in studies of freshwater benthic food webs. Likewise, a priori adjustments in δ13C for freshwater benthic organisms in order to accommodate trophic fractionations which are presumed to occur, based on data from marine offshore food webs, may also be inappropriate.  相似文献   

4.
1. Although marine research has indicated that metabolic fractionations of 13C due to differences in organismal trophic position and proximal composition can complicate the isotopic interpretation of energy flow pathways, such potentially confounding problems have never been examined in freshwater benthic food webs.
2. The δ13C values of animals comprising a littoral benthic food web composited from four Canadian Shield lakes showed no relationship with either individual trophic position (δ15N) or lipid content (C/N ratios).
3. Differences in the relative incorporation of autochthonous and allochthonous energy sources by freshwater benthic organisms will alter their δ13C and δ15N values, thereby masking any possibility of observing 13C trophic enrichment.
4. Removal of the possibly confounding influences of lipids through either empirical correction or by analytical extraction may be unnecessary in studies of freshwater benthic food webs. Likewise, a priori adjustments in δ13C for freshwater benthic organisms in order to accommodate trophic fractionations which are presumed to occur, based on data from marine offshore food webs, may also be inappropriate.  相似文献   

5.
We evaluated diurnal and seasonal patterns of carbon isotope composition of leaf dark-respired CO2 ( δ 13Cl) in the C3 perennial shrub velvet mesquite ( Prosopis velutina ) across flood plain and upland savanna ecosystems in the south-western USA. δ 13Cl of darkened leaves increased to maximum values late during daytime periods and declined gradually over night-time periods to minimum values at pre-dawn. The magnitude of the diurnal shift in δ 13Cl was strongly influenced by seasonal and habitat-related differences in soil water availability and leaf surface vapour pressure deficit. δ 13Cl and the cumulative flux-weighted δ 13C value of photosynthates were positively correlated, suggesting that progressive 13C enrichment of the CO2 evolved by darkened leaves during the daytime mainly resulted from short-term changes in photosynthetic 13C discrimination and associated shifts in the δ 13C signature of primary respiratory substrates. The 13C enrichment of dark-respired CO2 relative to photosynthates across habitats and seasons was 4 to 6‰ at the end of the daytime period (1800 h), but progressively declined to 0‰ by pre-dawn (0300 h). The origin of night-time and daytime variations in δ 13Cl is discussed in terms of the carbon source(s) feeding respiration and the drought-induced changes in carbon metabolism.  相似文献   

6.
Terrestrial arthropods are important components of boreal ecosystems but relatively little is known about their trophic structure within communities. We measured δ13C and δ15N values in a broad range of arthropod taxa (Coleoptera, Diptera, Ephemeroptera, Homoptera, Hymenoptera, Lepidoptera, Odonata, Orthoptera, Araneae) from boreal forest in Prince Albert National Park, Saskatchewan, Canada. Isotopic measurements supported previous conventional investigations on foraging niches based on stomach content analysis and direct feeding observations but additional, new information was also obtained using the stable isotope approach. Significant differences were observed in both δ15N and δ13C values between various orders and families or superfamilies within orders. Higher variance in stable isotope values for scavengers (e.g. carrion beetles; Coleoptera, Silphidae) and generalists (e.g. ground beetles; Coleoptera, Carabidae) was found compared to specialists (e.g. grasshoppers; Orthoptera). Consistent isotopic differences between terrestrial and aquatic species were not found. However, aquatic insect δ13C values tended to be lower than those of their terrestrial counterparts. We discuss the potential for using stable isotope methods to reconstruct trophic linkages and interaction involving arthropods.  相似文献   

7.
1. Changes of δ13C and its relation to leaf development, biochemical content and water stress were monitored over a 2 year period in two co-occurring Mediterranean oak species: the deciduous Quercus pubescens and the evergreen Quercus ilex .
2. The time course of leaf δ13C showed different patterns in the two species. Young Q. pubescens leaves had a high δ13C and a marked decrease occurred during leaf growth. In contrast, leaves at budburst and maturity did not differ significantly in the case of Q. ilex . We suggest that the difference between δ13C of young leaves was linked to differential use of reserves of carbon compounds in the two species.
3. δ13C values of mature leaves were negatively correlated with minimum seasonal values of predawn water potential, suggesting that a functional adjustment to water resources occurred.
4. There was a significant correlation between individual δ13C values for two successive years. This interannual dependence showed that δ13C rankings between trees were constant through time.  相似文献   

8.
The scales of whitefish Coregonus lavaretus were used in place of dorsal muscle, which necessitates killing the fish, to study food webs from the δ13C and δ15N isotopic ratios in the organic fraction. As scales are composed of both organic and calcified fractions, a protocol for scale decalcification was first devised. The δ13C and δ15N values of the decalcified scales were then shown to be closely correlated to those of the dorsal muscle, demonstrating that scales could be used in place of muscle to study food webs. Changes in the δ13C of whitefish were determined from a scale collection that extended over the period during which the trophic state of Lake Geneva was recovering.  相似文献   

9.
This study investigated the impact of lipid extraction, CaCO3 removal and of both treatments combined on fish tissue δ13C, δ15N and C:N ratio. Furthermore, the suitability of empirical δ13C lipid normalization and correction models was examined. δ15N was affected by lipid extraction (increase of up to 1·65‰) and by the combination of both treatments, while acidification alone showed no effect. The observed shift in δ15N represents a significant bias in trophic level estimates, i.e. lipid-extracted samples are not suitable for δ15N analysis. C:N and δ13C were significantly affected by lipid extraction, proportional to initial tissue lipid content. For both variables, rates of change with lipid content (ΔC:N and Δδ13C) were species specific. All tested lipid normalization and correction models produced biased estimates of fish tissue δ13C, probably due to a non-representative database and incorrect assumptions and generalizations the models were based on. Improved models need a priori more extensive and detailed studies of the relationships between lipid content, C:N and δ13C, as well as of the underlying biochemical processes.  相似文献   

10.
The influence of different feeding levels below and slightly above maintenance on whole body δ13C and δ15N values of Nile tilapia Oreochromis niloticus was examined. The energy budget of each fish was determined by indirect calorimetry. The δ13C values of the lipid-free material of Nile tilapia fed below and slightly above maintenance level did not differ between the feeding groups, but the δ13C values in the lipids and the δ15N values of the lipid-free material showed small but significant differences. Those fish with a negative lipid retention had significantly higher δ13C values in the lipid fraction compared to fish that synthesized fatty acids. There was a significant negative correlation between the amount of energy metabolized by the fish and both the δ13C values in the lipids and the δ15N values of the lipid-free material. Fasting and feeding below the maintenance level may influence the isotopic composition of animals and should therefore be considered in ecological and nutritional studies.  相似文献   

11.
1. We made an empirical test of a recent proposal that feeding niche widths might be determined as variance of stable isotope values. We determined δ 13C and δ 15N values of perch ( Perca fluviatilis ), roach ( Rutilus rutilus ) and their prey from a biomanipulated lake, when the mass removal of fish led to reduced inter- and intra-specific competition and increases in zooplankton abundance and body size.
2. After the first fish removals, both perch and roach mean δ 13C values decreased and mean δ 15N values increased, indicating a greater diet contribution from pelagic sources.
3. Variances of both δ 13C and δ 15N values first increased in both fish populations, indicating a wider food spectrum and expanded feeding niche width following reduced fish abundances. Observed changes were greater for the perch population than for roach.
4. In 2006, the perch population abruptly changed its diet so that most individuals were primarily consuming the abundant young-of-the-year fish, and this was reflected in significantly reduced variances of both δ 13C and δ 15N values.
5. We conclude that isotopic variance can indeed reflect changes in feeding niche width and offers a promising way to study such general ecological concepts.  相似文献   

12.
1.  Applying Keeling plot techniques to derive δ13C of respiratory input in a closed non-equilibrated chamber can lead to large errors because steady-state diffusion rules are violated in a non-steady-state environment. To avoid these errors, respiratory δ13C can be derived using equilibrated closed chambers.
2.  We introduce a new method to obtain stem respired CO2δ13C (δst - r) with closed equilibrated stem chambers (E-SC). We present a theoretical model describing the equilibration process, test the model against field data and find excellent agreement. The method is further tested by comparing it with closed non-equilibrated stem chambers (NE-SC); we found no difference between these methods.
3.  Our theoretical model to describe CO2 diffusion from the respiratory pool into the chamber and the equation to derive the δ13C of the efflux are general. They could be applied to other ecosystem components (e.g. soils).
4.  Our method is easy to implement, cost effective, minimizes sources of error and allows for rigorous leak detection. One major limitation is its inability to detect rapid change; the equilibration process requires 15 ± 2 h. A second limitation is that it cannot be used for species that produce abundant pitch at sites of stem wounding (e.g. Pseudotsuga menziesii ).
5.  Investigating δ13C of CO2 respired by different ecosystem components is necessary to interpret δ13C of ecosystem respiration. This parameter has major implications with respect to global carbon cycle science.  相似文献   

13.
Leaf δ13C is an indicator of water-use efficiency and provides useful information on the carbon and water balance of plants over longer periods. Variation in leaf δ13C between or within species is determined by plant physiological characteristics and environmental factors. We hypothesized that variation in leaf δ13C values among dominant species reflected ecosystem patterns controlled by large-scale environmental gradients, and that within-species variation indicates plant adaptability to environmental conditions. To test these hypotheses, we collected leaves of dominant species from six ecosystems across a horizontal vegetation transect on the Tibetan Plateau, as well as leaves of Kobresia pygmaea (herbaceous) throughout its distribution and leaves of two coniferous tree species ( Picea crassifolia, Abies fabri ) along an elevation gradient throughout their distribution in the Qilian Mountains and Gongga Mountains, respectively. Leaf δ13C of dominant species in the six ecosystems differed significantly, with values for evergreen coniferous13C values of the dominant species and of K. pygmaea were negatively correlated with annual precipitation along a water gradient, but leaf δ13C of A. fabri was not significantly correlated with precipitation in habitats without water-stress. This confirms that variation of δ13C between or within species reflects plant responses to environmental conditions. Leaf δ13C of the dominant species also reflected water patterns on the Tibetan Plateau, providing evidence that precipitation plays a primary role in controlling ecosystem changes from southeast to northwest on the Tibetan Plateau.  相似文献   

14.
Mosses have been used as biomonitors of atmospheric pollution for some years, but few studies have been carried out on the effect of NOx emissions from traffic on moss tissue N. Eight species of moss (102 samples) growing on walls or roofs next to roads exposed to different traffic densities were collected from urban and rural sites in the UK. The shoots were sampled for total N, their stable isotope 15N/14N content (δ15N) and heavy metal content (Pb, Zn). There was a lack of correlation between tissue total N and traffic exposure, but a very good correlation between traffic exposure and tissue δ15N. Plants collected near motorways or busy urban roads had δ15N values ranging between +6 and −1‰, while in rural areas with hardly any traffic these ranged from −2 to −12‰. In a separate survey of mosses, the average δ15N of shoots from busy roadsides in London was +3.66‰, whereas from samples collected from farm buildings near poultry or cattle pens it was −7.8‰. This indicates that the two main atmospheric N sources, NOx and NHx, have different δ15N signatures, the former tending to be positive and the latter negative. Tissue concentrations of both Pb and Zn show a strong positive correlation with traffic exposure, with Zn in particular being greater than Pb. The results are discussed with regard to the use of moss tissue Zn as a means for monitoring or mapping pollution from vehicles, and of δ15N as an aid to distinguish between urban (NOx) and rural (NHx) forms of N pollution.  相似文献   

15.
We used stable carbon (δ13C) and nitrogen (δ15N) isotopes to assess the importance of benthic algae for the zooplankton individual growth in winter in a shallow, clear subarctic lake. The δ13C values of calanoid ( Eudiaptomus graciloides ) and cyclopoid ( Cyclops scutifer ) zooplankton in autumn suggest a food resource of pelagic origin during the ice-free period. The zooplankton δ13C values were high in spring compared to autumn. E. graciloides did not grow over winter and the change in δ13C was attributed to a decrease in lipid content during the winter. In contrast, the increase in δ13C values of C. scutifer over the winter was explained by their growth on organic carbon generated by benthic algae. The δ15N of the C. scutifer food resource during winter was low compared to δ15N of the benthic community, suggesting that organic matter generated by benthic algae was mainly channelled to zooplankton via 15N-depleted heterotrophic bacteria. The results demonstrate that benthic algae can sustain zooplankton metabolic demands and growth during long winters, which, in turn, may promote zooplankton growth on pelagic resources during the summer. Such multi-chain omnivory challenges the view of zooplankton as mainly dependent on internal primary production and stresses the importance of benthic resources for the productivity of plankton food webs in shallow lakes.  相似文献   

16.
Stable isotopes of nitrogen (δ15N) and carbon (δ13C) were measured for Atlantic salmon Salmo salar and their intestinal cestode, Eubothrium crassum , sharing the same diet. Atlantic salmon muscle tissues were enriched in 15N and depleted in 13C compared to their prey (sprat Sprattus sprattus sprattus ) and their intestinal cestode. There was no significant difference in δ15N or δ13C between E. crassum and the sprat. Differences in nutrient uptake and intestine physiology between Atlantic salmon and E. crassum are discussed, as well as how these may give rise to different fractionations of stable isotopes between a host and its parasites. Furthermore, Atlantic salmon contained a significantly higher lipid content than their prey, which may partly explain differences in δ13C values between the host and its cestode. In addition, cestodes inhabiting lipid-rich hosts were also lipid rich. Larger Atlantic salmon were enriched in 15N compared to smaller fish. Cestodes inhabiting large hosts were also enriched in 15N compared to parasites living in smaller hosts. The last two results were explained by larger fish possibly feeding from a higher trophic level, or from larger and older prey, that resulted in both a higher lipid content and an enrichment in 15N.  相似文献   

17.
Warming climate could affect leaf-level carbon isotope composition (δ13C) through variations in photosynthetic gas exchange. However, it is still unclear to what extent variations in foliar δ13C can be used to detect changes in net primary productivity (NPP) because leaf physiology is only one of many determinants of stand productivity. We aim to examine how well site-mean foliar δ13C and stand NPP co-vary across large resource gradients using data obtained from the Tibetan Alpine Vegetation Transects (1900–4900 m, TAVT). The TAVT data indicated a robust negative correlation between foliar δ13C and NPP across ecosystems (NPP=−2.7224δ13C-67.738, r2=0.60, p<0.001). The mean foliar δ13C decreased with increasing annual precipitation and its covariation with mean temperature and soil organic carbon and nitrogen contents. The results were further confirmed by global literature data. Pooled δ13C data from global literature and this study explained 60% of variations in annual NPP both from TAVT-measures and MODIS-estimates across 67 sites. Our results appear to support a conceptual model relating foliar δ13C and nitrogen concentration (Nmass) to NPP, suggesting that: 1) there is a general (negative) relationship between δ13C and NPP across different water availability conditions; 2) in water-limited conditions, water availability has greater effects on NPP than Nmass; 3) when water is not limiting, NPP increases with increasing Nmass.  相似文献   

18.
1.  The δ13C and δ15N signatures of zooplankton vary with dissolved organic carbon (DOC), but inconsistent and limited taxonomic resolution of previous studies have masked differences that may exist among orders, genera or species and are attributable to dietary and/or habitat differences. Here we investigate differences among the isotopic signatures of five zooplankton taxa ( Daphnia , Holopedium , large Calanoida, small Calanoida and Cyclopoida) in Precambrian shield lakes with a sixfold range of DOC concentration.
2.  δ13C signatures of Daphnia , small calanoids and large calanoids became more depleted with increasing lake DOC, whereas Holopedium and cyclopoid δ13C became enriched with increasing DOC concentration.
3.  The variability of δ13C and δ15N isotopic signatures among zooplankton groups was reduced in high-DOC, compared to low-DOC lakes, especially for δ13C. Differences in δ13C and POM-corrected δ15N accounted for up to 33.7% and 19.5% of the variance, respectively, among lakes of varying DOC concentration.
4.  The narrow range of signatures found in higher DOC lakes suggests that different taxa have similar food sources and/or habitats. In contrast, the wide range of signatures in low-DOC lakes suggests that different taxa are exploiting different food sources and/or habitats. Together with the variable trends in zooplankton isotopic signatures along our DOC gradient, these results suggest that food web dynamics within the zooplankton community of temperate lakes will change as climate and lake DOC concentrations change.  相似文献   

19.
Analysis of covariance indicated size had a greater influence than age on δ15N in three rainbow smelt Osmerus mordax morphotypes of Lake Utopia, New Brunswick, Canada. The distinction in size between the three forms allowed a unique analysis and separation of size and age effects, which is not commonly possible because of the strong correlation between size and age. These results provide support for the continued use of δ15N as a trophic level indicator in food web studies. While a slight increase in δ15N with age ( P ≤ 0·05) in intermediate-sized smelt raises questions about a potential accumulation of 15N with age, the effect of size was far stronger in governing δ15N values. The possible confounding influence of age when interpreting trophodynamics of short-lived consumers appears to be small.  相似文献   

20.
Foliar δ^13C values, an indicator of long-term intercellular carbon dioxide concentration and, thus, of long-term water use efficiency (WUE) in plants, were measured for Pinus massoniana Lamb., P. elliottii Engelm., Cunninghamia laceolata (Lamb.) Hook., and Schima superba Gardn. et Champ. in a restored forest ecosystem in the Jiazhu River Basin. Seasonal variation and the relationship between the foliar δ^13C values of the four species and environmental factors (monthly total precipitation, monthly average air temperature, relative humidity, atmospheric pressure, and monthly total solar radiation and evaporation) were investigated. The monthly δ^13C values and WUE of the four species increased with increasing precipitation, air temperature, solar radiation, and evaporation, whereas δ^13C values of the four species decreased with increasing relative humidity and atmospheric pressure. Despite significant differences in δ^13C seasonal means for the four species, our results demonstrate a significant convergence in the responses of δ^13C values and WUE to seasonal variations in environmental factors among the species investigated and that the δ^13C signature for each species gives a strong indication of environmental variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号