首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
单配制和多配制动物社会行为有差异,这些差异可能与雌激素受体类型有关(ERs)。虽然多配制大鼠和小鼠中枢神经雌激素受体α(ERα)和β(ERβ)免疫反应在大脑的分布已有报道,单配制雄性草原田鼠中枢神经ERα的分布也有报道,但单配制田鼠ERα和(或)ERβ在雌性和雄性分布差异未见报道。本研究对雄性和雌性棕色田鼠前脑区域ERα和ERβ免疫反应(IR)细胞数量进行比较。研究结果表明:(1)免疫反应主要分布在细胞核中。 (2)ERα-IR和ERβ-IR细胞广泛分布于整个雌性和雄性前脑区域,在许多脑区表达有重叠。然而,不同受体在雌雄不同脑核中的分布数量是不同的。(3)ERα 和ERβ的分布存在性别差异。例如,雌性ERα在视前核中部(MPN),终纹床和(BNST)和杏仁内侧核(MeA)比雄性多,相反雄性ERβ在MPN和BNST比雌性多。这些研究结果可能为我们理解如何通过ERα和ERβ调节动物的社会行为,及雌性和雄性社会行为的差异提供一个重要的神经解剖学基础。  相似文献   

2.
小型哺乳动物能够通过行为策略的进化适应周围的环境。其中,种内社会组织也可随环境参数的变化而变化。河南灵宝程村气候干燥、海拔高,而新郑则气候湿润、海拔低。来自河南灵宝程村的棕色田鼠种群和来自新郑的种群是否在社会行为、情绪、以及性二型上有所差别,目前还不清楚。本研究中,我们通过旷场实验
和熟悉选择试验比较了两个种群的情绪、运动能力以及对熟悉鼠和陌生鼠的选择。统计结果表明,程村种群的雌性个体比雄性个体重,而新郑种群的雄性体重比程村种群的重。在旷场实验中,程村种群比新郑种群表现出较多的焦虑样行为。配偶选择实验中,新郑种群不论雌雄都表现出了对陌生异性的喜好。程村种群雄性则更愿意选择熟悉的个体。而且,程村的雌性待在陌生箱攻击陌生鼠的时间远大于熟悉鼠。以上结果表明,两个野生种群在体重、情绪以及对熟悉鼠和陌生鼠选择上都表现出了明显的种群间差异。  相似文献   

3.
In monogamous mammals paternal care plays an important role in the neural and behavioral development of offspring. However, the neuroendocrine mechanisms underlying paternal behavior remain poorly understood. Here, we investigate the association between natural variation in paternal responsiveness and central levels of oxytocin (OT) and estrogen receptor alpha (ERα). We used the frequency of licking and grooming behavior to distinguish low paternal responsiveness and high paternal responsiveness in virgin mandarin voles (Microtus mandarinus). Males that engaged in high paternal behavior had elevated levels of OT immunoreactive neurons in the paraventricular nuclei of the hypothalamus and supraoptic nuclei of the hypothalamus compared with males that displayed low paternal behavior. Likewise, males of high paternal responsiveness had more ERα immunoreactive neurons in the medial preoptic area, bed nucleus of the stria terminalis, arcuate nucleus of the hypothalamus and medial amygdaloid nucleus compared to low responsive males. The level of ERα immunoreactive neurons in the ventromedial hypothalamic nucleus was lower in highly paternal males compared to less paternal males. These results suggest that natural variation in paternal responsiveness may be directly related to variation in central OT and ERα.  相似文献   

4.
应用行为观察、放射免疫分析和免疫组织化学相结合的方法,研究了雄性棕色田鼠在交配后血清中的雌二醇(E)、与交配行为有关的脑区E免疫阳性细胞数目(E-IRs)、雌激素β受体(ERβ)免疫阳性细胞数目(ERβ-IRs)的变化.将睾丸下降的成年雄性棕色出鼠分成3组:(1)对照组:嗅闻24h新鲜锯木.(2)暴露组:嗅闻24h动情期雌鼠底物.(3)交配组:与动情期雌鼠交配24h.放射免疫榆测血清中的E浓度,交配组比暴露组、对照组显著增高,暴露组和对照组无显著差异.通过免疫组化检测与性行为有关的脑区:弓状核(ARC)、终纹床核(BST)、隔外侧核(LS)、杏仁内侧核(ME)、内侧视前区(MPO)、下丘脑腹内侧核(VMH)E-IRs和ERβ-IRs,E-IRs在交配组比对照组和暴露组各区域都显著增多,暴露组比对照组在隔外侧核显著增多外,其他区域无显著差异.  相似文献   

5.
Paternal care is necessary for the healthy development of social behavior in monogamous rodents and social recognition underpins social behavior in these animals. The effects of paternal care on the development of social recognition and underlying neuroendocrine mechanisms, especially the involvement of oxytocin and estrogen pathways, remain poorly understood. We investigated the effects of paternal deprivation (PD: father was removed from neonatal pups and mother alone raised the offspring) on social recognition in mandarin voles (Microtus mandarinus), a socially monogamous rodent. Paternal deprivation was found to inhibit the development of social recognition in female and male offspring according to a habituation–dishabituation paradigm. Paternal deprivation resulted in increased inactivity and reduced investigation during new encounters with other animals. Paternal deprivation reduced oxytocin receptor (OTR) and estrogen receptor α (ERα) mRNA expression in the medial amygdala and nucleus accumbens. Paternal deprivation reduced serum oxytocin (OT) concentration in females, but had no effect on males. Our results provide substantial evidence that paternal deprivation inhibits the development of social recognition in female and male mandarin voles and alters social behavior later in life. This is possibly the result of altered expression of central OTR and ERα and serum OT levels caused by paternal deprivation.  相似文献   

6.
植物不育剂是由具有抗生育作用的天然植物中的提取物配制而成,用不育剂配制的混合饵料,不仅对雌雄鼠生殖机能均有一定的破坏性,起到了阻断生殖的作用,而且又不污染环境和破坏生态平衡(张春美等,2001),所以这类混合饵料称为绿色环保型抗生育鼠药(简称环保型鼠药).  相似文献   

7.
Although the effect of early social environments on maternal care in adulthood has been examined in detail, few studies have addressed the long-term effect on paternal care and its underlying neuroendocrine mechanisms. Here, using monogamous mandarin voles (Microtus mandarinus) that show high levels of paternal care, the effects of early bi-parental separation (EBPS) or neonatal paternal deprivation (NPD) on adult paternal behavior, serum corticosterone levels, and receptor mRNA expression in the nucleus accumbens (NAcc) and medial preoptic area (MPOA) were investigated. Compared to the parental care group (PC), we found that EBPS reduced crouching behavior and increased inactivity, self-grooming, and serum corticosterone levels in adult offspring; and NPD significantly reduced retrieval behavior and increased self-grooming behavior of offspring at adulthood. EBPS displayed more dopamine type I receptor (D1R) mRNA expression in the NAcc, but less oxytocin receptor (OTR) mRNA expression than PC in the MPOA. Both EBPS and NPD exhibited more mRNA expression of estrogen receptor alpha (ERα) than PC in the MPOA. In the EBPS group, increased serum corticosterone concentration was closely associated with reduced crouching behavior, and reduced expression of OTR was closely associated with altered crouching behavior and increased D1R expression. Our results provide substantial evidence that EBPS or NPD has long-term consequences and reduces paternal behavior in adult animals. Importantly the oxytocin system in the MPOA might interact with NAcc dopamine systems to regulate paternal behavior and EBPS may affect interactions between the MPOA and NAcc.  相似文献   

8.
Male rodents behave differently toward pups because of different sexual and/or paternal experiences; however, the mechanisms underlying these responses are not well understood. Using socially monogamous mandarin voles (Microtus mandarinus) we investigated the behavioral responses of males with different reproductive experiences (virgin males, paired males and new fathers) to new born pups. Central levels of neuropeptide oxytocin (OT), tyrosine hydroxylase (TH), as well as oxytocin receptor (OTR), dopamine 1-type receptor (D1R) and dopamine 2-type receptor (D2R) mRNA expression in the nucleus accumbens and medial amygdala were also measured in these males. Our data showed that new fathers exhibited more approaching behavior and contained more OT-immunoreactive and TH-immunoreactive neurons. In addition to increased OTR mRNA expression in the nucleus accumbens and medial amygdala, new fathers had higher D1R and D2R mRNA expression in the nucleus accumbens, and less D1R and D2R mRNA expression in the medial amygdala than paired males. These results demonstrate that males with different reproductive experiences display different behavioral responses to pups and that these differences are associated with altered OT and dopamine, and their receptors in specific brain regions.  相似文献   

9.
Perinatal development is often viewed as the major window of time for organization of steroid-sensitive neural circuits by steroid hormones. Behavioral and neuroendocrine responses to steroids are dramatically different before and after puberty, suggesting that puberty is another window of time during which gonadal steroids affect neural development. In the present study, we investigated whether the presence of gonadal hormones during pubertal development affects the number of androgen receptor and estrogen receptor alpha-immunoreactive (AR-ir and ER alpha-ir, respectively) cells in limbic regions. Male Syrian hamsters were castrated either before or after pubertal development, and 4 weeks later they received a single injection of testosterone or oil vehicle 4 h prior to tissue collection. Immunocytochemistry for AR and ER alpha was performed on brain sections from testosterone-treated and oil-treated males, respectively. Adult males that had been castrated before puberty had a greater number of AR-ir cells in the medial preoptic nucleus than adult males that had been castrated after puberty. There were no significant differences in ER alpha-ir cell number in any of the brain regions examined. The demonstration that exposure to gonadal hormones during pubertal development is associated with reduced AR-ir in the medial preoptic nucleus indicates that puberty is a period of neural development during which hormones shape steroid-sensitive neural circuits.  相似文献   

10.
Yu P  An S  Tai F  Zhang X  He F  Wang J  An X  Wu R 《Hormones and behavior》2012,61(5):669-677
High levels of paternal care are important for the development of social behavior in monogamous rodents. However, the effects of paternal care on the formation of pair bonding and underlying neuroendocrine mechanisms, especially the involvements of dopamine system and corticosterone, are not well understood. We investigated effects of paternal deprivation on pair bonding in mandarin voles (Microtus mandarinus), a socially monogamous rodent. Paternal deprivation was found to inhibit the formation of pair bonding in females according to partner preference tests (PPT). Paternal deprivation also reduced body contact behavior and increased aggression in males and females in PPT. During social interaction tests (SIT), paternal deprivation was found to reduce investigative and aggressive behaviors but increase body contact and self-grooming in females, and reduce staring, aggression, body contact and self-grooming in males when interacting with the opposite sex. Paternal deprivation reduced the expression of dopamine 1-type receptor (D1R) mRNA and dopamine 2-type receptor (D2R) mRNA in the nucleus accumbens of female offspring in later life, but enhanced mRNA expression of these two dopamine receptors in males. After three days of cohabitation the expression of D1R mRNA and D2R mRNA was negatively correlated for voles reared by two parents, but positively correlated in paternally deprived animals. Paternal deprivation reduced serum corticosterone levels in females but had the opposite effect in males. Three days of cohabitation did not alter corticosterone levels of PD females, but reduced it in PC females. Our results provide substantial evidence that paternal deprivation inhibits the formation of pair bonding in female mandarin voles and alters social behavior later in life. These behavioral variations were possibly associated with sex-specific alterations in the expression of two types of dopamine receptors and serum corticosterone levels induced by paternal deprivation.  相似文献   

11.
Around the time of birth, male rats express higher levels of progesterone receptors in the medial preoptic nucleus (MPN) than female rats, suggesting that the MPN may be differentially sensitive to maternal hormones in developing males and females. Preliminary evidence suggests that this sex difference depends on the activation of estrogen receptors around birth. To test whether estrogen receptor alpha (ER alpha) is involved, we compared progesterone receptor immunoreactivity (PRir) in the brains of male and female neonatal mice that lacked a functional ER alpha gene or were wild type for the disrupted gene. We demonstrate that males express much higher levels of PRir in the MPN and the ventromedial nucleus of the neonatal mouse brain than females, and that PRir expression is dependent on the expression of ER alpha in these regions. In contrast, PRir levels in neocortex are not altered by ER alpha gene disruption. The results of this study suggest that the induction of PR via ER alpha may render specific regions of the developing male brain more sensitive to progesterone than the developing female brain, and may thereby underlie sexual differentiation of these regions.  相似文献   

12.
Around the time of birth, male rats express higher levels of progesterone receptors in the medial preoptic nucleus (MPN) than female rats, suggesting that the MPN may be differentially sensitive to maternal hormones in developing males and females. Preliminary evidence suggests that this sex difference depends on the activation of estrogen receptors around birth. To test whether estrogen receptor alpha (ERα) is involved, we compared progesterone receptor immunoreactivity (PRir) in the brains of male and female neonatal mice that lacked a functional ERα gene or were wild type for the disrupted gene. We demonstrate that males express much higher levels of PRir in the MPN and the ventromedial nucleus of the neonatal mouse brain than females, and that PRir expression is dependent on the expression of ERα in these regions. In contrast, PRir levels in neocortex are not altered by ERα gene disruption. The results of this study suggest that the induction of PR via ERα may render specific regions of the developing male brain more sensitive to progesterone than the developing female brain, and may thereby underlie sexual differentiation of these regions. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 176–182, 2001  相似文献   

13.
To investigate potential mechanisms for sex differences in the physiologic response to androgens, the present study compared the hormonal regulation of intracellular androgen receptor partitioning and the distribution of androgen receptor immunoreactivity in select brain regions from male and female hamsters. Androgen receptors were visualized on coronal brain sections. Two weeks after castration, androgen receptor immunoreactivity filled the neuronal nuclei and cytoplasm in males and females. In gonad-intact males and females, androgen receptor immunoreactivity was limited to the cell nucleus. Whereas exogenous dihydrotestosterone prevented cytoplasmic immunoreactivity, estrogen at physiologic levels did not. These results suggest that nuclear androgen receptor immunoreactivity in gonad-intact females is maintained by endogenous androgens, and that androgens have the potential to influence neuronal activity in either sex. However, sex differences in the number and staining intensity of androgen-responsive neurons were apparent in select brain regions. In the ventral premammillary nucleus, ventromedial nucleus of the hypothalamus, and medial amygdaloid nucleus, androgen receptor staining was similar in gonadectomized males and females. In the lateral septum, posteromedial bed nucleus of the stria terminalis (BNSTpm), and medial preoptic nucleus, the number of androgen receptor-immunoreactive neurons was significantly lower in females (p < .05). Moreover, the integrated optical density/cell in BNSTpm was significantly less in females (1.28+/-0.3 units) than in males (2.21+/-0.2 units; p < .05). These sex differences in the number and staining intensity of androgen-responsive neurons may contribute to sex differences in the behavioral and neuroendocrine responses to androgens.  相似文献   

14.
Aggression in socially monogamous mandarin vole (Microtus mandarinus) was observed after castration. Levels of serum sex hormones and their central receptors were also measured using enzyme-linked immunosorbent assay and immunohistochemistry methods. The data indicate that adult males showed higher levels of aggression after castration. However, castration significantly reduced levels of serum testosterone, and the number of androgen receptor immunoreactive neurons in the anterior hypothalamus, bed nucleus of the stria terminalis, medial amygdaloid nucleus (P < 0.01) and lateral septal nucleus (P < 0.05). In addition, levels of estrogen receptor β in the anterior hypothalamus and medial amygdaloid nucleus (P < 0.05), bed nucleus of the stria terminalis and lateral septal nucleus (P < 0.01) declined to varying degrees at weekly intervals. In contrast, serum 17β-estradiol concentrations were up-regulated by castration and castration did not change levels of estrogen receptor α in the medial amygdaloid nucleus and lateral septal nucleus, but increased it in the anterior hypothalamus 3 weeks after castration (P < 0.05). We suggest that higher levels of aggression induced by castration may be independent of serum testosterone and androgen receptors, and may be associated with high serum 17β-estradiol concentrations, stable estrogen receptor α immunoreactive neurons in some brain regions and the relative ratio of the two estrogen receptors.  相似文献   

15.
The dominant–subordinate hierarchy in animals often needs to be established via agonistic encounters and consequently affects reproduction and survival. Differences in brain neuropeptides and sociality among dominant and subordinate males and females remain poorly understood. Here we explore neuropeptide levels and sociality during agonistic encounter tests in mandarin voles. We found that dominant mandarin voles engaged in higher levels of approaching, investigating, self-grooming and exploring behavior than subordinates. Dominant males habituated better to a stimulus vole than dominant females. Dominant males displayed significantly less oxytocin-immunoreactive neurons in the paraventricular nuclei and more vasopressin-immunoreactive neurons in the paraventricular nuclei, supraoptic nuclei, and the lateral and anterior hypothalamus than subordinates. Dominant females displayed significantly more vasopressin-immunoreactive neurons in the lateral hypothalamus and anterior hypothalamus than subordinates. Sex differences were found in the level of oxytocin and vasopressin. These results indicate that distinct parameters related to central nervous oxytocin and vasopressin are associated with behaviors during agonistic encounters in a sex-specific manner in mandarin voles.  相似文献   

16.
哺乳动物的单配制通常被认为是社会性单配制,它不是单纯地由性行为来决定,而是由诸多因素,包括长期的pair bond、夫妻双方共同抚育后代、免近亲交配以及雌雄两性相似等来决定的。在这篇综述中,我们论述了如何以啮齿类田鼠属(Microtus)为模型,通过比较研究来帮助我们理解社会性单配制的进化以及其神经调控机制。对田鼠属的研究不仅证实了单配制起源于艰苦的生存条件的假说,而且还证实了雌性性选择可能有利于维持单配制。不仅如此,哺乳动物单配制的进化还需要雄性的prosocial行为的不断强化。例如,亲近行为可以促进pairbond的形成并强化雄性对后代的哺育行为,而这种强化则来源于神经多肽催产素(OT)和加压素(AVP)与类固醇类激素的相互作用。催产素和加压素调控pairbond和双亲哺育行为的表达,而单配制和多配制田鼠的催产素和加压素受体在脑内的分布有显的不同。比较研究揭示了小型田鼠单配制的调控机制,而种内差异和行为上的可塑性则有助于我们进一步理解这种机制。比如,在某些条件下,多配制的草原田鼠(Microtus pennsylvanicu)的雄性个体具有哺育后代的行为。尽管草原田鼠的加压素Vla受体在脑内的分布与其他多配制的田鼠相似,但是如果脑室注射加压素,仍可以诱发其哺育后代的行为。同样是单配制的橙腹田鼠(Microtus ochrogaster),生活在:Illnois的显示出高水平的prosocial行为,而生活在Kansas的则表现出较低水平的社会性行为。即使两个种群的催产素或加压素Vla受体在脑内的分布相同,它们的雌激素受体表达水平显不同,这在雄性个体表现尤其明显。与Kansas的雄性个体相比,在终纹床核(bed rucleus of the stria tenninalis)和杏仁核中区(medial amygdala)这两个调控亲近行为和攻击行为的脑区,Illinois的雄性个体的α雌激素受体的水平要低得多。这些研究表明对雌激素的低敏感程度有利于高水平地表达prosocial行为并降低特定类型的攻击行为。  相似文献   

17.
To investigate potential mechanisms for sex differences in the physiologic response to androgens, the present study compared the hormonal regulation of intracellular androgen receptor partitioning and the distribution of androgen receptor immunoreactivity in select brain regions from male and female hamsters. Androgen receptors were visualized on coronal brain sections. Two weeks after castration, androgen receptor immunoreactivity filled the neuronal nuclei and cytoplasm in males and females. In gonad‐intact males and females, androgen receptor immunoreactivity was limited to the cell nucleus. Whereas exogenous dihydrotestosterone prevented cytoplasmic immunoreactivity, estrogen at physiologic levels did not. These results suggest that nuclear androgen receptor immunoreactivity in gonad‐intact females is maintained by endogenous androgens, and that androgens have the potential to influence neuronal activity in either sex. However, sex differences in the number and staining intensity of androgen‐responsive neurons were apparent in select brain regions. In the ventral premammillary nucleus, ventromedial nucleus of the hypothalamus, and medial amygdaloid nucleus, androgen receptor staining was similar in gonadectomized males and females. In the lateral septum, posteromedial bed nucleus of the stria terminalis (BNSTpm), and medial preoptic nucleus, the number of androgen receptor–immunoreactive neurons was significantly lower in females (p < .05). Moreover, the integrated optical density/cell in BNSTpm was significantly less in females (1.28 ± 0.3 units) than in males (2.21 ± 0.2 units; p < .05). These sex differences in the number and staining intensity of androgen‐responsive neurons may contribute to sex differences in the behavioral and neuroendocrine responses to androgens. © 1999 John Wiley & Sons, Inc. J Neurobiol 39: 359–370, 1999  相似文献   

18.
Although early paternal deprivation significantly affects offspring behavioral and neuroendocrine development, the link between paternal deprivation and social play behavior remains unclear. Mandarin voles (Microtus mandarinus) are socially monogamous and display bi-paternal care. The present study examined the development of social play in juvenile male mandarin voles and the paternal influence on play-fighting, vasopressin- and oxytocin-immunoreactive neurons and serum corticosterone and testosterone levels. The results show that social play was more pronounced during postnatal days 28–35, differing from the ontogenetic pattern of other forms of social behavior. On postnatal day 35, the peak in play-fighting activity, paternal deprivation reduced boxing/wrestling levels and vasopressin-immunoreactive neurons in the anterior hypothalamus and oxytocin-immunoreactive neurons in the paraventricular nucleus, but increased vasopressin-immunoreactive neurons in the paraventricular nucleus and corticosterone levels. These results suggest that mandarin voles engage in social play according to an inverted U-shaped curve in ontogeny, and paternal deprivation influences the development of offspring play-fighting; hypothalamic vasopressin, oxytocin and serum corticosterone may play a modulatory role in the alteration of play-fighting elicited by paternal deprivation; decreased play-fighting may correlate with depressed vasopressin levels in the anterior hypothalamus.  相似文献   

19.
Previous comparative studies have suggested that the distribution of arginine vasopressin (AVP) pathways within the brain is associated with species-typical patterns of social behavior. In the current study, male parental behavior and aggression were compared in two species of Peromyscus. As predicted based on other studies, male mice from a monogamous species, the California mouse Peromyscus californicus, spent more time providing parental care to offspring than males from a polygamous species, the white-footed mouse Peromyscus leucopus. Sexually naive male California mice also attacked opponents more rapidly than white-footed mice during resident-intruder and neutral aggression tests. Since AVP has been shown to modulate these behaviors, we compared the distribution of vasopressinergic neurons and receptors. We predicted that greater AVP-immunoreactive (AVP-ir) staining in the bed nucleus of the stria terminalis and AVP receptor density in the lateral septum would occur in the species with low levels of paternal care because this pattern was found in similar comparisons with sexually naive monogamous and polygamous voles. In contrast, in our study, monogamous male mice showed more AVP-ir staining in the bed nucleus of the stria terminalis than the polygamous species, as well as more AVP receptors in the lateral septum. Parental behavior therefore does not appear to predict differences in patterns of AVP-ir staining and receptor distribution across species or vice versa. We propose the hypothesis that aggression may be better correlated with species patterns of AVP-ir staining density and receptor distribution.  相似文献   

20.
Copulatory behaviors in most rodents are highly sexually dimorphic, even when circulating hormones are equated between the sexes. Prairie voles (Microtus ochrogaster) are monomorphic in their display of some social behaviors, including partner preferences and parenting, but differences between the sexes in their masculine and feminine copulatory behavior potentials have not been studied in detail. Furthermore, the role of neonatal aromatization of testosterone to estradiol on the development of prairie vole sexual behavior potentials or their brain is unknown. To address these issues, prairie vole pups were injected daily for the first week after birth with 0.5 mg of the aromatase inhibitor 1,4,6-androstatriene-3,17-dione (ATD) or oil. Masculine and feminine copulatory behaviors in response to testosterone or estradiol were later examined in both sexes. Males and females showed high mounting and thrusting in response to testosterone, but only males reliably showed ejaculatory behavior. Conversely, males never showed feminine copulatory behaviors in response to estradiol. Sex differences in these behaviors were not affected by neonatal ATD, but ATD-treated females received fewer mounts and thrusts than controls, possibly indicating reduced attractiveness to males. In other groups of subjects, neonatal ATD demasculinized males' tyrosine hydroxylase expression in the anteroventral periventricular preoptic area, and estrogen receptor alpha expression in the medial preoptic area. Thus, although sexual behavior in both sexes of prairie voles is highly masculinized, aromatase during neonatal life is necessary only for females' femininity. Furthermore, copulatory behavior potentials and at least some aspects of brain development in male prairie voles are dissociable by their requirement for neonatal aromatase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号