首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the effects of dietary nucleotides on intraepithelial lymphocytes (IEL) and intestinal epithelial cells (IEC) in weanling mice. The proportion of T-cell receptor (TCR) gammadelta+ IEL in BALB/c mice fed a diet supplemented with nucleotides (NT(+) diet) was significantly higher than that in mice fed the nucleotide-free diet, while the proportion of TCR alphabeta+ IEL in NT(+) diet-fed mice was significantly decreased. The change of the TCR alphabeta+/TCR gammadelta+ ratio was mainly observed in a CD8 alphaalpha+ subset of IEL. IEC from NT(+) diet-fed mice produced a higher level of IL-7, which is important in the development of TCR gammadelta+ IEL, than those from control diet-fed mice. The expression levels of IL-7 and IL-2 receptors on IEL were not different between the two dietary groups. Our findings suggest that the increased population of a TCR gammadelta+ IEL subset by feeding nucleotides may be caused by the increased production of IL-7 by IEC.  相似文献   

2.
Transfer of the alphabeta TCR genes into T lymphocytes will provide a means to enhance Ag-specific immunity by increasing the frequency of tumor- or pathogen-specific T lymphocytes. We generated an efficient alphabeta TCR gene transfer system using two independent monocistronic retrovirus vectors harboring either of the class II MHC-restricted alpha or beta TCR genes specific for chicken OVA. The system enabled us to express the clonotypic TCR in 44% of the CD4+ T cells. The transduced cells showed a remarkable response to OVA323-339 peptide in the in vitro culture system, and the response to the Ag was comparable with those of the T lymphocytes derived from transgenic mice harboring OVA-specific TCR. Adoptive transfer of the TCR-transduced cells in mice induced the Ag-specific delayed-type hypersensitivity in response to OVA323-339 challenge. These results indicate that alphabeta TCR gene transfer into peripheral T lymphocytes can reconstitute Ag-specific immunity. We here propose that this method provides a basis for a new approach to manipulation of immune reactions and immunotherapy.  相似文献   

3.
The development of TCR alphabeta(+), CD8alphabeta(+) intestinal intraepithelial lymphocytes (IEL) is dependent on MHC class I molecules expressed in the thymus, while some CD8alphaalpha(+) IEL may arise independently of MHC class I. We examined the influence of MHC I allele dosage on the development CD8(+) T cells in RAG 2(-/-) mice expressing the H-2D(b)-restricted transgenic TCR specific for the male, Smcy-derived H-Y Ag (H-Y TCR). IEL in male mice heterozygous for the restricting (H-2D(b)) and nonrestricting (H-2D(d)) MHC class I alleles (MHC F(1)) were composed of a mixture of CD8alphabeta(+) and CD8alphaalpha(+) T cells, while T cells in the spleen were mostly CD8alphabeta(+). This was unlike IEL in male mice homozygous for H-2D(b), which had predominantly CD8alphaalpha(+) IEL and few mostly CD8(-) T cells in the spleen. Our results demonstrate that deletion of CD8alphabeta(+) cells in H-Y TCR male mice is dependent on two copies of H-2D(b), whereas the generation of CD8alphaalpha(+) IEL requires only one copy. The existence of CD8alphabeta(+) and CD8alphaalpha(+) IEL in MHC F(1) mice suggests that their generation is not mutually exclusive in cells with identical TCR. Furthermore, our data imply that the level of the restricting MHC class I allele determines a threshold for conventional CD8alphabeta(+) T cell selection in the thymus of H-Y TCR-transgenic mice, whereas the development of CD8alphaalpha(+) IEL is dependent on, but less sensitive to, this MHC class I allele.  相似文献   

4.
Small intestinal cryptopatches (CP) are the major anatomic site for extrathymic differentiation by precursors destined to become intestinal intraepithelial T lymphocytes (IEL). We found that mice deficient in CCR6 exhibited a 2.7-fold increase in the number of alphabeta TCR IEL, but little or no expansion of gammadelta TCR IEL. Among the alphabeta TCR IEL subsets, the CD4- CD8alphaalpha+ and CD4+ CD8alphaalpha+ subsets were preferentially expanded in CCR6 null mice. Because some CD8alphaalpha+ IEL can arise through extrathymic differentiation in CP, we investigated CCR6 expression by T lymphocyte precursors undergoing extrathymic differentiation in intestinal CP. In sections of CP, 50-60% of c-kit+ precursors were CCR6+. CD11c(+) cells concentrated at the periphery of CP did not express CCR6. A subset of c-kit+, Lin- cells in lamina propria suspensions was CCR6+, but CCR6 was absent from c-kit+ precursors in bone marrow. CCR6 was absent from the vast majority of mature IEL. CCR6 is present on lymphocyte precursors in cryptopatches, expressed transiently during extrathymic IEL development, and is required for homeostatic regulation of intestinal IEL.  相似文献   

5.
6.
7.
Previous studies in humans and mice have shown that gut intraepithelial lymphocytes (IELs) express oligoclonal TCR beta-chain repertoires. These studies have either employed unseparated IEL preparations or focused on the CD8+ subsets. Here, we have analyzed the TCR beta-chain repertoire of small intestinal IELs in PVG rats, in sorted CD4+ as well as CD8+ subpopulations, and important differences were noted. CD8alphaalpha and CD8alphabeta single-positive (SP) IELs used most Vbeta genes, but relative Vbeta usage as determined by quantitative PCR analysis differed markedly between the two subsets and among individual rats. By contrast, CD4+ IELs showed consistent skewing toward Vbeta17 and Vbeta19; these two genes accounted collectively for more than half the Vbeta repertoire in the CD4/CD8 double-positive (DP) subset and were likewise predominant in CD4 SP IELs. Complementarity-determining region 3 length displays and TCR sequencing demonstrated oligoclonal expansions in both the CD4+ and CD8+ IEL subpopulations. These studies also revealed that the CD4 SP and CD4/CD8 DP IEL subsets expressed overlapping beta-chain repertoires. In conclusion, our results show that rat TCR-alphabeta+ IELs of both the CD8+ and CD4+ subpopulations are oligoclonal. The limited Vbeta usage and overlapping TCR repertoire expressed by CD4 SP and CD4/CD8 DP cells suggest that these two IEL populations recognize restricted intestinal ligands and are developmentally and functionally related.  相似文献   

8.
As a consequence of the peptide specificity of intrathymic positive selection, mice transgenic for a rearranged TCR beta-chain derived from conventional alphabeta T lymphocytes frequently carry mature T cells with significant skewing in the repertoire of the companion alpha-chain. To assess the generality of such an influence, we generated transgenic (Tg) mice expressing a beta-chain derived from nonclassical, NK1.1+ alphabeta T cells, the thymus-derived, CD1. 1-specific DN32H6 T cell hybridoma. Results of the sequence analysis of genomic DNA from developing DN32H6 beta Tg thymocytes revealed that the frequency of the parental alpha-chain sequence, in this instance the Valpha14-Jalpha281 canonical alpha-chain, is specifically and in a CD1.1-dependent manner, increased in the postselection thymocyte population. In accordance, we found phenotypic and functional evidence for an increased frequency of thymic, but interestingly not peripheral, NK1.1+ alphabeta T cells in DN32H6 beta Tg mice, possibly indicating a thymic determinant-dependent maintenance. Thus, in vivo expression of the rearranged TCR beta-chain from a thymus-derived NK1.1+ Valpha14+ T cell hybridoma promotes positive selection of thymic NK1.1+ alphabeta T cells. These observations indicate that the strong influence of productive beta-chain rearrangements on the TCR sequence and specificity of developing thymocytes, which operates through positive selection on self-determinants, applies to both classical and nonclassical alphabeta T cells and therefore represents a general phenomenon in intrathymic alphabeta T lymphocyte development.  相似文献   

9.
The murine intraepithelial lymphocyte (IEL) population is enriched in T cells that express the gamma delta-TCR, however, the biologic function served by these T cells remains obscure. IEL are considered to be major effector cells in mucosal immunity, and we have investigated whether IEL subsets could reverse orally induced systemic unresponsiveness (oral tolerance; OT) and support secondary type responses when adoptively transferred to mice orally tolerized with SRBC. When purified CD3+ IEL from mice orally primed with SRBC were transferred to adoptive hosts and challenged with SRBC, splenic IgM, IgG1, IgG2b, and IgA anti-SRBC plaque-forming cell responses were observed. However, CD3+ IEL from HRBC orally primed mice did not abrogate SRBC induced OT. Further, HRBC-primed CD3+, IEL converted HRBC-specific OT but not SRBC-specific OT. CD3+ IEL could be separated into four subsets based on expression of CD4 and CD8. CD3+, CD4-, 8+ T cells were the major subset (74.5%), with smaller numbers of CD4- and CD8- (double negatives, DN) (7.8%), CD4+, 8- (7.6%) and CD4+, CD8+ (double positives) (10.1%) T cells. Interestingly, both the CD3+, CD8+, and the CD3+, DN IEL subsets abrogated OT, resulting in significant IgM, IgG1, IgG2b, and IgA anti-SRBC plaque-forming cell responses when adoptively transferred to mice with OT. However, neither CD3+, CD4+, CD8-, nor double positive T cells affected OT when studied in this system. The CD3+, CD8+ IEL subset could be further separated into Thy-1+ (16.6%) and Thy-1- (83.4%) cells; adoptive transfer of Thy-1- cells abrogated oral tolerance whereas the Thy-1+ subset was without effect. When the expression of TCR on IEL with this biologic function was determined by use of monoclonal anti-alpha beta TCR (H57.597), TCR2-, CD3+ IEL possessed immunoregulatory function whereas the alpha beta-TCR+ (TCR2+) fraction did not abrogate OT. Immunoprecipitation of membrane fractions obtained from purified CD3+, CD4-, CD8+, Thy-1- IEL with polyclonal anti-delta peptide (Tyr-Ala-Asn-Ser-Phe-Asn-Asn-Glu-Lys-Leu) antibody revealed bands of 45 and 35 kDa, corresponding to the delta- and gamma-chains, respectively. These results suggest that gamma delta-TCR+ IEL possess a regulatory function, namely the restoration of immune responses in a state of oral tolerance. Further, both CD3+, CD4-, CD8+, Thy-1-, and CD3+, DN IEL T cells exhibit this effector contrasuppressor function.  相似文献   

10.
Intestinal intraepithelial lymphocytes (IEL) from mice are greater than 80% CD3+ T cells and could be separated into four subsets according to expression of CD4 and CD8. In our studies designed to assess the functions of IEL, namely, cytokine production, it was important to initially characterize the various subsets of T cells that reside in IEL. The major subset was CD4-, CD8+ (75% of CD3+ T cells), which contained approximately 45 to 65% gamma/delta TCR+ and 35 to 45% alpha/beta TCR+ T cells. Approximately 7.5% of IEL T cells were CD4-, CD8- (double negative) and gamma/delta+ population. On the other hand, CD4+, CD8+ (double positive) and CD4+, CD8- fractions represented 10% and 7.5% of CD3+ T cells, respectively, which were all alpha/beta TCR+. Inasmuch as CD3+, CD4-, CD8+ T cells are a major subset of IEL which contain both gamma/delta TCR or alpha/beta TCR-bearing cells, the present study was focused on the capability of this subset of IEL T cells to produce the cytokines IFN-gamma and IL-5. Both gamma/delta TCR+ and alpha/beta TCR+ IEL spontaneously produced IFN-gamma and IL-5, although higher frequencies of cytokine spot-forming cells were associated with the alpha/beta TCR+ subset. Approximately 30% of CD8+, gamma/delta TCR+ cells produced both cytokines, whereas approximately 90% of alpha/beta TCR+ T cells produced either IFN-gamma or IL-5. Both gamma/delta TCR+ and alpha/beta TCR+ IEL possessed large quantities of cytokine-specific mRNA, clearly showing that these IEL were programmed for cytokine production. When IEL were activated with anti-gamma/delta or anti-CD8 antibodies, higher numbers of IFN-gamma and IL-5 spot-forming cells were noted. The present study has provided direct evidence that a major function of IEL involves cytokine production, and this is the first evidence that gamma/delta TCR+ cells in IEL possess the capability of producing both IL-5 and IFN-gamma.  相似文献   

11.
In TCR-alphabeta transgenic mice, CD4-CD8- TCR-alphabeta+ (alphabeta DN) cells arise in the absence of positively selecting MHC molecules and are resistant to clonal deletion in Ag-expressing mice. In this study the activation requirements and functional properties of alphabeta double-negative (DN) cells were compared with those of positively selected CD8+ cells expressing equivalent levels of the same MHC class I-restricted transgenic TCR. We found that positively selected CD8+ cells required a lower density of the antigenic ligand for optimal proliferative responses compared with alphabeta DN cells derived from nonpositively selecting mice. However, when the CD8 coreceptor on CD8+ cells was blocked with an anti-CD8 mAb, both alphabeta DN and CD8+ cells exhibited the same dose-response curve to the antigenic ligand and the same dependence on CD28/B7 costimulation. Positively selected CD8+ cells also differed from alphabeta DN cells in that they differentiated into more efficient killers and IL-2 producers after Ag stimulation, even after CD8 blockade. However, Ag-activated alphabeta DN and CD8+ cells were equally efficient in producing IFN-gamma, suggesting that this functional property is independent of positive selection. We also found that alphabeta DN cells recovered from the lymph nodes of Ag-expressing mice were functionally anergic. This anergic state was associated with defective proliferation and IL-2 production in response to Ag stimulation. These observations indicate that alphabeta DN cells can be anergized in vivo by physiological levels of the antigenic ligand.  相似文献   

12.
TCR alpha beta+ intestinal intraepithelial lymphocytes (IEL) can express either the typical CD8 alpha beta heterodimer or an unusual CD8 alpha alpha homodimer. Both types of CD8+ IEL require class I molecules for their differentiation, since they are absent in beta2m-/- mice. To gain insight into the role of class I molecules in forming TCR alpha beta+ CD8+ IEL populations, we have analyzed the IEL in mice deficient for either TAP, beta 2m, CD1, or K and D. We find that K-/-D-/- mice have TCR alpha beta+ CD8 alpha alpha+ IEL, although they are deficient for TCR alpha beta+ CD8 alpha beta+ cells. This indicates that at least some TCR alpha beta+ CD8 alpha alpha+ IEL require only nonclassical class I molecules for their development. Surprisingly, the TCR alpha beta+ CD8 alpha alpha+ IEL are significantly increased in K-/-D-/- mice, suggesting a complex interaction between CD8+ IEL and class I molecules that might include direct or indirect negative regulation by K and D, as well as positive effects mediated by nonclassical class I molecules.  相似文献   

13.
The response of splenic CD4 T cells from ovalbumin (OVA)-specific T cell receptor (TCR) transgenic mice after long-term feeding of a diet containing this antigen was examined. These CD4 T cells exhibited a decreased response to OVA peptide stimulation, in terms of proliferation, interleukin-2 secretion, and CD40 ligand expression, compared to those from mice fed a control diet lacking OVA, demonstrating that oral tolerance of T cells had been induced through oral intake of the antigen. We investigated the intracellular signaling pathways, which were Ca/CN cascade and Ras/MAPK cascade, of these tolerant CD4 T cells using phorbol-12-myristate-13-acetate (PMA) and ionomycin, which are known to directly stimulate these pathways. In contrast to the decreased response to TCR stimulation by OVA peptide, it was shown that the response of splenic CD4 T cells to these reagents in the state of oral tolerance was stronger. These results suggest that splenic CD4 T cells in the state of oral tolerance have an impairment in signaling, in which signals are not transmitted from the TCR to downstream signaling pathways, and have impairments in the vicinity of TCR. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
In a previous study we presented data indicating that the expanded population of CD4(-)CD8(-) (DN) alphabeta T cells in TCRalpha-chain-transgenic mice was partially if not entirely derived from gammadelta T cell lineage cells. The development of both gammadelta T cells and DN alphabeta T cells is poorly understood; therefore, we thought it would be important to identify the immediate precursors of the transgene-induced DN alphabeta T cells. We have in this report studied the early T cell development in these mice and we show that the transgenic TCRalpha-chain is expressed by precursor thymocytes already at the CD3(-)CD4(-)CD8(-) (triple negative, TN) CD44(+)CD25(-) stage of development. Both by using purified precursor populations in reconstitution experiments and by analyzing fetal thymocyte development, we demonstrated that early TN precursors expressing endogenous TCRbeta-chains matured into DN alphabeta T cells at several stages of development. The genes encoding the gamma-chain of the high affinity receptor for IgE (FcepsilonRIgamma) and the CD3zeta protein were found to be reciprocally expressed in TN thymocytes such that during development the FcepsilonRIgamma expression decreased whereas CD3zeta expression increased. Furthermore, in a fraction of the transgene-induced DN alphabeta T cells the FcepsilonRIgamma protein colocalized with the TCR/CD3 complex. These data suggest that similarly to gammadelta T cells and NKT cells, precursors expressing the TCR early in the common alphabetagammadelta developmental pathway may use the FcepsilonRIgamma protein as a signaling component of the TCR/CD3 complex.  相似文献   

15.
Skeletal muscles account for more than 30% of the human body, yet mechanisms of immunological tolerance to this tissue remain mainly unexplored. To investigate the mechanisms of tolerance to muscle-specific proteins, we generated transgenic mice expressing the neo-autoantigen OVA exclusively in skeletal muscle (SM-OVA mice). SM-OVA mice were bred with OT-I or OT-II mice that possess a transgenic TCR specific for OVA peptides presented by MHC class I or class II, respectively. Tolerance to OVA did not involve clonal deletion, anergy or an increased regulatory T cell compartment. Rather, CD4+ T cell tolerance resulted from a mechanism of ignorance revealed by their response following OVA immunization. In marked contrast, CD8+ T cells exhibited a loss of OVA-specific cytotoxic activity associated with up-regulation of the immunoregulatory programmed death-1 molecule. Adoptive transfer experiments further showed that OVA expression in skeletal muscle was required to maintain this functional tolerance. These results establish a novel asymmetric model of immunological tolerance to muscle autoantigens involving Ag ignorance for CD4+ T cells, whereas muscle autoantigens recognized by CD8+ T cells results in blockade of their cytotoxic function. These observations may be helpful for understanding the breakage of tolerance in autoimmune muscle diseases.  相似文献   

16.
In the presence of the I-Ealpha protein, transgenic (Tg) mice expressing the 1H3.1 alphabeta TCR that is specific for the Ealpha52-68:I-A(b) complex display drastic intrathymic deletion. Although peripheral T cells from these mice remained unresponsive to the Ealpha52-68:I-A(b) complex, they contained a subpopulation able to specifically react to this complex in the presence of exogenous IL-2, indicating that some 1H3.1 alphabeta TCR Tg T cells have escaped clonal deletion and efficiently populated the periphery. IL-2-dependent, Ealpha52-68:I-A(b) complex-responsive T cells were CD4-CD8- and expressed the 1H3.1 alphabeta TCR. Such T cells could develop intrathymically, did not show sign of regulatory/suppressor activity, displayed a typical naive phenotype, and seemed to persist in vivo over time. CD4-CD8- TCR Tg T cells were also detected when the surface density of the deleting ligand was increased on MHC class II+ cells. In addition, the development of CD4-CD8- 1H3.1 alphabeta TCR Tg T cells could be supported by I-A(b) molecules. These observations indicate that CD4 surface expression neither specifies, nor is required for, the thymic export of mature thymocytes expressing a MHC class II-restricted alphabeta TCR. The data also show that, although the avidity of the interaction involved in intrathymic deletion is significantly lower than that involved in mature T cell activation, its range can be large enough to be influenced by the presence or absence of coreceptors. Finally, the margin created by the absence of CD4 coreceptor was substantial because it could accommodate various amounts of the deleting ligand on thymic stromal cells.  相似文献   

17.
Spontaneous experimental autoimmune encephalomyelitis arises in 100% of mice exclusively harboring myelin basic protein-specific T cells, and can be prevented by a single injection of CD4+ T cells obtained from normal donors. Given the powerful regulatory effect of the transferred T cells, we further investigated their properties, and, in particular, their repertoire requirements. Transfer of monoclonal OVA-specific CD4+ T cells did not confer protection from disease even when present at very high proportions (about 80% of total lymphocytes). Lack of protection was also evident after immunization of these animals with OVA, indicating that not just any postthymic CD4+ T cells has the potential to become regulatory. However, protection was conferred by cells bearing limited TCR diversity, including cells expressing a single Valpha4 TCR chain or cells lacking N nucleotides. We also investigated whether coexpression of the myelin basic protein-specific TCR with another TCR in a single cell would alter either pathogenesis or regulation. This was not the case, as myelin basic protein-specific/OVA-specific recombinase activating gene-1-/- double TCR transgenic mice still developed experimental autoimmune encephalomyelitis spontaneously even after immunization with OVA. Based on this evidence, we conclude that CD4+ T regulatory cells do not express canonical TCRs and that the altered signaling properties brought about by coexpression of two TCRs are not sufficient for the generation of regulatory T cells. Instead, our results indicate that regulatory T cells belong to a population displaying wide TCR diversity, but in which TCR specificity is central to their protective function.  相似文献   

18.
Activation of CD25(+)CD4(+) regulatory T cells by oral antigen administration   总被引:36,自引:0,他引:36  
CD25(+)CD4(+) T cells are naturally occurring regulatory T cells that are anergic and have suppressive properties. Although they can be isolated from the spleens of normal mice, there are limited studies on how they can be activated or expanded in vivo. We found that oral administration of OVA to OVA TCR transgenic mice resulted in a modification of the ratio of CD25(+)CD4(+) to CD25(-)CD4(+) cells with an increase of CD25(+)CD4(+) T cells accompanied by a decrease of CD25(-)CD4(+) T cells. The relative increase in CD25(+)CD4(+) T cells persisted for as long as 4 wk post feeding. We also found that CTLA-4 was dominantly expressed in CD25(+)CD4(+) T cells and there was an increase in the percentage of CD25(+)CD4(+) T cells expressing CTLA-4 in OVA-fed mice. In contrast to CD25(-)CD4(+) cells, CD25(+)CD4(+) cells from fed mice proliferated only minimally to OVA or anti-CD3 and secreted IL-10 and elevated levels of TGF-beta(1) following anti-CD3 stimulation. CD25(+)CD4(+) cells from fed mice suppressed the proliferation of CD25(-)CD4(+) T cells in vitro more potently than CD25(+)CD4(+) T cells isolated from unfed mice, and this suppression was partially reversible by IL-10 soluble receptor or TGF-beta soluble receptor and high concentration of anti-CTLA-4. With anti-CD3 stimulation, CD25(+)CD4(+) cells from unfed mice secreted IFN-gamma, whereas CD25(+)CD4(+) cells from fed mice did not. Adoptive transfer of CD25(+)CD4(+) T cells from fed mice suppressed in vivo delayed-type hypersensitivity responses in BALB/c mice. These results demonstrate an Ag-specific in vivo method to activate CD25(+)CD4(+) regulatory T cells and suggest that they may be involved in oral tolerance.  相似文献   

19.
Development of a C57BL/6-+/+ TCR transgenic mouse containing the rearranged TCR alpha- and beta-chain specific for the Db + HY male Ag results in production of a nearly monoclonal population of early thymocytes expressing the Db + HY reactive TCR. These thymocytes are autoreactive in H-2Db male mice and undergo clonal deletion and down-regulation of CD8. To study the effect of the lpr gene on development of autoreactive T cells, these transgenic mice were backcrossed with C57BL/6-lpr/lpr mice. T cell populations in the thymus and spleen were analyzed by three-color flow cytometry for expression of CD4, CD8, and TCR. The thymus of TCR transgenic H-2b/b lpr/lpr male mice had an increase in percent and absolute number of CD8dull thymocytes compared to TCR transgenic H-2b/b +/+ male mice. However, there was not a complete defect in clonal deletion, because clonal deletion and down-regulation of CD8 was apparent in both +/+ and lpr/lpr H-2Db HY+ male mice compared to H-2Db HY- female mice. The phenotype of splenic T cells was almost identical in TCR transgenic +/+ and lpr/lpr males with about 50% CD4-CD8- T cells and 50% CD8+ T cells. However, there was a dramatic increase in the SMLR proliferative response of splenic T cells from TCR transgenic lpr/lpr males compared to TCR transgenic +/+ males. To determine the specificity of this response, spleen cells from TCR transgenic lpr/lpr and +/+ mice were cultured with irradiated H-2b/b and H-2k/k male and female spleen cells. T cells from TCR transgenic C57BL/6-lpr/lpr male mice had an increased proliferative response to H-2b/b male spleen cells compared to T cells from TCR transgenic C57BL/6(-)+/+ male mice, but both lpr/lpr and +/+ mice had a minimal response to irradiated H-2b/b female or H-2k/k male or female stimulator cells. The splenic T cells from TCR transgenic lpr/lpr mice also had an increased specific cytotoxic activity against H-2b/b male target cells compared to TCR transgenic +/+ mice. These results demonstrate that there is a defect in negative selection of self-reactive T cells in the thymus of lpr/lpr mice and a defect in induction or maintenance of clonal anergy of self-reactive T cells in the periphery of lpr/lpr mice.  相似文献   

20.
Normal T cell repertoire contains regulatory T cells that control autoimmune responses in the periphery. One recent study demonstrated that CD4(+)CD25(+) T cells were generated from autoreactive T cells without negative selection. However, it is unclear whether, in general, positive selection and negative selection of autoreactive T cells are mutually exclusive processes in the thymus. To investigate the ontogeny of CD4(+)CD25(+) regulatory T cells, neo-autoantigen-bearing transgenic mice expressing chicken egg OVA systemically in the nuclei (Ld-nOVA) were crossed with transgenic mice expressing an OVA-specific TCR (DO11.10). Ld-nOVA x DO11.10 mice had increased numbers of CD4(+)CD25(+) regulatory T cells in the thymus and the periphery despite clonal deletion. In Ld-nOVA x DO11.10 mice, T cells expressing endogenous TCR alpha beta chains were CD4(+)CD25(-) T cells, whereas T cells expressing autoreactive TCR were selected as CD4(+)CD25(+) T cells, which were exclusively dominant in recombination-activating gene 2-deficient Ld-nOVA x DO11.10 mice. In contrast, in DO11.10 mice, CD4(+)CD25(+) T cells expressed endogenous TCR alpha beta chains, which disappeared in recombination-activating gene 2-deficient DO11.10 mice. These results indicate that part of autoreactive T cells that have a high affinity TCR enough to cause clonal deletion could be positively selected as CD4(+)CD25(+) T cells in the thymus. Furthermore, it is suggested that endogenous TCR gene rearrangement might critically contribute to the generation of CD4(+)CD25(+) T cells from nonautoreactive T cell repertoire, at least under the limited conditions such as TCR-transgenic models, as well as the generation of CD4(+)CD25(-) T cells from autoreactive T cell repertoire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号