首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of rare metal ions on the activity of the peroxidase system in Pisum sativum L. roots was studied by luminol-dependent chemiluminescence. Trivalent ions of scandium, gallium, indium, and lanthanum, to different extents, inhibit the chemiluminescence of damaged P. sativum roots. A decreased generation of superoxide due to the formation of the complex between metal ions and NADP can underlie the inhibited activity of peroxidase system. The possible mechanism of inhibition of the peroxidase system activity by metal ions is discussed.  相似文献   

2.
Tissue cultures of Armoracia rusticana L., both transformed with Agrobacterium rhizogenes and nontransformed, were screened for peroxidase activity. Most of the derived and tested strains exhibited 20 times higher activity [from 99 to 723 U g−1(d.m.)] than the root of the intact plant [(30 U g−1 (d.m.)]. The highest peroxidase activity was found in tumour culture growing on the medium without growth regulators. The influence of the addition of sugars and heavy metal ions in the medium on peroxidase production was tested. Increase in peroxidase activity was observed after cultivation of horseradish culture with cadmium, cobalt, nickel or lead ions.This work is supported by Grant Agency of Czech Republic Project No. 526/04/0135.  相似文献   

3.
We present the evidence showing that small fractions of electrophoretically homogeneous immunoglobulin G (IgGs) from the sera of healthy humans and their Fab and F(ab)2 fragments oxidize 3,3′‐diaminobenzidine through a peroxidase activity in the presence of H2O2 and through an oxidoreductase activity in the absence of H2O2. During purification on protein G‐Sepharose and gel filtration, the polyclonal IgGs partially lose the Me2+ ions. After extensive dialysis of purified Abs against agents chelating metal ions, the relative peroxidase activity decreased dependently of IgG analyzed from 100 to ~10–85%, while oxidoreductase activity from 100 to 14–83%. Addition of external metal ions to dialyzed and non‐dialyzed IgGs leads to a significant increase in their activity. Chromatography of the IgGs on Chelex non‐charged with Cu2+ ions results in the adsorption of a small IgG fraction bound with metal ions (~5%), while Chelex charged with Cu2+ ions bind additionally ~38% of the total IgGs. Separation of Abs on both sorbents results in IgG separation to many different subfractions demonstrating various affinities to the chelating resin and different levels of the specific oxidoreductase and peroxidase activities. In the presence of external Cu2+ ions, the specific peroxidase activity of several IgG subfractions achieves 20–27 % as compared with horseradish peroxidase (HRP, taken for 100%). The oxidoreductase activity of these fractions is ~4–6‐fold higher than that for HRP. Antioxidant enzymes such as superoxide dismutases, catalases, and glutathione peroxidases are known to represent critical defence mechanisms for preventing oxidative modifications of DNA, proteins, and lipids. Peroxidase and oxidoreductase activities of human IgGs could also play an important role in the protection of organisms from oxidative stress and toxic compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
We present evidence showing that a small fraction of electrophoretically homogeneous IgGs from the sera of healthy Wistar rats is bound with several different Me2+ ions and oxidizes 3,3'-diaminobenzidine through a peroxidase activity in the presence of H2O2 and through an oxidoreductase activity in the absence of H2O2. During purification on Protein A-Sepharose and gel filtration, the polyclonal IgGs partially lose the Me2+ ions. Therefore, in the absence of external metal ions, the specific peroxidase activity of IgGs from the sera of different rats varied in the range 1.6-26% and increased up to 13-198% after addition of Fe2+ or Cu2+ ions as compared with horseradish peroxidase (HRP, taken for 100%). The oxidoreductase activity of HRP is 24-fold lower than its peroxidase activity, while oxidoreductase and peroxidase activities of IgGs are comparable. Oxidoreductase activities of different IgGs in the absence of external metal ions varied from 22 to 800%, and in the presence of Fe2+ or Cu2+ ions, from 37 to 1100% in comparison with the HRP oxidoreductase activity (100%). Chromatography of the IgGs on Chelex-100 leads to the adsorption of a small IgG fraction bound with metal ions and to its separation to many different subfractions demonstrating various affinities to the chelating resin and increased levels of the specific oxidoreductase and peroxidase activities. Antioxidant enzymes such as superoxide dismutases, catalases, and glutathione peroxidases are known to represent critical defense mechanisms for preventing oxidative modifications of DNA, proteins, and lipids. Peroxidase and oxidoreductase activity of antibodies may play an important role in the protection of organisms from oxidative stress and toxic compounds.  相似文献   

5.
Miller CO 《Plant physiology》1985,79(3):908-910
Apparently free-base cytokinins can interact with cupric ions in a specific manner. Oxidation of NADH by a horseradish peroxidase system was strongly promoted by such cytokinins provided cupric ions were present. Oxidation was promoted by 5 micromolar kinetin, zeatin, 6-benzylaminopurine (BA), or 6-(Δ2-isopentenylamino)purine (2iP) but not by adenine, 6-methylaminopurine or 6,6-dimethylaminopurine. The 6-methylaminopurine promoted oxidation at 500 micromolar but adenine and 6,6-dimethylaminopurine did not. Activity of the free-base purines correlated well with their activity in cell-division assays. However, addition of methoxymethyl-, cyclohexyl-, or tetrahydropyranyl- at N-9 of BA or of ribosyl- at N-9 of BA, 2iP, kinetin, or zeatin eliminated activity in the peroxidase system. In a nonenzymic system containing cupric ions, all of the bases, including adenine, inhibited the Cu2+ -stimulated oxidation of ascorbic acid. As in the peroxidase system, the N-9 derivatives were inactive. The cytokinin promotion of NADH oxidation by peroxidase may result from an interaction of the hormones with copper, with peroxidase conferring a specificity similar to the cytokinin specificity observed in growth and development.  相似文献   

6.
The present study aims to examine PAB culture, synthesizing a significant number of iron-containing enzymes and capable of adhesion. Results show that increased iron concentration increased enzymes activity in all strains studied. An increase of iron ions level increasing up to 0.50–0.60 mg/ml leads to a 1.3-fold and 2-dold increase of catalase and SOD activity respectively, peroxidase activity was virtually unchanged. Optimal iron ions Fe2+ doses to ensure active PAB growth were determined. Of all the cultures studied P. fredenreichii subsp. shermanii AC-2503 has high adhesion: AAI = 5.1; MAI = 5.60; erythrocyte involvement rate = 87%. It was shown that certain iron ion concentrations increased the specific growth rate of PAB (P. freudenrichii subsp. freudenrichii AC-2500 (0.3 mg/ml) and other strains (0.4 mg/ml). A further increase in the iron ions concentration slows bacterial growth, while excessive content inhibits metabolism, including defense mechanisms that offset the negative effects of the metal. Our subsequent studies will focus on the effect of other metal ions on the metabolism of bacteria, mainly lactic acid bacteria, which are important biotechnological objects of the industry similar to propionic acid bacteria.  相似文献   

7.
The effect of vanadium (V) on the activity of horseradish peroxidase, catalase, glutathione peroxidase, and superoxide dismutase has been studied. A competitive inhibition pattern was evident for vanadate ions on the activity of horseradish peroxidase (Ki = 41.2 microM). No significant inhibitory effects were found when V(V) was tested with catalase and when either V(IV) or V(V) were assayed with glutathione peroxidase. For the latter, the effect of V on the different components of the reaction system was investigated. V(V) did not significantly affect SOD activity when assayed with the sulfite method, which is devoid of interferences with V(V); however, there was an apparent inhibitory dose-response pattern for either V(IV) or V(V) using the pyrogallol assay, owing to an interference of pyrogallol with the metal. Besides, no significant binding of V(IV) or V(V) to the enzyme could be demonstrated. The lack of a direct inhibitory effect of V on the activity of the main antioxidant enzymes suggests that many biological and toxicological effects of V may be mediated more by oxidative reactions of the metal or of its complexes with physiologically relevant biomolecules than by a direct modulation of enzymatic activities.  相似文献   

8.
A relationship between the antioxidant defence system and metal iontolerance in two types of sunflower callus differing in metal ion sensitivitywas studied. The antioxidant defence system of callus subjected to anadaptationtreatment of Cd(II), Al(III) and Cr(III) responded differently to 150M of each metal compared with the corresponding controls undershock treatment. The GSH/GSSG ratio remained similar to control values for thethree metal-acclimated calli and in the chromium shock treatment, decreasingmoderately in the acute treatment with cadmium and aluminum. In contrast, theAs/DAs ratio was decreased in the two different treatments for the three metalsions, but the decrease was greater with acute stress. The antioxidant enzymesresponded differently according to the metal and treatment used. In chromiumadapted callus, all antioxidant enzymes increased except for glutathionereductase. However, in the shock treatment ascorbate peroxidase activity wasdiminished with each metal ion assayed. Guaiacol peroxidase was decreased bycadmium and chromium and remained similar to control values with aluminum.Glutathione reductase was only decreased by cadmium, and superoxide dismutaseand catalase activities were less increased than in tolerant cells. Theseresults suggest the involvement of an antioxidant defence system in theadaptiveresponse to heavy metal ions in Helianthus annuus L.cells.  相似文献   

9.
We studied the effects of chitooligosaccharides (ChOS) with a mol wt of 5 kD, the degree of acetylation of 65%, and the concentrations from 0.01 to 100 mg/l on the content of hydrogen peroxide in incubation medium and the activity of anionic peroxidase (pI 3.5) in the segments of wheat (Triticum aestivum) coleoptiles. H2O2 production and peroxidase activity were found to be dependent on the ChOS concentration. After 3 h of incubation, the highest H2O2 level in medium was observed at 0.01 mg/l ChOS, whereas after 6h, at 1 mg/l. After 3 h of incubation, ChOS suppressed peroxidase activity. After 6 h of incubation, high ChOS concentrations enhanced peroxidase activity. IAA favored H2O2 accumulation in medium and suppressed anionic peroxidase. The involvement of ChOS in the control of the level of reactive oxygen species and anionic peroxidase activity in plant cells is suggested.Translated from Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 238–242.Original Russian Text Copyright © 2005 by Yusupova, Akhmetova, Khairullin, Maksimov.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

10.
Abstract

The present research work focused on the metal translocation in the soil-plant system and subsequent metal stress on biochemical response of aquatic macrophytes growing along an industrial waste discharge channel. The bottom sediment of the effluent channel is highly contaminated with metals. High transfer factor (TF) for most of the metals indicated higher metal uptake by aquatic macrophytes of which Typha sp. was found to be the most suitable. Average TF was in the order of Fe (4.82) > Mn (3.91) > Cu (3.59) > Cd (2.29) > Zn (2.22) > Cr (1.83) > Pb (1.80). Hyper accumulation of metals within plants resulted in significant reductions in total chlorophyll, soluble sugar with an increase in protein and proline content. The investigation also demonstrated that exposure to high concentrations on metals resulted in enhanced activity of catalase (61.82–90.91%) and peroxidase (37.08–70.23%) in all examined macrophytes with a reduced (27.58–43.4%) or unchanged ascorbate peroxidase activity depending on plant species.  相似文献   

11.
Lipid hydroperoxide (LOOH)–dependent lipid peroxidation was induced in α-linolenic acid (LNA)-loaded hepatocytes by adding Fe, Cu, V, or Cd ions at concentrations from 20 to 500 μM. The effects of structurally related flavonoids at concentrations from 10 to 500 μM on the lipid peroxidation were examined. The results with regard to each flavonoid subclass are as follows: (i) Flavonols such as myricetin, quercetin, fisetin, and kaempferol, but not morin, showed dose-dependent antioxidative activity against metal-induced lipid peroxidation at all metal concentrations. Myricetin, quercetin, and fisetin were the most effective antioxidants, although their efficacies depended on the metal ion. Kaempferol and morin had antioxidative activity equal to the other flavonols in the presence of Cu ions, but were much less effective for the other three metal ions. (ii) Flavones, luteolin, apigenin, and chrysin were antioxidative at low Fe concentrations, but were pro-oxidative at high Fe concentrations. Luteolin exhibited antioxidative activity similar to that of catechol-containing flavonols in the presence of the other three metal ions. Apigenin and chrysin also acted as pro-oxidants with V or with all metal ions, respectively. (iii) Taxifolin, a flavanone, also showed both anti- and prooxidative activity, depending on Fe concentrations, but with other metal showed only antioxidative activity ions. (iv) Epigallocatechin, a flavanol, was antioxidative with all metal ions, and its activity was similar to that of catechol-containing flavonols. The various effects of flavonoids on metal-induced lipid peroxidation in LNA-loaded hepatocytes is discussed with regard to the change in redox potential of flavonoid–metal complexes.  相似文献   

12.
We compare cadmium and copper induced oxidative stress in tomato leaves and the antioxidative enzyme response during a time course of 96 h. Plants were subjected to 25 μM of CdCl2 or CuSO4 and malondialdehyde (MDA) level and activity of guaiacol peroxidase, superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase were determined. The results showed that there was an early increase in the MDA level and in the guaiacol peroxidase activity more pronounced with copper exposure during almost all the time course of the experiment. The activity of superoxide dismutase and catalase was induced very early after cadmium and copper treatment, reached a maximal value after 12 h and then declined but it remained always slightly higher than the control at the end of the experiment. Ascorbate peroxidase activity pathway was similar to superoxide dismutase or catalase with a maximal activity after 48 h of heavy metal exposure. Induction of glutathione reductase activity observed only under copper exposure is maintained during almost all the experimental time. The antioxidative activity developed by tomato leaves is more induced by copper treatment. This can be related to the ability of this metal to induce more than cadmium an accumulation of reactive oxygen species (ROS) at the cellular level. Decline in the antioxidative enzymes activity at the end of the experiment can be a consequence of cadmium- and copper-inducing a further ROS formation that might affect enzymes activity.  相似文献   

13.
Do ecto- and ericoid mycorrhizal fungi produce peroxidase activity?   总被引:1,自引:0,他引:1  
 Several reports attest to the apparent ability of some ectomycorrhizal (ECM) and ericoid (ERM) mycorrhizal fungi to produce peroxidase enzyme activities during growth in axenic culture. In critically reviewing these data, we highlight that apparent peroxidase activities have been observed during growth in media containing 60–70 μM Fe. ECM and ERM fungi are known to produce H2O2 via carbohydrate oxidase activity and conditions in common culture media are favourable to the production of hydroxyl radicals, superoxide radicals and ferryl ions via the Fenton reaction. Free radicals so produced can mediate oxidation of substrates commonly used in presumptive peroxidase assays, leading to false-positive results. We argue that there is currently no evidence to support production of peroxidase activity by ECM or ERM fungi, but highlight circumstances in which peroxidase expression might be observed in future work. Accepted: 16 July 1998  相似文献   

14.
The effects of gold(I) complexes (auranofin, triethylphosphine gold and aurothiomalate), gold(III) complexes ([Au(2,2'-diethylendiamine)Cl]Cl(2), [(Au(2-(1,1-dimethylbenzyl)-pyridine) (CH(3)COO)(2)], [Au(6-(1,1-dimethylbenzyl)-2,2'-bipyridine)(OH)](PF(6)), [Au(bipy(dmb)-H)(2,6-xylidine)](PF(6))), metal ions (zinc and cadmium acetate) and metal complexes (cisplatin, zinc pyrithione and tributyltin) on mitochondrial thioredoxin reductase and mitochondrial functions have been examined. Both gold(I) and gold(III) complexes are extremely efficient inhibitors of thioredoxin reductase showing IC(50) ranging from 0.020 to 1.42 microM while metal ions and complexes not containing gold are less effective, exhibiting IC(50) going from 11.8 to 76.0 microM. At variance with thioredoxin reductase, auranofin is completely ineffective in inhibiting glutathione peroxidase and glutathione reductase, while gold(III) compounds show some effect on glutathione peroxidase. The mitochondrial respiratory chain is scarcely affected by gold compounds while the other metal complexes and metal ions, in particular zinc ion and zinc pyrithione, show a more marked inhibitory effect that is reflected on a rapid induction of membrane potential decrease that precedes swelling. Therefore, differently from gold compounds, the various metal ions and metal complexes exert their effect on different targets indicating a lower specificity. It is concluded that gold compounds are highly specific inhibitors of mitochondrial thioredoxin reductase and this action influences other functions such as membrane permeability properties. Metal ions and metal complexes markedly inhibit the activity of thioredoxin reductase although to an extent lower than that of gold compounds. They also inhibit mitochondrial respiration, decrease membrane potential and, finally, induce swelling.  相似文献   

15.
In vivo, cysteine in proteins or glutathione is the major amino acid involved in sulfhydryl oxidation-reduction reactions. An in vitro model of cysteine oxidation accelerated by selenium compounds was used to study the interaction of selenocystine and sodium selenite with metal ions. The interaction of metal ions with selenium compounds inhibited cysteine oxidation. The ionic forms of three toxic soft-acid metals, mercury, silver, and gold, were the most effective inhibitors. The antiarthritic gold drugs, aurothiomalate and aurothioglucose, were of particular interest as they inhibit the activity of selenium-glutathione peroxidase. The effect of gold ligands on gold(I) inhibition of selenocystine-accelerated cysteine oxidation was tested. Sodium cyanide partially reversed inhibition and potassium iodide had no effect. Inhibition of selenium-accelerated oxidation-reduction reactions by soft-acid metal ions may be of biological relevance during toxicities or during antiarthritic gold therapy.  相似文献   

16.
Fish erythrocytes were used to elucidate the effect of zinc ions on the cell antioxidant defence system. It was detected that an increase of the Zn2+ concentration (0.01-1 mM) leads to a marked decrease (p < 0.05) in the catalase and the glutathione peroxidase activities. We observed a loss of 14-39% activity of glutathione peroxidase, and 16-20% diminution for catalase. No significant changes were found in case of the superoxide dismutase. Incubation of red blood cells with zinc brought about a decrease of the erythrocyte thiol group content. Treatment of carp erythrocytes with zinc ions also resulted in enhanced hemolysis and in the induction of significant (p < 0.001) changes in the intracellular glucose level. The increase of glucose concentration in the erythrocytes was correlated with increased concentration of metal in the incubation medium. It was proposed that Zn could affect transport systems across the red blood cells and therefore increased the permeability of the membranes to small molecules (e.g. hexose), and led to hemolysis. Zinc ions could act as a potential cell toxicant, leading to disturbances in functions of the antioxidant defence system and to alterations in the erythrocyte membrane properties.  相似文献   

17.
It was shown that IgGs purified from the sera of healthy Wistar rats contain several different bound Me2+ ions and oxidize 3,3'-diaminobenzidine through a H2O2-dependent peroxidase and H2O2-independent oxidoreductase activity. IgGs have lost these activities after removing the internal metal ions by dialysis against EDTA. External Cu2+ or Fe2+ activated significantly both activities of non-dialysed IgGs containing different internal metals (Fe > or = Pb > or = Zn > or = Cu > or = Al > or = Ca > or = Ni > or = Mn > Co > or = Mg) showing pronounced biphasic dependencies corresponding to approximately 0.1-2 and approximately 2-5 mM of Me2+, while the curves for Mn2+ were nearly linear. Cu2+ alone significantly stimulated both the peroxidase and oxidoreductase activities of dialysed IgGs only at high concentration (> or = 2 mM), while Mn2+ weakly activated peroxidase activity at concentration >3 mM but was active in the oxidoreductase oxidation at a low concentration (<1 mM). Fe2+-dependent peroxidase activity of dialysed IgGs was observed at 0.1-5 mM, but Fe2+ was completely inactive in the oxidoreductase reaction. Mg2+, Ca2+, Zn2+, Al2+ and especially Co2+ and Ni2+ were not able to activate dialysed IgGs, but slightly activated non-dialysed IgGs. The use of the combinations of Cu2+ + Mn2+, Cu2+ + Zn2+, Fe2+ + Mn2+, Fe2+ + Zn2+ led to a conversion of the biphasic curves to hyperbolic ones and in parallel to a significant increase in the activity as compared with Cu2+, Fe2+ or Mn2+ ions taken separately; the rates of the oxidation reactions, catalysed by non-dialysed and dialysed IgGs, became comparable. Mg2+, Co2+ and Ni2+ markedly activated the Cu2+-dependent oxidation reactions catalysed by dialysed IgGs, while Ca2+ inhibited these reactions. A possible role of the second metal in the oxidation reactions is discussed.  相似文献   

18.
B cell destruction during the onset of diabetes mellitus is associated with oxidative stress. In this work, we attempted to further trace the fate of H2O2 inside the pancreatic islets and determine whether it is mediated by enzymatic (peroxidase) activity or by chemical reaction with thiols from any protein chain. Our results suggest that the islet cells have a very similar peroxidase activity at the hydrophilic (cytoplasm) and hydrophobic compartments (organelles and nucleus), independent of the catalase content of the samples. This activity is composed of sacrificial thiols and by proteins with Fe3+/Mn3+ ions at non-heme catalytic sites. The capacity of the hydrophobic fraction to scavenge O2- was increased in the presence of high concentrations of NADP* and RS* and was highly dependent on RSH. On the contrary, the hydrophilic fraction exhibited a low RSH-dependent activity where the O2- scavenging is related to metal Cu2+/Fe3+/Mn3+ ions attached to the protein molecules.  相似文献   

19.
The electron spin resonance-spin stabilization technique has been applied in an enzymatic system. This technique, which generates radicals in high steady-state concentration under static conditions, involves the use of limited quantities of enzyme and substrate while allowing facile spectral interpretation. In this work o-semiquinone intermediates produced during peroxidase-catalyzed oxidation of catechols and catecholamines have been detected as their metal complexes with Zn2+. No significant effect on the peroxidase activity was found for the concentrations of Zn2+ ions employed.  相似文献   

20.
Effects of Ca2+ ions on the intensity of lipid peroxidation, activities of guaiacol peroxidase, superoxide dismutase (SOD), and catalase, as well as on heat resistance of winter wheat (Triticum aestivium L.) coleoptiles were examined. A preliminary incubation of coleoptile segments in a 5 mM CaCl2 solution was shown to improve their survival rates after an injuring heat treatment (43.5°C). The effect of Ca2+ was suppressed by the inhibitor of Ca2+ channels (1 mM LaCl3). An incubation of coleoptiles in the presence of 5 mM CaCl2 prior to the stress treatment elevated the content of lipid peroxidation product, malondialdehyde (MDA) and stimulated the activities of guaiacol peroxidase, SOD, and catalase. After the heat exposure of untreated and Ca2+-treated seedlings, differential changes in MDA content and in activities of guaiacol peroxidase, SOD, and catalase were observed. It is concluded that a short-term oxidative stress arising in Ca2+-enriched plant tissues after the heat treatment is unrelated to their irreversible damage.Translated from Fiziologiya Rastenii, Vol. 52, No. 2, 2005, pp. 227–232.Original Russian Text Copyright © 2005 by Kolupaev, Akinina, Mokrousov.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号