首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Shuttle cloning vectors for use with the cyanobacterium Anacystis nidulans and Escherichia coli were constructed by combining an endogenous A. nidulans plasmid with an E. coli vector containing a 14 site non-symmetrical polylinker. The resulting plasmids, designated pPLAN B1 and pPLAN B2, transform A. nidulans with high efficiency and contain 7 unique restriction enzyme sites suitable for cloning.  相似文献   

2.
Anacystis nidulans R2 is a highly transformable strain which is suitable as a recipient for molecular cloning in cyanobacteria. In an effort to produce an appropriate cloning vector, we constructed a hybrid plasmid molecule, pSG111, which contained pBR328 from Escherichia coli and the native pUH24 plasmid of A. nidulans. pSG111 replicated in and conferred ampicillin and chloramphenicol resistance to both hosts. It contained unique sites for the restriction enzymes EcoRI, SalI, SphI, and XhoI, which could be used for the insertion of exogenous DNA. To demonstrate that a molecule like pSG111 could serve as a shuttle vector for the cloning of A. nidulans genes, we constructed a hybrid plasmid, pRNA404, containing an A. nidulans rRNA operon. This recombinant molecule was genetically and structurally stable during passage through A. nidulans and E. coli. The stability of the hybrid plasmid and the inserted rRNA operon demonstrates the feasibility of cloning in A. nidulans with hybrid vectors, with the subsequent retrieval of cloned sequences.  相似文献   

3.
Chimeric plasmids able to replicate in Bacteroides fragilis or in B. fragilis and Escherichia coli were constructed and used as molecular cloning vectors. The 2.7-kilobase pair (kb) cryptic Bacteroides plasmid pBI143 and the E. coli cloning vector pUC19 were the two replicons used for these constructions. Selection of the plasmid vectors in B. fragilis was made possible by ligation to a restriction fragment bearing the clindamycin resistance (Ccr) determinant from a Bacteroides R plasmid, pBF4;Ccr was not expressed in E. coli. The chimeric plasmids ranged from 5.3 to 7.3 kb in size and contained at least 10 unique restriction enzyme recognition sites suitable for cloning. Transformation of B. fragilis with the chimeric plasmids was dependent upon the source of the DNA; generally 10(5) transformants micrograms-1 of DNA were recovered when plasmid purified from B. fragilis was used. When the source of DNA was E. coli, there was a 1,000-fold decrease in the number of transformants obtained. Two of the shuttle plasmids not containing the pBF4 Ccr determinant were used in an analysis of the transposon-like structure encoding Ccr in the R plasmid pBI136. This gene encoding Ccr was located on a 0.85-kb EcoRI-HaeII fragment and cloned nonselectively in E. coli. Recombinants containing the gene inserted in both orientations at the unique ClaI site within the pBI143 portion of the shuttle plasmids could transform B. fragilis to clindamycin resistance. These results together with previous structural data show that the gene encoding Ccr lies directly adjacent to one of the repeated sequences of the pBI136 transposon-like structure.  相似文献   

4.
A hybrid plasmid was constructed between the 5.3-megadalton plasmid (pUH24) of Anacystis nidulans R2 and the Escherichia coli plasmid pBR322. This was accomplished by adding a transposon to pBR322 and transforming this DNA into A. nidulans. One resultant hybrid, pLS103, had a molecular weight of 6.8 x 10(6), replicated in both organisms, had unique sites for two restriction endonucleases, conferred ampicillin resistance on both organisms, and could be used as a cloning vector in A. nidulans.  相似文献   

5.
Abstract 3 new shuttle cloning vectors for gene transfer into Escherichia coli and Anacystis nidulans have been constructed by utilizing the cyanobacterial origin of replication of the small plasmid pANS from A. nidulans . 2 of these new vectors, pXB7 (pDPL13 derivative) and pECAN8 (pUC8 derivative), convey ampicillin resistance, and transform A. nidulans with relatively high frequencies. Vector pXB7 has 10 unique cloning sites; pECAN8 contains 4 cloning sites within the lacZ gene permitting rapid detection of DNA inserts in the presence of Xgal. The third vector, pKBX, has a lower transformation frequency but adds kanamycin resistance as a selectable gene for shuttle vectors of cyanobacteria.  相似文献   

6.
Shuttle plasmids for Escherichia coli and Clostridium perfringens.   总被引:7,自引:2,他引:5       下载免费PDF全文
Small plasmids which replicate in both Escherichia coli and Clostridium perfringens were made by recombining E. coli plasmid pBR322 with three different small (less than 4 kilobases) plasmids native to C. perfringens. Subsequently, two homologous, though distinct, tetracycline resistance determinants (tet) from other C. perfringens plasmids were cloned into them. Both tet systems made E. coli resistant to at least 5 micrograms of tetracycline per ml when resident on the shuttle plasmids. The shuttle vectors have been used to transform L-phase variants and autoplasts of C. perfringens. In the latter case, the intact transforming plasmid could be isolated from walled cells after cell wall regeneration. Reciprocal transformation experiments in which plasmid DNAs derived from E. coli or C. perfringens were used suggest that restriction barriers exist between these two organisms. The plasmids contain restriction enzyme recognition sites in locations which are useful for cloning experiments.  相似文献   

7.
Jekyll, a family of phage-plasmid shuttle vectors   总被引:1,自引:0,他引:1  
M Burmeister  H Lehrach 《Gene》1988,73(1):245-250
A series of shuttle vectors has been constructed, which consist of a plasmid carrying a polylinker sequence and an M13 origin integrated into a lambda vector. A short direct repeat flanking the plasmid allows plasmid excision by homologous recombination. Sequences are cloned into unique restriction sites within the plasmid, and can be recovered either in phage or plasmid form, or can be packaged further as single-stranded DNA phage. These vectors therefore combine the efficiency of phage lambda cloning and screening with the ease of handling or analysing plasmid or M13 clones.  相似文献   

8.
F Bolivar 《Gene》1978,4(2):121-136
In vitro recombinant DNA techniques were used to construct two new cloning vehicles, pBR324 and pBR235. These vectors, derived from plasmid pBR322, are relaxed replicating elements. Plasmid pBR324 carries the genes from pBR322 coding for resistance to the antibiotics ampicillin (Apr) and tetracycline (Tcr) and the colicin E1 structural and immunity genes derived from plasmid pMBI. Plasmid pBR325 carries the Apr and Tcr genes from pBR322 and the cloramphenicol resistance gene (Cmr) from phage P1Cm. In these plasmids the unique EcoRI restriction site present in the DNA molecule is located either in the colicin E1 structural gene (pBR324) or in the Cmr gene (pBR325). These vectors were constructed in order to have a single EcoRI site located in the middle of a structural gene which when inactivated would allow, for the easy selection of plasmid recombinant DNA molecules. These plasmids permit the molecular cloning and easy selection of EcoRI, BamHI, HindIII, PstI, HincII, SalI, (XamI), Smal, (XmaI), BglII and DpnII restriction generated DNA molecules.  相似文献   

9.
A stable shuttle vector which replicates in Escherichia coli and Clostridium perfringens was constructed by ligating a 3.6-kilobase (kb) fragment of plasmid pBR322 with C. perfringens plasmid pHB101 (3.1 kb). The marker for this shuttle plasmid originated from the 1.3-kb chloramphenicol resistance gene of plasmid pHR106. The resulting shuttle vector, designated pAK201, is 8 kb in size and codes for resistance to 20 micrograms of chloramphenicol per ml in both E. coli and C. perfringens. Following shuttle vector construction in E. coli, plasmid pAK201 was transformed into E. coli HB101 and C. perfringens ATCC 3624A, using intact cell electroporation. The transformation frequencies were 10(6) and 10(4) transformants per microgram of DNA in E. coli and C. perfringens, respectively. Restriction enzyme analysis of the chimera isolated from transformants of both microorganisms suggested that the plasmids were identical. Reciprocal transformation experiments in E. coli and C. perfringens indicated no difference in transformation frequency. Plasmid pAK201 was stable in C. perfringens following repeated transfer in the absence of chloramphenicol pressure. The restriction map of plasmid pAK201 shows six unique cut sites which should be useful for future genetic analysis and C. perfringens gene library construction.  相似文献   

10.
A stable shuttle vector which replicates in Escherichia coli and Clostridium perfringens was constructed by ligating a 3.6-kilobase (kb) fragment of plasmid pBR322 with C. perfringens plasmid pHB101 (3.1 kb). The marker for this shuttle plasmid originated from the 1.3-kb chloramphenicol resistance gene of plasmid pHR106. The resulting shuttle vector, designated pAK201, is 8 kb in size and codes for resistance to 20 micrograms of chloramphenicol per ml in both E. coli and C. perfringens. Following shuttle vector construction in E. coli, plasmid pAK201 was transformed into E. coli HB101 and C. perfringens ATCC 3624A, using intact cell electroporation. The transformation frequencies were 10(6) and 10(4) transformants per microgram of DNA in E. coli and C. perfringens, respectively. Restriction enzyme analysis of the chimera isolated from transformants of both microorganisms suggested that the plasmids were identical. Reciprocal transformation experiments in E. coli and C. perfringens indicated no difference in transformation frequency. Plasmid pAK201 was stable in C. perfringens following repeated transfer in the absence of chloramphenicol pressure. The restriction map of plasmid pAK201 shows six unique cut sites which should be useful for future genetic analysis and C. perfringens gene library construction.  相似文献   

11.
N Rhodes  M Company  B Errede 《Plasmid》1990,23(2):159-162
A yeast-Escherichia coli shuttle vector containing the M13 origin of replication has been constructed. This vector allows selection and replication in both Saccharomyces cerevisiae and E. coli, as well as single-stranded packaging from E. coli upon infection with a helper phage. The presence of a polylinker with various unique restriction sites facilitates the cloning of desired genes.  相似文献   

12.
13.
EcoRI fragments of DNA from Bacillus subtilis NCIB 8565, a high producer of an endo-1,3-1,4-beta-D-glucanase, were 'shot-gun' cloned in the plasmid vector pBR325. A 3.5 kb insert, carrying single restriction sites for AvaI, BglII, ClaI, PvuI and PvuII, was shown to direct the synthesis of beta-glucanase in Escherichia coli K12. Enzyme activity was demonstrated in extracellular fractions of E. coli harbouring the beta-glucanase gene; however, the largest proportion (greater than 50%) of total enzyme activity was periplasmic in location. beta-Glucanase activity and cellular location were independent of the orientation of the 3.5 kb fragment in pBR325.  相似文献   

14.
K Awane  A Naito  H Araki  Y Oshima 《Gene》1992,121(1):161-165
Most vectors for Saccharomyces cerevisiae are shuttle vectors which can be both propagated and selected in Escherichia coli. The DNA segments, however, which are required for propagation in E. coli are unnecessary and moreover toxic in S. cerevisiae. To delete these harmful DNA fragments from the vector after it is introduced into S. cerevisiae cells, we propose a specific gene conversion mechanism of a yeast plasmid, pSR1. Plasmid pSR1 has a pair of inverted repeats (IRs) that divides the plasmid molecule into two unique regions. Intramolecular recombination frequently occurs at a pair of specific recombination sites in IRs catalyzed by recombinase R, encoded by a pSR1 plasmid gene. This R-mediated recombination is often accompanied by gene conversion in IRs. Thus, a 2.1-kb pBR322 sequence for the E. coli host ligated into one of the IRs of a composite plasmid was automatically and effectively eliminated when the plasmid was introduced into S. cerevisiae cells.  相似文献   

15.
A functional map of Streptomyces coelicolor plasmid SCP2* was deduced from derivatives constructed by in vitro deletions. Functions were analyzed on bifunctional shuttle plasmids that contained pBR322 for selection and replication in Escherichia coli and fragments of SCP2* for replication in Streptomyces griseofuscus C581 and strains of Streptomyces lividans. The aph gene for neomycin resistance from Streptomyces fradiae and the tsr gene for thiostrepton resistance from Streptomyces azureus were incorporated as selectable antibiotic resistance markers in streptomycetes. An 11.8-kb sequence bounded by EcoRI and KpnI restriction sites contains the information for self-transfer and normal replication of the plasmid. A 5.9-kb EcoRI-SalI fragment contains all of the information for normal replication. Partial digestion generated a 2.2-kb Sau3A fragment that is sufficient for replication but it produces ten times higher plasmid copy number than the basic replicon. pHJL400 and PHJL401 are useful shuttle vectors containing the moderate-copy-number streptomycete plasmid combined with the E. coli plasmid pUC19. A 1.4-kb BclI-Sau3A fragment with an additional internal BclI site contains the minimal replicon but it produces 1000 times higher plasmid copy number than the basic replicon. pHJL302 is a useful shuttle vector containing the ultrahigh-copy-number streptomycete plasmid combined with the E. coli plasmid pUC19.  相似文献   

16.
Summary Recombinant plasmids containing the entire 16S RNA gene from the rrn B cistron of E. coli inserted in Col E1 and pBR322 plasmid vectors have been constructed. These plasmids have been mapped using several restriction endonucleases as well as by DNA-RNA hybridization. These maps reveal previously undetected restriction sites in the rrn B cistron and in Col E1 plasmid DNA.  相似文献   

17.
Molecular cloning of a Bacillus subtilis xylanase gene in Escherichia coli   总被引:9,自引:0,他引:9  
R Bernier  H Driguez  M Desrochers 《Gene》1983,26(1):59-65
A gene coding for xylanase synthesis in Bacillus subtilis was isolated by direct shotgun cloning using Escherichia coli as a host. Following partial digestion of B. subtilis chromosomal DNA with PstI or EcoRI restriction enzymes, fragments ranging from 3 to 7 kb were introduced into the PstI or EcoRI sites of pBR325. Transformed colonies having lost either the ampicillin or chloramphenicol resistance markers were screened directly on 1% xylan plates. Out of 8000 transformants, ten xylanase-positive clones were identified by the clearing zone around lysozyme-treated colonies. Further characterization of one of the clones showed that the xylanase gene was present in a 3.9-kb insert within the PstI site of the plasmid pBR325. Retransformation of E. coli strain with the xylanase-positive hybrid plasmid pRH271 showed 100% transformation to xylanase production. The intracellular xylanase produced by the transformed E. coli was purified by ion exchange and gel permeation chromatography. The electrophoretic mobility of the purified xylanase indicated an Mr of 22 000.  相似文献   

18.
M A Sullivan  R E Yasbin  F E Young 《Gene》1984,29(1-2):21-26
Two new shuttle vectors have been constructed by fusing the Escherichia coli plasmid pUC9 with the Staphylococcus aureus plasmids pU110 and pC194. The resulting hybrids replicate in both E. coli and Bacillus subtilis and contain seven restriction sites within a part of the lacZ gene. Insertion of foreign DNA into those sites can be easily detected in E. coli and hybrid plasmids can subsequently be transformed into B. subtilis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号